Skip to main content
. 2022 Jun 7;19(12):6982. doi: 10.3390/ijerph19126982

Table 5.

The results of the dynamic spatial Durbin model.

Pool Subsample
China East Middle West
(1) (2) (3) (4)
L.gadt1 1.157 *** 0.904 *** 0.957 *** 1.352 ***
(0.015) (0.038) (0.022) (0.032)
short-term Direct effect 0.189 *** 0.556 *** 0.635 *** 0.284 ***
(0.036) (0.140) (0.092) (0.069)
Indirect effect 1.040 *** 1.527 *** 1.587 * 0.886 *
(0.124) (0.268) (0.207) (0.403)
Total effect 1.229 *** 2.083 *** 2.222 *** 1.070 ***
(0.125) (0.328) (0.235) (0.457)
long-term Direct effect 0.117 0.067 *** 0.014 ** 0.051
(0.641) (0.067) (0.017) (0.057)
Indirect effect 0.783 0.312 0.048 0.062
(0.083) (0.068) (0.048) (0.062)
Total effect 0.056 0.146 ** 0.249 1.079
(0.031) (0.063) (0.027) (0.196)
Control variables Yes
ρ 0.277 *** 0.192 *** 0.058 *** 0.543 ***
R2 0.987 0.995 0.998 0.932
σ2 0.001 *** 0.001 *** 0.001 *** 0.001 ***
L-L 249.700 233.500 378.200 272.400

Notes: gadj,t1 represents the one-period lag of agricultural green development. t statistics in parentheses. ρ represents the spatial autoregressive coefficient. L-L represents the log likelihood estimator. *, ** and *** denote statistical significance levels at 10%, 5%, and 1%, respectively.