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Abstract

A quantitative assessment of the level of coherence between two signals is important in many 

applications. Two biomedically relevant cases are Transfer Function Analysis (TFA) of Cerebral 

Autoregulation (CA) and Coherent Hemodynamics Spectroscopy (CHS), where the first signal 

is Arterial Blood Pressure (ABP) and the second signal is either cerebral Blood Flow Velocity 

(BFV) or cerebral hemoglobin concentration. To determine the time intervals and frequency bands 

in which the signals are significantly coherent, a coherence threshold is required. This threshold 

of significant coherence can be found using multiple samples of surrogate data to generate a 

distribution of coherence. Then the 95th percentile of the distribution can be used as the threshold 

corresponding to a significance level α = 0.05. However, storing the entire coherence distribution 

uses a large amount of computer memory. To address this problem, we have developed an 

algorithm to determine the coherence threshold with little memory usage. A subfield of data 

streaming algorithms is devoted to finding quantiles using little memory. This work does not aim 

to find a new streaming algorithm but rather to develop an algorithm that can be tailored to the 

needs of applications such as TFA and CHS. The algorithm presented here identifies the coherence 

thresholds for a wavelet scaleogram using much less memory then what would be required to store 

the entire coherence distribution.
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1 Introduction

Methods based on Transfer Function Analysis (TFA) rely on a high level of coherence 

between signals considered as input and output of a linear system. A high coherence 
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between input and output signals supports the assumption of a linear, univariate relationship 

between input and output signals. A key question tackled in this work is: “how can one 

efficiently determine a threshold value of significant coherence for the specific signals and 

experimental conditions of a given measurement protocol?”

We consider the cases of TFA of Cerebral Autoregulation (CA) [1] and Coherent 

Hemodynamics Spectroscopy (CHS) [2]. In TFA of CA, one measures Arterial Blood 

Pressure (ABP) and Blood Flow Velocity (BFV) in the middle cerebral artery (with 

transcranial Doppler ultrasound) and describes CA in terms of a high-pass transfer function 

[3]. In CHS, one measures cerebral hemodynamics (typically the cerebral concentrations of 

Oxy-Hemoglobin, [HbO2], and deoxy-Hemoglobin, [Hb], with Near-InfraRed Spectroscopy 

(NIRS)) that are coherent with a specific physiological signal, most commonly ABP [4,5]. 

The goal of CHS is to translate cerebral NIRS measurements into physiologically relevant 

information on cerebral perfusion, including CA [6,7] and Cerebral Blood Flow (CBF) [8].

A key requirement of the TFA and CHS methods is the determination of time intervals 

and frequency bands that feature significant coherence between the measured signals 

(i.e. BFV, [HbO2], [Hb]) and ABP [5], by also considering multiple coherence functions 

when additional physiological effects beyond ABP must be taken into account [9]. An 

additional difficulty of CHS, and of any time-varying process, are non-stationary conditions, 

for which the identification of short-lived the coherent periods require a time resolved 

signal processing technique. To determine time periods and frequency bands of significant 

coherence, a coherence threshold must be found for each time-frequency point. This work 

focuses on an algorithm for the determination of this threshold for use in non-stationary 

TFA, CHS, and similar techniques.

In non-stationary TFA and CHS, one is interested in identifying time intervals and frequency 

bands that feature significant coherence and then analyzing the phase and gain relationships 

of these coherent signals. While various signal processing methods can be used, this work 

will focus on wavelet analysis. Using the analytic Morlet mother wavelet, the wavelet 

coherence scalogram and wavelet transfer function scalogram are found for pairs of signals. 

The wavelet coherence calculated from experimental data is compared against a threshold of 

coherence (obtained from surrogate data) to determine times and frequencies of significant 

coherence, and then only those regions in the time-frequency space are analyzed. This 

workflow relies on the predetermination of a coherence threshold map in time-frequency 

space. Such coherence thresholds are obtained by generating multiple (100 − 10,000) 

surrogate data signals with Gaussian Random Number (GRN) to create a distribution of 

coherence [5,10–14]. The 95th percentile corresponding to a significance level α = 0.05 

of these distributions is then taken as the coherence threshold. However, some studies in 

the literature used a higher number of iterations to find a single coherence threshold that 

was then applied to the entire time-frequency space or as a function of frequency but 

not time [5,10,11,14]. Additionally, cases with large amount or surrogate data (~10,000) 

limited their sample length to 512 [11]. In principle, each time-frequency point should 

have its own coherence threshold since the coherence distribution changes with frequency 

and proximity to the temporal edges of the time-frequency map. This process of finding 
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coherence thresholds for each pixel can be very expensive in terms of memory usage due to 

the requirement to store the entire distribution of coherence values.

The problem of determining the desired percentile of a large distribution of data with limited 

memory can be classified as a streaming problem, for which a variety of techniques has been 

proposed [15–18]. The goal of this work is not to devise a conceptually novel streaming 

algorithm, but rather to develop an efficient method suited for the specific needs of TFA 

and CHS to determine a wavelet coherence threshold from GRN surrogate data. We describe 

an approach to determine wavelet coherence thresholds with little memory usage. The 

algorithm is tailored to the MATrix LABoratory language (MathWorks MATLAB, Natick, 

MA, USA) and takes advantage of the native matrix operations since the desired result is a 

map (two-Dimensional (2D) array) of thresholds in the time-frequency space.

2 Methods

2.1 Random Surrogate Data Method

One method for estimating thresholds of significant coherence in signal analysis is the 

random surrogate data method [10], which has been applied to TFA of CA [11] and CHS 

[5]. In this method, GRNs are used to populate two signals in time. These random time 

signals are then analyzed with whatever coherence analysis is desired, and the coherence of 

the GRN signals found. GRN signals are generated over many iterations (typically 100) to 

create a distribution of coherence values for these surrogate data [5,10]. There have been 

cases where large numbers of iterations have been reported (15,000), but this was done for 

a single threshold value and not a map [11]. Other methods exist such as scrambling a real 

signal either in time domain or frequency domain [10]; however, all surrogate data methods 

result in distributions of coherence. Although 100 iterations have been used in the past, 

1,000 − 10,000 or greater iterations are desirable for more accurate threshold estimates since 

threshold maps show heterogeneity when too few iterations are performed. An example of 

this heterogeneity will be shown in section 3.2. A threshold of significance is defined as 

a given percentile of the coherence distribution for surrogate data, with the 95th percentile 

being a typical choice (α = 0.05).

2.2 Simple Threshold Determination

The simplest method for determination of the desired threshold corresponding to a given 

percentile involves storing the entire coherence distribution in memory over the multiple 

iterations of GRN signals. Once all coherence values in the distribution have been populated, 

the values are sorted and the one corresponding to the desired percentile accessed. The 

main disadvantage of this method is the need for large amounts of memory. Since many 

signal processing techniques create time-frequency maps of coherence, each iteration will 

create a 2D array (rows and columns representing time and frequency, respectively) of 

coherence values. This means that the distribution of coherence values will be stored in a 

three-Dimensional (3D) array (rows by columns by pages) with the samples indexed along 

the page dimension. In an example where we have a time signal made of 10,000 points and 

the signal analysis method will produce 200 frequencies (reasonable for wavelet analysis), 

we will have a 10,000 × 200 × n array of type double (8 Bytes) where n is the number 
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of surrogate data samples. For typical n values of 100 one requires 1.6 GB for this one 

variable. However, if we consider more desirable values for n of 1,000 − 10,000 we find the 

need for 16 − 160 GB, matching or exceeding the full capacity of memory of most desktop 

computers today. This large memory requirement likely has led to either few iterations being 

chosen [5,10] or a single threshold (instead of a map) being estimated [11]. Therefore, this 

simple method of threshold determination is not practical when a threshold map is desired.

2.3 Efficient Algorithm for Coherence Threshold Determination

2.3.1 Summary—Here we present a method to estimate the ((1 − α) × 100)th percentile 

and associated coherence threshold without having to store the entire coherence distribution 

in memory. The algorithm is summarized below and will be described in detail in the 

following sections. To estimate the desired percentile with less memory, we start with 

an initial step that requires building the coherence distribution for several surrogate data 

samples (2m~100) that is much smaller than the desired value of n (1,000 − 10,000 or 

greater) but similar to the lesser number of sample iterations used in the past [5,10]. 

Throughout each iterative step of the proposed algorithm, which processes a new sample 

of the coherence distribution, the approach is to retain only coherence values that are close 

to the current threshold estimate (Figure 1). For this purpose, a 3D array (ABN) (time by 

frequency by surrogate sample index) is built. The notations ABN follows from the fact 

that this 3D array is made of three subarrays A, B, and N; however, these sub arrays are 

never separated in memory and always stored as the combination ABN. ABN consists of 

a total 2m + 1 pages, where each page is a 2D time-frequency array: the first m pages 

contain coherence values below the desired percentile (3D subarray A); the next m pages 

contain coherence values above the desired percentile (3D subarray B); the last page is 

used in the algorithm to accept a new coherence sample in each iteration (2D array N). 

The first page of B is named T, which is a 2D array containing the coherence threshold 

estimates for each time and frequency. First, the algorithm initializes the first 2m pages 

(AB) by populating them with the first nf × nt × 2m coherence samples and, after ordering 

the samples along the page dimension at each time-frequency pixel, estimates the threshold 

(Figure 2a–c). Here, nf and nt are the number of frequency samples and the number of time 

samples, respectively. Next, a loop is entered, where a new coherence sample is taken at 

each iteration. In the loop, the new 2D array of coherence samples is first added to ABN (in 

the last page, N) and then the elements of ABN are properly shifted in the page dimension 

to keep the coherence threshold array T at the same page index. Note that during this 

rearrangement some coherence values that were present in the ABN array will be discarded 

and will be substituted by some elements of the new coherent sample. The method to shift 

the elements of ABN is controlled by a 2D array, nAall, which contains the total number 

of samples (updated at each iterative step) that are below threshold at each time-frequency 

pixel. nAall is named such since it represents the length of the conceptual set Aall which 

contains all the samples below the threshold estimate ever extracted until that step of the 

loop (including samples that were extracted and are no more in the array ABN). In the 

example where a 10,000 × 200 time-frequency array of thresholds is desired; each page 

would take 16 MB of memory. For m = 50 (i.e. if A and B are each 50 pages deep), the 

3D array ABN would consist of 101 pages. This is 1.6 GB of memory, reasonable for most 

desktop computers today, but allowing for an arbitrary n of 1,000 − 10,000 or greater. Notice 
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that if we compare this amount of memory to the examples where all coherence samples 

were saved, the memory usage is equivalent to n = 100 for all samples saved. This is the 

key advantage of the algorithm, namely the ability to consider an arbitrarily large number 

of samples with memory usage as if n = 2m + 1 and all samples were saved. Below, we 

describe in detail the three steps of the algorithm: initialization, adding samples, and shifting 

elements.

2.3.2 Initialization—First, the initial 2m values of coherence obtained from GRN data 

are used to populate the first 2m pages of the ABN. Those values are sorted in the page 

dimension (Figure 2a) so that T is easily identified. For example, in the case of A and 

B having 50 pages each (m = 50) and α = 0.05, the coherence thresholds will be at 

page 96 of ABN. Second, we shift the coherence thresholds to the first element of the B 
subarray (or page m + 1, page 51 in this example, of the ABN array); to do this, the pages 

with the smallest ⌊m(1 − 2α)⌉ values in the A subarray (i.e. in the first 45 pages in this 

example with m = 50 and α = 0.05) are redefined to the large dummy value (in the case of 

MATLAB implementation, NaN) (Figure 2b). Third, the ABN array is again sorted in the 

page dimension, thus placing the page T at the first page of the B subarray (Figure 2c), or 

at page 51 of the ABN array. At this stage, the 3D array ABN has the first m = 50 pages 

with coherence values under threshold (A array), the 5 following pages (the first 5 pages of 

B) with coherence value equal or above threshold (first page of B), and all the remaining 

pages of the B and N subarrays are filled with the large dummy value (NaN in MATLAB). 

T is accessed to obtain the current coherence threshold estimates. A 2D array is created 

(nAall) where each element contains the number of samples below the threshold estimate for 

each time-frequency pixel. Per the ((1 − α) × 100)tℎ percentile, all elements of this array 

are initialized to the same value ((1 − α) × 100 = 95 in this example). Because of this 

initialization, most of the B array is set to the large dummy value and the values in the ABN 
array are sorted in the page dimension.

2.3.3 Adding Samples—The first step taken during each iteration of the threshold 

updating loop is to obtain a new 2D array of coherence value samples. This 2D array fills 

the last page, N, of the ABN array (Figure 1), replacing its current values. For each row and 

column combination, if the new coherence sample is below the current threshold estimate, 

nAall is incremented by one; otherwise nAall is unchanged. Then the ABN array is sorted in 

the page dimension (Figure 2d), moving the new coherence samples into A if they are below 

the threshold estimate, or into B if they are above the threshold estimate. As a result, one 

may end up with some coherence values below the current threshold estimate that are in B 
(this happens if there is at least one element in N below threshold). To shift these elements 

into A (where they belong), we set the corresponding elements of the first page of ABN to 

the large dummy value (NaN in MATLAB; Figure 2e). After re-sorting the array ABN, all 

the elements of ABN below the threshold estimate will be in A.

2.3.4 Shifting Elements—The second step taken during each iteration loop is to 

determine the new threshold estimate. This step is based on a comparison between the 

current values in each row and column combination of nAall and the expected value of i(1 − 

α) where i is the iteration number including the 2m initialization samplings. This is because 
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the initialization of the algorithm is considered to take 2m iterations so that the iteration 

number i is representative of the total number of samples taken thus far. We describe the 

performed comparisons following MATLAB notation where arrays can be compared to 

scalars resulting in Boolean arrays: if nAall < i(1 − α), elements must be taken from B and 

added to A (at those time-frequency pixels of the Boolean array where there is a True); 

if nAall > i(1 − α), (this statement generates an almost complementary Boolean array to 

the previous one) an element must be taken from A and added to B; no action is needed 

if nAall = i(1 − α). Thus, the row and column combinations that require their elements 

shifted are found (Figure 2g). In cases where pixels must be shifted to lower-index pages 

(from B to A), a large dummy value replaces the first page of ABN. In cases where pixels 

must be shifted to larger-index pages (from A to B), a small dummy value (in the case of 

MATLAB implementation, -Inf) replaces the last page of ABN (Figure 2h). nAall values 

are incremented by one if a sample was moved from B to A, and decremented by one in 

the opposite case. Finally, the ABN array is sorted for the last time placing the updated 

threshold estimates at the T page, the first page of the B array. The T page is accessed to 

extract the new threshold estimate. Because of this step, the ABN array is sorted, nAall and T 
are updated, and the ABN array is ready for the new loop iteration.

3 Results

3.1 Testing with Constructed Distributions

To validate the results of the algorithm, its output was compared to the true percentile given 

by a data set consisting of 20,000 samples. The test set was not a coherence distribution, 

but rather a constructed distribution. In addition, this test was carried out for one threshold 

value, equivalent to one pixel in a real coherence map. In this example, we take m = 50 to 

be consistent with the previous sections. The test data resulted from two random Gaussian 

distributions, one with mean 0 and standard deviation 0.2, and the other with mean 0.5 and 

standard deviation 0.5. Each of the 20,000 samples had an equal likelihood of coming from 

either of the Gaussian distributions. The test values of these distributions were limited to 

the range 0 − 1 inclusive. The purpose of creating this test data set was to create a bag of 

numbers to test the algorithm against, any bag of numbers constructed in various ways could 

have been used.

The algorithm was run pulling samples from this test data set to construct its estimate of the 

95th percentile. All the samples from the distribution were saved, and the true 95th percentile 

for all the data samples pulled thus far was calculated for each iteration of the loop. The 

algorithm was run for all n = 20,000 samples and did not show a difference from the true 

95th percentile within the third significant digit (Figure 3). The true final percentile value 

was determined by finding the 95th percentile from the whole sample distribution.

3.2 Application of Wavelet Coherence Analysis

One intended application of this algorithm is to find thresholds for significant coherence 

in wavelet signal analysis. Using a map of coherence thresholds, one can determine 

which points in frequency and time are significantly coherent for a given pair of signals. 

The computation of coherence threshold as a function of time and frequency can be a 
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computationally demanding task for more data samples (longer time acquisitions assuming 

a fixed sampling frequency). To evaluate the capabilities of the algorithm presented here, 

we used it to generate coherence thresholds for the coherence calculated by the MATLAB 

wcoherence function, which was modified to remove smoothing in frequency (Figure 4). 

The threshold map presented in the right panel of Figure 4 was given a limit of 24 hr to run 

the algorithm on a typical desktop computer. The algorithm completed 22601 iterations in 

that time on a 9375 × 145 map of coherence (1,359,375 indivisual cohereance thresholds). 

This map represented thresholds for a 20 min long signal acquired at a sample rate of 7.8125 

Hz with analyzed frequencies from 0.001 to 3.730 Hz. The left panel of Figure 4 shows the 

initialization of the algorithm (thresholds from 100 iterations). Comparing the 100 iteration 

map to the 22,601 iteration map, 100 iterations yield a much greater heterogeneity compared 

to 22,601 iterations. This is representative of thresholds generated for a real experimental 

protocol on actual distributions of coherence (instead of a single constructed distribution as 

in the previous section). It is worth noting that if this map was generated by storing the 

entire coherence distributions 246 GB of memory would have been required, compared to 

the 1 GB used by the ABN array in the algorithm.

4 Discussion

4.1 Values of n and m

The main aim of the algorithm is to estimate threshold maps with large n (iterations) without 

large memory usage. Previous works have either used small n or not generated full threshold 

maps (but rather just one threshold value) [5,10,11]. From Figure 3 and Figure 4 it can 

be seen that 100 samples are not enough to get a good estimate of the threshold [5,10]. 

The threshold map shown in the left panel of Figure 4 shows a visible heterogeneity in the 

time-frequency map of the threshold. This example, generated from 100 samples, shows that 

some regions may feature significant coherence when a more accurate threshold estimate 

would not. Thus, more coherence samples are required (1,000 − 10,000 or greater) but, as 

discussed in section 2.2, a simple threshold determination would require too much memory 

to generate a threshold map. Thus, a single threshold estimate (not a map) with a large 

n has been used [11]. But from the right panel of Figure 4 the threshold map does not 

contain a constant value as the threshold depends on frequency and temporal proximity to 

the edge. Therefore, we need a method to estimate entire threshold maps using large n but 

little memory, the algorithm presented here achieves this goal.

The value chosen for m (size of A and B along the page dimension) has some effect on 

the algorithm. In principle, it should be set as large as possible without using too much 

memory or reducing computation time. Here, m = 50 was chosen since it was found to be 

large enough without using unreasonable amounts of memory. m can also be chosen to be 

too small. If this is the case, there is a risk of the dummy values appearing in the threshold 

estimate array, this is further discussed in section 4.3.

4.2 Applicability of the Algorithm

A method that can easily and accurately generate threshold maps is important because a 

different map may be needed for different experimental protocols. Different experimental 
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protocols may last different durations in time. The data could be collected at different 

sampling rates. In addition, different experiments may require different coherent analysis 

parameters (smoothing in wavelet for example). These differences across experimental 

protocols require coherence maps to be generated frequently without the need for a 

specialized computer. The algorithm presented here is capable of this, since it does not have 

large memory requirements, and most desktop computers can be used to generate thresholds. 

This leads to the possibility of generating thresholds for an experiment overnight on one’s 

computer and then being able to complete the turnaround on coherence analysis within one 

day of a new experiment.

The algorithm was developed for and inspired by the need for significant coherence in TFA 

and CHS. However, its use is not limited to these modalities. In principle it could be applied 

to any application that needs percentile estimates of many samples with little memory 

usage. This is the subfield of quantile estimation in the field of streaming algorithms. This 

work does not aim to develop a new streaming algorithm but rather to create a specific 

implementation that has been optimized for MATLAB and importantly for estimation of 2D 

arrays of percentiles. Note that this algorithm is implemented without for loops to index 

the arrays, but uses instead native array operations in MATLAB, an important consideration 

when optimizing for MATLAB. This suggests that the algorithm may to applicable to 

modalities outside TFA and CHS.

Finally, there is a possibility for this algorithm to be implemented in other languages. 

Despite it being optimized for MATLAB by using the native array operations, MATLAB 

has disadvantages. First, development in MATLAB requires expensive licenses making it 

inaccessible to some. Second, MATLAB is inherently not as fast as other languages since 

it is designed for data analysis and visualization, not writing and compiling standalone 

programs. Due to these disadvantages it may be desirable to implement the algorithm in 

another language. There is nothing about the algorithm that would prevent this. Array 

operations could be implemented in nested for loops and large positive and negative 

numbers could be used for the dummy values, thus lending to the possible applicability 

of the algorithm outside MATLAB.

4.3 Considerations and Limitations of the Algorithm

The primary problem that can arise running this algorithm is dummy values showing up 

in the T page and ruining the estimation of the threshold. It is recommended that a check 

for dummy values be implemented at every iteration of the threshold estimates, and to 

disregard them. For these cases, either the previous iteration estimate, or the max sample 

value (at a time-frequency pixel where a dummy value is present in T) may be used as 

the updated estimate. The latter is more conservative, possibly overestimating the coherence 

threshold. Such conservative estimates are sometimes desirable in determining thresholds. In 

this conservative spirit, we used the first page of B as the threshold instead of the average of 

the last page of A and the first page of B.

It is also worth noting that three sorting operations are required for each iteration of this 

algorithm. Sorting operations are one of the more computationally expensive operations 

in terms of processing time. Considering the sort operations, the cost of the algorithm is 
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ℴ(6 n nf nt m log2(2m)) since MATLAB uses quick sort on the 2m + 1 values in ABN. 

This sort must be repeated three times for every iteration (n), frequency row (nf), and time 

column (nt). Thus, it may be said that this algorithm reduces memory cost at the expense 

of an increased processing cost. Parallelism may be a way to alleviate the cost of sorting; 

because the sort is done for row-column combinations across pages of a 3D array, the sorts 

of each row and column could be done in parallel, reducing the dependence on nf and nt. 

Of course, there may be further opportunities to improve the algorithm through parallelism. 

However, the time-frequency analysis of the random signals that must be done at every 

iteration dominates the processing time in each step and may overshadow the cost of sorting.

The efficacy of the algorithm maybe further improved to reduce computation cost or better 

take advantage of parallelization. One such improvement may involve changing the way new 

data is added. Instead of adding one sample at a time, new data may be added in blocks 

of multiple surrogate data samples (like repeating the initialization step in the iterations). 

This may require fewer sorting operations but would be more costly in terms of memory and 

further thought would need to be put into the strategy to add the blocks of data in the ABN 
array.

5 Conclusions

We presented an algorithm designed to calculate threshold values of significant coherence. 

The algorithm was designed with the specific objective of calculating time-frequency maps 

of coherence thresholds for wavelet analysis, but it could be used for any application that 

requires the estimation of a desired percentile of a sampled distribution. The algorithm 

allows the calculation of thresholds from large number of samples without requiring large 

amounts of computer memory. This is because the proposed method employs only the 

distribution values that fall within a region around an iteratively updated threshold. With this 

method, the limitation in the number of samples is determined by available computing time, 

since the memory that the algorithm requires does not increase as more and more samples 

are acquired. The algorithm will allow for the accurate estimation of coherence thresholds 

when analyzing pairs of signals. Biomedically relevant signals include ABP and either BFV 

or [HbO2], and [Hb] which are relevant for TFA of CA and CHS.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Structure of the 3D array ABN used in the efficient threshold algorithm. Each voxel contains 

a coherence value and the values are increasing in the direction of increasing page number. 

All coherence values below the threshold make up the conceptual array Aall, this array is 

never stored in its entirety, but only its subset A. The 2D array nAall is stored and contains 

the length of the conceptual Aall for each row and column combination. A and B contain the 

coherence sample subsets adjacent to the desired percentile. The threshold 2D array (T) is 

the first element in the sorted B set. The cube shows the implementation of the A, B, and N 
sets in a 3D array. The rows and columns are the time and frequency dimensions while the 

page dimension is coherence value samples. The last page of ABN is a null page (N) that 

contains a new coherence sample at each iterative step of the proposed algorithm.
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Figure 2: 
[a-c Initialization] a) ABN Array is initialized with 2m samples and sorted. At the end of 

this phase the thresholds will be at page at index ⌊2m(1 − α) + 1⌉. b) In order to shift the 

threshold page (T) to the first page of B, elements too small to be in A (which belong to 

its first ⌊m(1 − 2α)⌉ pages) are set to the large dummy value (NaN in MATLAB). c) ABNis 

sorted, and the thresholds are set in the correct page, T. [d-f Adding Samples] d) 2D array 

of new coherence samples is placed in N replacing what was there. Then the ABN is sorted. 

Note that the figure does not show an example of first iteration, thus various dummy values 

are already present. e) For row and columns combinations where the new element was less 

than or equal to the last threshold estimate, the first page of the array is set to the large 

dummy value. f) Array is sorted. [g-I Shifting Elements] g) Based on the value of the new 

samples it is calculated whether they belonged to the A set or the B set and whether the 

sets are the right size for the desired threshold to be at their boundary. Now it can be seen 

that the current threshold estimate is scattered in the page dimension and the pages must 

be shifted for each row and column combination. h) For row and column combinations for 

which set A is now too large, a large dummy value is placed in the first page of the array. 

For cases where the A set is now too small, a small dummy value (-Inf in MATLAB) is 

placed in the last page of the array. i) Again, ABN is sorted setting the thresholds to be 

in the correct page, T. [Definitions] A: Set below threshold, B: Set above threshold, T: 

Page corresponding to threshold estimate, N: Extra null page. Blue: Number, Light Blue: 

Number belonging to threshold estimate, Yellow: Lower dummy value (-Inf in MATLAB), 

Red: Upper dummy value (NaN in MATLAB).
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Figure 3: 
Comparison of true 95th percentile and estimated 95th percentile of a test distribution. Top) 

True threshold over all iterations compared to estimated threshold. Bottom) Absolute value 

of the difference between the estimated threshold and the true threshold over all iterations. 

Note that the iteration axis starts at 100, since 100 samples were taken during initialization 

of the algorithm.
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Figure 4: 
Example map of coherence thresholds generated by the algorithm with size 9375 × 

145 (1,359,375 pixels). Map confidence threshold for a 20 min long signal sampled 

at 7.8125 Hz with a frequency range from 0.001 to 3.730 Hz. Coherence was found 

using the MATLAB wcoherence function, modified to remove smoothing in frequency. 

Left) Thresholds generated form 100 iterations using the entire coherence distribution 

(initialization of the algorithm). Right) Thresholds generated using the algorithm in 24hr 

with 22601 iterations on a typical desktop computer.
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