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Abstract

The second Kidney Cancer Research Summit was held virtually in October 2020. The meeting 

gathered worldwide experts in the field of kidney cancer, including basic, translational, and 

clinical scientists as well as patient advocates. Novel studies were presented, addressing areas 

of unmet need related to different topics. These include novel metabolic targets, promising 

immunotherapeutic regimens, predictive genomic and transcriptomic biomarkers, and variant 

histologies of renal cell carcinoma (RCC). With the development of pioneering technologies, and 

an unprecedented commitment to kidney cancer research, the field has tremendously evolved. This 

perspective aims to summarize the different sessions of the conference, outline major advances in 

the understanding of RCC and discuss current challenges faced by the field.

Statement of translational relevance:
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With multiple translational and clinical advances, the field of kidney cancer research is rapidly 

evolving. However, many significant challenges remain to be overcome in order to ensure better 

outcomes for patients with advanced and/or rarer forms of the disease. In this Perspective, we 

highlight the most relevant research presented at the second Kidney Cancer Research Summit with 

a focus on translational science and ensuing therapeutic implications. We explore novel targets and 

promising immunotherapeutic modalities in renal cell carcinoma, and analyze the role of different 

biomarkers and the biology of variant disease histologies. Additionally, future research directions 

in renal cell carcinoma are discussed in an effort to tackle areas of unmet need.

Kidney cancer is one of the most common cancers and it is estimated that in 2020, more 

than 75,000 cases were diagnosed, the majority being renal cell carcinomas (RCC), causing 

over 13,000 deaths in the United States (1). Recent years have seen remarkable advances 

in the understanding of genomic drivers and pathogenesis of RCC (2,3), especially within 

the most common histologic subtype, clear cell RCC (ccRCC). These insights paved the 

way for the introduction of many systemic therapies for advanced/metastatic disease, most 

importantly angiogenesis inhibitors, including tyrosine kinase inhibitors (TKIs) (4) and 

anti-VEGF monoclonal antibodies (5), as well as immune checkpoint inhibitors (ICIs) (6).

The standard of care for the first-line treatment of metastatic RCC is currently based on 

TKI-ICI or dual ICI combinations (7). While these combination regimens have yielded 

substantial survival benefits and durable responses, complete responses remain relatively 

rare and most patients eventually progress. Further improving the outcomes of patients with 

RCC will only be possible through novel target discovery, therapeutic development, and 

improved biomarker-based therapeutic allocation. These clinical and translational challenges 

require advances in the laboratory, where more representative RCC models are actively 

being developed. These challenges are even more pronounced for variant histologic subtypes 

of RCC, management of which lags that of ccRCC. Recently, an improved understanding of 

the molecular drivers of these diseases has begun to lead to improved treatment options for 

patients with these tumors (8-10).

In order to overcome the unique challenges posed by kidney cancer, the second annual 

Kidney Cancer Research Summit (KCRS) in October 2020 brought together researchers 

from the basic, translational, and clinical fields, along with patient advocates in order to 

stimulate interdisciplinary discussion on the most exciting and novel research for kidney 

cancer (Figure 1) and build on discussions from the preceding year’s meeting (11). 

While the COVID-19 pandemic prevented an in-person meeting, KCRS 2020 was attended 

virtually by more than 800 registrants from more than 40 countries and featured a keynote 

lecture by 2019 Nobel Laureate Dr. William Kaelin, Jr “Can Studies of the VHL Gene 

Get Us to Curative Combination Therapies for Kidney Cancer?”. This White Paper aims 

to summarize the lessons learned, outline the most exciting advances, and determine the 

outstanding challenges in the field of kidney cancer research, in light of new drug approvals 

and research advances that have occurred following the conclusion of this meeting (Table 1).
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Promising Novel Targets and Drugs in Renal Cell Carcinoma

Therapies targeting VEGF, mTOR, PD-1, and CTLA-4 signaling have become part 

of the standard of care for RCC as either monotherapies or combinations, with 

clinical trials aiming to further refine regimens currently ongoing (e.g. COSMIC-313 

[NCT03937219]; PDIGREE [NCT03793166]; [NCTO4736706]). While these therapies 

have yielded prolonged remissions in up to 30% of patients (12-14), it is likely that novel 

therapeutic targets need to be explored to achieve sustained remissions more frequently.

HIF-2α, a transcription factor that is a key driver of ccRCC, is one such novel target that 

is currently in clinical development (2). HIF-2α, a transcription factor, was long thought 

to be undruggable, but structure-based drug discovery efforts provided small molecule 

inhibitors that prevent its activity by blocking its dimerization with HIF-1β (2,15). HIF-2α 
inhibitors have demonstrated promising efficacy in both sporadic and Von Hippel-Lindau 

syndrome-associated ccRCC in clinical trials (16-19). The HIF-2α inhibitor belzutifan was 

recently approved for the treatment of malignancies associated with VHL syndrome and is 

currently being tested as a single agent in a phase III trial for the treatment of sporadic 

ccRCC [NCT04195750] (20) or in combination with immune checkpoint inhibitors, and/or 

TKIs ([NCT04736706], [NCT04586231]) (21).

Metabolic targets in RCC are in earlier stages of validation (Table 2). These include 

MESH1, a cytosolic NADPH phosphatase which has been shown to induce cystine 

deprivation leading to ferroptosis (i.e. iron-dependent cell death) (22), a cell state associated 

with programmed necrosis in VHL deficient RCC (23). Likewise, SLC7A11 encodes a 

cystine transporter that suppresses ferroptosis and is negatively regulated by BAP1 (24,25). 

As a result, BAP1 mutations lead to a downregulation of ferroptosis and consequent tumor 

growth (25). As BAP1 is mutated in 15% of ccRCC and is associated with poor prognosis 

(26), this finding is particularly relevant. Cystine homeostasis mediated through SLC7A11 
may prove to be a targetable pathway in BAP1-deficient ccRCC (27).

Profilin 1 (Pfn1), a protein that plays an important regulatory role in actin polymerization, 

is overexpressed in ccRCC and associated with more aggressive disease with poor prognosis 

(28,29). In vitro experiments have shown that Pfn1 is a major regulator of tumor cell 

proliferation and migration in ccRCC (30). Small molecule antagonists of the Pfn1-actin 

interaction appeared to significantly reduce tumor cell proliferation in ccRCC (30). 

TANK-binding kinase 1 (TBK1), a member of the IkB kinase family, is implicated in 

cell survival, autophagy, mTOR-AKT signaling, and KRAS-driven tumorigenesis (31,32). 

In ccRCC, VHL loss has been shown to increase TBK1 activity through a hypoxia-

independent mechanism, thereby identifying a novel function of VHL not related to HIF 

(33,34). Pharmacologic inhibition of TBK1 resulted in substantially reduced proliferation 

of VHL-null RCC models, suggesting therapeutic vulnerability in kidney cancer (33,34). 

Another promising target in RCC is IGF1R. Decreased expression of methylthioadenosine 

phosphorylase (MTAP), a frequent metabolic aberration in ccRCC, leads to IGF1R 

upregulation and is associated with worse outcomes (35). Linsitinib, a selective IGF1R 

inhibitor, displayed potent inhibition of tumor cell migration and invasion in preclinical 
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models (35), and hence the contribution of IGF1R signaling in RCC progression merits 

further exploration.

Cyclin-dependent kinases 4 and 6 (CDK4/6), which control progression through cell cycle 

from G1 to S (36), were recently identified in preclinical models as being synthetically 

lethal with VHL inactivation in a HIF-independent fashion (37,38). CDK4/6 inhibitors are 

being studied preclinically in combination regimens with either HIF-2α inhibitors or ICIs 

(37,39) [APART study, NCT pending] and in phase I/II clinical trials with VEGF inhibitors 

[NCT03905889].

As multiple cellular or metabolic pathways are explored, it will be crucial to find agents 

that do not potentiate each other’s toxicities while optimizing antitumor efficacy through 

synergy, additivity, or independent action (40).

Beyond PD-(L)1 and CTLA-4 inhibition – Translational advances in RCC 

immunology and preliminary therapeutic implications

RCC is among the most immune-responsive solid malignancies despite having only a 

moderate tumor mutational burden (TMB) (41). However, a large proportion of patients 

do not respond robustly to current immunotherapy-based regimens (6,12,14). The next 

breakthroughs in immunotherapy must address diverse tumor immune profiles and their 

dynamics to overcome intrinsic and acquired resistance to treatment and achieve better 

outcomes.

Current immunotherapies used in RCC target negative regulators PD-(L)1 and CTLA-4, and 

while combination regimens employing these agents have been studied, the search for new 

immune targets has been pursued in parallel. Other immune checkpoints under investigation 

include TIM-3, VISTA, LAG-3, PVRIG, and TIGIT (42-46). Recently, therapeutic agents 

directed against these molecules have been evaluated in phase I/II clinical trials with 

anti-PD-(L)1 inhibitors in different cancer types, yielding promising results (47-49). Some 

these agents are currently being investigated in patients with mRCC in early phase I/II 

clinical trials, such as eftilagimod alpha (IMP321) [NCT00351949], a soluble dimeric 

recombinant form of LAG-3, sabatolimab (MBG453) [NCT02608268], an anti-TIM-3 

monoclonal antibody, and XmAb22841 [NCT03849469], a bispecific antibody targeting 

LAG-3 and CTLA-4 (Table 2).

Beyond immune checkpoints, another strategy is to inflame the RCC tumor 

microenvironment through the stimulation of innate immunity, such as by agonism of 

pattern recognition receptors such as Toll-like receptors and/or the STING pathway 

(50,51). This requires intratumoral injection of pro-inflammatory agonists, but could be 

avoided by developing tumor-targeting conjugates that can be delivered systemically in 

the form of prodrugs. TLR agonists are starting to be evaluated in RCC [NCT02650635, 

NCT03435640], among other solid malignancies, in phase I/II trials, while STING agonists 

in RCC remain to be tested in the clinical setting (Table 2). Oncolytic adenoviruses carrying 

immunostimulatory payloads honed to the kidney are also under preclinical investigation 

(52).
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Personalized immunotherapy is likely to have an important place in future RCC treatment 

algorithms. Human endogenous retroviruses (hERVs) are transcriptionally silent remnants 

of past retroviral infections, many of which become aberrantly expressed under hypoxic 

conditions in RCC (53). hERVs are potentially actionable drug targets: hERV-E was found 

to be antigenic and to elicit reactive antitumor CD8+ T-cells in a patient with metastatic 

RCC following allogeneic stem cell transplantation (54), and an autologous T-cell therapy 

engineered with a T-cell receptor (TCR) targeting hERV-E is in phase I development 

[NCT03354390]. Additionally, the hypomethylating agent decitabine has been shown to 

increase hERV expression and activate immune signaling in ccRCC cells, and could also be 

used to indirectly increase immunogenicity of RCC (55). A more patient-specific approach 

is personalized cancer vaccines, which are composed of antigens identified from sequencing 

a patient’s TCR repertoire (56). Preliminary efficacy has been demonstrated in melanoma 

and glioblastoma (57,58) and studies are currently underway in RCC [NCT02950766].

While sequencing-based analyses of the immune microenvironment can describe the 

types and activation states of infiltrating immune cells, the spatial interplay between 

tumor, endothelial, and immune cells - immune infiltration phenotypes - can be evaluated 

by techniques that preserve the spatial architecture of tumor tissue, such as multiplex 

immunofluorescence. A potential method involves 3D reconstruction from multiplex 

immunofluorescence to elucidate the spatial distribution of different cell types in the TME 

(59). Spatial heterogeneity in tumor samples can be explored in relation to outcomes, 

and it has been shown that spatial clustering of CD68+ tumor associated macrophages 

(TAMs) was associated with worse overall survival in patients with metastatic RCC (60). 

Another possibility uses model systems: recently, a 3D vascularized flow-directed system 

was developed using cells obtained from ccRCC patients (61). This model is highly relevant 

as it recapitulates in vitro the major signaling interactions of RCC, providing a useful 

platform for investigating novel agents (61). Additionally, such models can help to map 

the spatial distribution of immune cells, and explore cytokines and chemokines involved in 

immune cell migration. While spatial exploration of RCC cannot be employed in clinical 

practice, it represents an important modality that could help better unravel the patterns of 

therapeutic resistance, tumor growth and tumor-immune interactions.

At this juncture, despite promising advances in immunotherapy of RCC, there are many 

unresolved questions. If TMB is low, which tumor antigens are driving response to 

immunotherapy? Why doesn’t CD8+ T-cell infiltration correlate with better outcomes? 

Emerging methods, such as single-cell RNA sequencing (scRNA-seq) and single-cell 

TCR sequencing (scTCR-seq), which help determine the molecular underpinnings of each 

specific cell type within the tumor, are starting to be applied to kidney cancer and could 

help answer some of these questions through the high-resolution offered (62-64), potentially 

unraveling determinants of response to PD-1 blockade (65).

Biomarkers and genomics

Mutations and copy number alterations associated with response or resistance to anti-PD-1 

monotherapy in RCC have been recently described (66-68). In some reports, PBRM1 loss-

of-function (LOF) mutations have been linked to response to PD-1 blockade in metastatic 
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ccRCC resistant to VEGF TKIs (67,68). While other studies didn’t fully validate these 

findings (69,70), subsequent investigations demonstrated the same previously described 

association (71,72), arguing for the potential role of PBRM1 LOF mutations in predicting 

outcomes specifically and perhaps exclusively among VEGF-resistant ccRCC patients 

treated with single-agent ICIs. Focal loss of 10q23.31 also appeared to correlate with better 

survival outcomes with ICIs in ccRCC (66). Recent analyses of clinical trials investigating 

ICIs in combination with anti-angiogenesis agents in patients with mRCC (i.e. JAVELIN 

Renal 101, IMmotion150) have identified transcriptomic signatures associated with better 

responses to immunotherapy-based regimens (73,74). These signatures included multiple 

genes related to functions of the tumor immune microenvironment (TIME), such as TCR 

signaling, T-cell activation and proliferation, and myeloid inflammation, providing a clue 

for the development of biomarkers (73,74). Additionally, analysis of RNA-seq data from 

IMmotion151, the phase 3 trial of atezolizumab + bevacizumab versus sunitinib in advanced 

RCC, classified patients into biologically-relevant clusters in an effort to predict responses 

to immune checkpoint blockade (75). Certain hERVs have been also characterized and 

associated with response to checkpoint blockade (76). In a pan-cancer analysis, RCC 

displayed the highest hERV expression, which was further shown to be strongly associated 

with immune checkpoint activation (76). With many available systemic agents and multiple 

therapeutic combinations approved for patients with mRCC, the identification of predictive 

biomarkers to guide treatment selection remains a high priority for the field. More recently, 

scRNA-seq analyses in RCC have investigated cell-type specific patterns of response to 

immunotherapy, and characterized a pro-inflammatory phenotype of TAMs and T-cell 

subpopulations in responders (63). Additionally, tumor programs linked to better outcomes 

with ICIs were described using scRNA-seq and validated in bulk RNA-seq cohorts (63,64).

As shown in multiple studies, immunotherapy appears to modify the clonal dynamics of the 

adaptive immune system (77,78). Importantly, specific features of TCR and B-cell receptor 

(BCR) repertoires appear to correlate with response to ICIs across different cancer types. 

In melanoma, higher post-treatment clonality was associated with better survival outcomes 

(79). Additionally, the expansion of CD8+ memory effector cytotoxic T-cells was seen in 

responders during treatment (80). In non-small cell lung cancer, decreased TCR and BCR 

diversity after treatment with ICIs was seen among responders in the EGFR/ALK wild-type 

group (81). The relationship of TCR and BCR repertoires and response to ICIs in RCC 

remains to be further evaluated.

Among patients with ccRCC, African-Americans (AAs) have been shown to present with 

higher cancer-specific mortality (82). At the genomic level, these patients were less likely 

to harbor VHL mutations and exhibited lower expression of HIF- and VEGF-associated 

pathways as compared to Caucasians (83). Additionally, comprehensive genomic and 

transcriptomic analyses showed distinct DNA methylation and mRNA expression profiles 

in the AA population (84). More studies are still needed to confirm these findings and 

to analyze the mutational landscape of RCC across ethnicities. Moreover, as genomic 

racial differences in patients with lung cancer have been recently linked to immunotherapy 

response (85), the association between race and clinical benefit from VEGF-targeted 

therapies and ICIs in patients with RCC should be explored.
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Cell-free tumor DNA (cfDNA) can help monitor RCC progression and detect minimal 

residual disease following surgery (86). In other cancer types, it has also been found to 

be associated with survival endpoints (87), and identify responders to specific therapies 

(88). Cell-free methylated DNA immunoprecipitation sequencing (cfMeDIP-seq) is a novel, 

non-invasive technology that was recently validated as a promising approach to detect RCC 

from blood and urine samples (89) with a much higher sensitivity than cfDNA variant 

analysis (90). Future efforts could evaluate a potential role of cfMeDIP-seq in predicting 

responses to commonly used therapeutic regimens in kidney cancer.

While some proposed biomarkers are promising, they will need to be evaluated and 

validated in prospectively designed clinical trials before they can be utilized in clinical 

practice (91). A pioneering example of such a study in RCC is the phase 2 BIONIKK 

prospective trial, which employed a 35-gene expression mRNA signature for treatment arm 

allocation (92) and found that such signatures may help guide treatment decision-making 

(93). However, owing to the number of patients required and the costs of sample collection 

and analysis, these trials are difficult, time-consuming, and expensive to run. Moreover, 

biomarkers specific to one systemic therapy regimen might not translate to another, which 

poses a particular challenge in RCC with so many approved agents. The main challenge 

for the field in the coming years will be to incorporate the most promising biomarkers 

(80,94,95) that are most likely to be incorporated into clinical practice due to ease of use, 

such as circulating biomarkers (cfDNA, cfMeDIP-seq, TCR/BCR repertoire), in the design 

of prospective kidney cancer trials, allowing for optimal selection of patients.

Variant Kidney Cancer Histologies – Characterization & Target Discovery

Variant RCC histologies (also called non-ccRCC) represent a heterogeneous group of 

cancers with unique genomic alterations and often dismal prognosis, including some variants 

with a higher proportion of pediatric cases than is seen in ccRCC (3). While discussion 

of each individual histologic variant is beyond the scope of this perspective, unifying 

features that limit research include pathologic misclassification at diagnosis, unclear disease 

etiologies, and a dearth of cell line and animal models. Recently, our understanding of the 

drivers in some of these diseases has improved.

Multi-region genomic analysis of papillary RCC (pRCC) recently revealed lower intratumor 

heterogeneity as compared with ccRCC (96). Moreover, many somatic copy number 

alterations were identified as clonal, helping to better delineate the genomic features of 

pRCC (96). MET, which encodes a receptor tyrosine kinase involved in proliferation and 

angiogenesis (97), is frequently activated (through mutation or copy number gain) in pRCC 

(98). Savolitinib, a selective MET inhibitor, was recently evaluated in MET-driven pRCC, 

and demonstrated encouraging efficacy (9), outlining the potential for molecularly targeted 

therapies based on genomic characterization of non-ccRCC tumors.

Chromophobe RCC (chRCC) represents less than 5% of all kidney tumors and appears 

to be resistant to ICIs (99). A known metabolic alteration underlying the pathogenesis of 

chRCC is the impairment of gamma-glutamyl transferase 1 (GGT1) (100). Defects in the 

gamma-glutamyl cycle might have an important role in chRCC pathogenesis, potentially 
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caused by cells with accumulating dysfunctional mitochondria. Additionally, chRCC may 

be more sensitive to oxidative stress, a vulnerability that could represent a future avenue of 

investigation (100).

Renal medullary carcinoma (RMC) is a rare disease which disproportionately afflicts 

young patients of African descent often expressing sickle cell trait (101). Recent molecular 

characterization of this tumor has shown that it is driven by inactivation of the tumor 

suppressor gene SMARCB1 and subsequent gain of MYC during disease progression 

(102). Additionally, DNA damage repair pathways have been characterized as a therapeutic 

vulnerability with a high sensitivity to PARP inhibitors (i.e. olaparib) identified in preclinical 

models that should be further explored clinically (102).

Translocation RCC (tRCC) is a rare RCC subtype which nevertheless represents more than 

50% of all pediatric RCCs, and is characterized by gene fusions involving the MiT/TFE 
gene family (TFE3, TFEB, or MITF) (103). tRCC tumors have a “quiet” mutational 

landscape as compared to other subtypes of RCC (104,105), and an increased expression 

of genes related to regulation of apoptosis, lysosomal function (mTORC1 signaling), 

and antioxidant stress response (105-107). tRCC display elevated NRF2 activity without 

harboring any somatic alterations in the associated pathway, which could be driving 

resistance to targeted therapies (106). These insights into the drivers of this disease could 

lead to novel molecularly-targeted therapies.

Recently, pembrolizumab monotherapy and combination therapy with nivolumab 

and cabozantinib demonstrated promising antitumor efficacy in patients with non-

ccRCC (108,109). Other ICIs, as well as novel immunotherapy drugs, are currently 

under investigation in variant histologies of RCC [NCT03075423, NCT04413123, 

NCT04704219]. Similar to ccRCC, immune-based combinations with other targeted agents 

in these rarer subtypes of kidney cancer, such as MET inhibitors in MET-driven pRCC 

(110), are being evaluated [NCT02819596, NCT05043090] and could offer better outcomes 

for patients (111).

Conclusion

From basic to clinical research, KCRS 2020 represented a unique opportunity for 

researchers and physicians to exchange ideas and tackle the biggest challenges in kidney 

cancer research. While much progress has been made in recent years in the management of 

patients with RCC (Table 1) (11), much work remains to be done in order to obtain more 

durable remissions in a larger proportion of patients with metastatic RCC.
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Figure 1: Subject areas covered in the different sessions at the Kidney Cancer Research Summit 
(KCRS) 2020.
Abbreviations: BCR: B-cell receptor ; chRCC: chromophobe renal cell carcinoma ; GGT1: 

gamma-glutamyl transferase 1 ; Pfn1: profilin 1 ; pRCC: papillary renal cell carcinoma ; 

TLR: toll-like receptor ; tRCC: translocation renal cell carcinoma
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