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Abstract: Background and motivation: Over the last two decades, particularly in the Middle East,
Red Palm Weevils (RPW, Rhynchophorus ferruginous) have proved to be the most destructive pest
of palm trees across the globe. Problem: The RPW has caused considerable damage to various palm
species. The early identification of the RPW is a challenging task for good date production since the
identification will prevent palm trees from being affected by the RPW. This is one of the reasons why
the use of advanced technology will help in the prevention of the spread of the RPW on palm trees.
Many researchers have worked on finding an accurate technique for the identification, localization
and classification of the RPW pest. This study aimed to develop a model that can use a deep-learning
approach to identify and discriminate between the RPW and other insects living in palm tree habitats
using a deep-learning technique. Researchers had not applied deep learning to the classification of
red palm weevils previously. Methods: In this study, a region-based convolutional neural network
(R-CNN) algorithm was used to detect the location of the RPW in an image by building bounding
boxes around the image. A CNN algorithm was applied in order to extract the features to enclose
with the bounding boxes—the selection target. In addition, these features were passed through the
classification and regression layers to determine the presence of the RPW with a high degree of
accuracy and to locate its coordinates. Results: As a result of the developed model, the RPW can
be quickly detected with a high accuracy of 100% in infested palm trees at an early stage. In the
Al-Qassim region, which has thousands of farms, the model sets the path for deploying an efficient,
low-cost RPW detection and classification technology for palm trees.

Keywords: red palm weevil; localization; classification technique; deep learning approach; region
convolution neural network

1. Introduction

The red palm weevil has been demonstrated to be one of the most destructive insects
of palm trees that attacks a variety of palm species (e.g., date palms, coconut palms and
royal palms). In the early part of the 20th century, its presence was recognized as a medical
condition in Southeast Asia. Furthermore, its presence has caused damage in the western
and eastern parts of Asia as well as in northern Africa and Europe [1,2]. The RPW had
spread by the end of the 20th century and was discovered in the western parts of Northern
America by the end of the decade. The high spread rate is attributed primarily to human
movement, by which young and adult date palm trees are moved from contaminated areas

J. Imaging 2022, 8, 170. https://doi.org/10.3390/jimaging8060170 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8060170
https://doi.org/10.3390/jimaging8060170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0002-2381-1223
https://orcid.org/0000-0002-9021-180X
https://orcid.org/0000-0002-2379-4451
https://orcid.org/0000-0002-5749-8538
https://doi.org/10.3390/jimaging8060170
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8060170?type=check_update&version=1


J. Imaging 2022, 8, 170 2 of 11

to areas without the RPW. This species of weevil has a life cycle that lasts from 45–139 days
inside the trunk of a palm tree, where it feeds on the palm tissue. Because the RPW is inside
the palm tree, it is protected and cannot be seen from the outside. Infected palm trees may
remain infected for generations if food is available, but when the tree is hollow, the RPW
usually leaves the palm tree to look for a new host. Throughout its life cycle, it has the
forms of four different stages, which are egg, larva, pupa and adult.

As a result of the RPW ferruginous Olivier, date palm trees suffer considerable eco-
nomic losses. The larvae invade the trunks of palm trees after hatching in low, wounded or
sheltered areas of each tree, creating cavities and tunnels that weaken the tree’s structure
by interfering with the communication of nutrients and water between the root system
and crown. As soon as the signs of significant damage appear on the palm trees, secretive
larvae normally appear. It is usually these unnoticeable larvae that get transported within
a specific region or in between various agricultural regions. The early detection methods
may therefore prove to be very effective in reducing the spread of these pests. In addition
to providing the core component of nutrition for any social gathering, the date palm forms
an integral part of the overall heritage of the Arabian Peninsula.

A recent invasion of the red palm weevil (RPW), which originated from Southeast Asia,
is threatening this precious heritage [3]. The Saudi Arabian government has carried out a
national campaign for the control of the RPW by destroying or containing infested plants,
injecting and spraying them with biochemical and chemical treatments with a pesticide in
heavily infested and newly infested areas, and using pheromone and kairomone traps to
track and reduce RPW populations, but this campaign has been only partially successful
in preventing the spread to unaffected areas. There is a need for new methods to help
minimize the number of RPW populations. Recently, however, some countries developed
methods to facilitate the early detection of an RPW epidemic before it spreads widely. These
methods, if successful, will prove to be of great help to farmers in reducing or eliminating
pests from their fields.

In order to manage and control RPWs, the current approaches include first detecting
the presence of RPWs. These approaches have been modified to provide more accurate
insect identification results in real time in place of a lack of manual identification methods
for entomologists. The use of computer vision technology through pattern recognition
has proven to be more productive when used to identify and classify insects [4]. Insects
are composed of several parts, such as their antennae, tails, wings and so on. In an image
processing process, these components are extracted for the purpose of using them in the
identification of insects and their other important characteristics, such as their colors and
shapes. There are several advantages to the new intelligent system, notably that it is
particularly useful for lay people who do not have the professional knowledge to identify
certain types of insects. Therefore, the automated system will reduce both the problem
as well as the labor effort needed to increase the income of a farmer. The farmer will be
encouraged to increase the yield of their date fruit if this is done.

In fact, many of the current RPW management strategies are based on manual applica-
tions of insecticides that may cause harm to the environment and the human body. There
has not been much use of an automatic species identification for the red palm weevil (RPW)
due to the complexities and high costs of such systems [5].

2. Related Work

Due to the serious problem of the red palm weevil infestation of date trees in Saudi
Arabia, researchers from around the world have been actively involved in finding software
and hardware approaches to successfully identify insects in date-tree plantations.

Cheong [6] used Integrated Pest Management (IPM) in a battle against the RPW insect.
This is one of the most efficient methods for getting rid of this insect. In response to
all the problems associated with the use of traditional labeling methods, Photographic
Identification Methods (PIMs) were proposed as an alternative. The aim was to avoid pain,
injury and stress to animals while at the same time allowing for individual identifications.
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Because of this, PIMs are some of the most popular techniques that are implemented, with
many available software packages enabling the identification of different types of species
individually. It is believed that these techniques require the fixed part of an organism
that is common to all insects of the same species but has the organism’s own distinctive
features [7].

Some species may not be suitable for PIMs, and the software will not recognize species
that do not have natural patterns that reflect them. In these circumstances, traditional
techniques are still the best option to be used. As an example, suitable photo-identifiable
animal features include scars on fins, scales or color patterns [8]. In the past, PIMs have
been used mainly on vertebrates, such as fish, amphibians, reptiles, birds and mammals.
There have been only a few studies that have applied PIMs to invertebrates.

In the past few years, several automated systems have been proposed to identifiably
recognize different insects, such as the Automated Bee Identification System (ABIS) that
was designed for identifying bees, as well as a proposed Digital Automated Identification
System (DAISY) that was designed for identifying Ophioninae [9]. The Automated Insect
Identification through Concatenated Histograms of Local Appearance (AI-ICHLA) system
was developed and proposed as a method for the identification of stonefly larvae, and the
Automated Species Identification and Web Access (SPIWA) system for the classification of
spiders was developed and proposed as a method for the identification of the pecan weevil.

Rach et al. [10] mentioned that this research focused on the identification of insets,
such as butterflies and ladybugs. Using a color information system, the image of an insect
is acquired and noise is suppressed using a color image-processing algorithm. The edge
detection technique is applied to an RGB space after pre-processing by means of a top-
cover filter with a specific threshold. In order to determine an observed edge line, a string
symbol is analyzed. In order to improve the quality of the results, the image is filtered to a
maximum and minimum. Yang et al. conducted a similar study in which the method of
recognizing insects was based on pattern-recognition technologies. A pattern-recognition
system can accurately be defined as the process of collecting raw data and taking action on
the basis of the recognition of a pattern category. The authors explained that this process
is divided into three stages: entering the data and information collected from the sample
using a sensor; using a feature extraction mechanism that computes numeric or symbolic
data from a sample; and using a classification scheme that identifies the group of samples.

Image segmentation is defined as a method by which an image is divided into several
parts, which are grouped together by using pieces that bear similar properties, such as
density or texture, in order to produce an image without any overlaps. In previous studies,
two different image-processing techniques were applied to identify and recognize the RPW
based on images. The algorithm used in the present method makes use of the local features
of an insect image as well as moment invariant values (Zernike moments). The processing
time for RPWs and the other insects was found to be 0.47 s with 97% and 88% recognition
rates, respectively. The same problem was solved with another method, whereby pixel
information was sent to the ANN in binary form. It was estimated that training the said
network would take 183.4 s, but a decision was made very quickly. According to the study,
the best identification rates in terms of RPW and other insects were recorded to be 99%
and 93%.

The ANN proposed in this study has four layers and consists of a total of 24,771 neurons.
The benefits of this method have been shown to be better results at a higher cost in terms
of computational requirements [11]. One study obtained a framework for identifying the
RPW based on a support vector machine (SVM) strategy and descriptors extracted from
standard image preparation systems used in RPW identification.

The development of a neural system based on parallel images (pixel information)
using a framework was recently been published. This technique proved to be too compu-
tationally costly for practical field use. In particular, the test times for each picture were
generally extremely long and the memory requirements for storing the binary pictures
were too restrictive for practical field applications. As a result, various SVM-based pattern



J. Imaging 2022, 8, 170 4 of 11

recognition techniques have been adopted for machine-vision applications, such as for face
recognition problems, processed speech recognition and a simulated annealing algorithm
for recognizing stored-grain pests.

The pecan weevil was proposed to be identified by an identification system. Several
imaging techniques have been proposed that rely on template matching to identify the
pest [12]. An IoT-based smart palm-weevil monitoring system was developed based on
using a web/mobile interface to detect the red palm weevil via sensors [1]. By applying
10 state-of- the-art data mining algorithms for classifications, tremendous work was done
in 2021. It was estimated that these algorithms perform with an accuracy rate of 93% [13].

A deep-learning technique is one of the most important amongst the various classifier
techniques that provide varying methods of identifying and classifying objects, including
insects. Computer software tools are increasingly coming into use in the fields of agriculture,
crop- and weed-detection differentiation and control. The faster R-CNN model was used to
develop a Regional Convolutional 3D Network for object detection [14–16]. The use of the
IoT-enabled environments was addressed by using information technology for realizing the
implementation of smart cities [17]. The deployment of robot design, image acquisition and
apple-detection quality evaluation with a more detailed description of apple-harvesting is
given in [18]. Soil analysis and characteristics, the detection and classification of crop weed
control and taste and odor detection are covered in detail in [19].

Researchers have not applied the deep-learning approach to the classification of red
palm weevils. We used the faster R-CNN algorithm in order to detect the presence of
the red palm weevil in this study. The purpose of using faster R-CNN was that it is an
end-to-end single-stage model. It works on generating a region’s proposals, which saves
time compared to traditional algorithms.

3. Proposed Model

In computer vision, object detection is a difficult and tedious task that involves recog-
nizing the location of objects in an image and identifying the type of object that is detected.
In reality, object detection is a very difficult problem to solve. There are two main steps in
the process: (1) object localization, which involves identifying the positions of objects in
an image, and (2) classification, which aims to identify the types of objects contained in
an image. Many researchers have presented different methods for detecting objects in an
image. In this study, we present methods to detect the palm weevil using faster R-CNNs.
In Figure 1, we illustrate some of the steps involved in detecting the palm weevil, such as
generating a dataset, preparing the dataset for training, training the dataset using faster
R-CNN and finally testing the trained model.
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proposed method, faster R-CNN is used to detect the RPW and classify the species. The
individual parts of an image are identified as enclosed in a selectable bounding box, and a
class label is assigned to the RPW part of the image.

The faster R-CNN architecture consists of three major components, namely a convolu-
tional layer (CNN), a region proposal network (RPN) and a class/bounding box detection
mechanism. The CNN layer helps to discover the features of an image from data. The RPN
works as a sliding window over the feature maps that have been extracted by the CNN.
The last module, faster R-CNN, helps detect the bounding box of an object and the object
itself. The whole mechanism of the architecture is explained in Figure 2. Two-dimensional
images are passed to the CNN module, which detects multiple regions by using the sliding
window of the CNN module to obtain a feature map (feature size: 60, 40, 512). In order
to extract the feature vector, we applied the ROI region proposal to each region proposal.
The output from the ROI pooling layer had a size of (N, 7, 7, 512), where N represented the
number of proposals. The ROI layer helped in finding the exact coordinates/location of an
object as well as categorizing the object as RPW or not.
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3.1. Dataset Preparation

For any computer-vision application, one of the most important tasks is generation
of datasets for analysis. In order to perform this work, we downloaded 300 images of
the palm weevil from the Google image search engine. Due to a non-availability of the
dataset for the proposed model, the dataset was too small for the robust model to be trained.
For this reason, data augmentation techniques were applied to the dataset. As shown in
Table 1, there were different data augmentation techniques. Rotations were performed at
various angles (−90◦, −60◦, −45◦, −30◦, 30◦, 45◦, 60◦, 90◦). Skewness and flip were also
applied in all four directions. In addition, shear was applied at 10 and 20 degrees. Table 2
shows the statistics of the dataset before the augmentation and after the augmentation.
The dataset was split into subfolders for training and testing. In the dataset, 80% of the
data was used for training, whereas the remaining 20% was used for testing. Afterward,
all of these images were converted into JPGs by using the JPG extension. XML files for
each object were created by using labeling software to generate the X, Y coordinates of each
object as shown in Figure 3, which illustrates the dataset used in this study.
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Table 1. Different techniques of data augmentation.

S. No. Data Augmentation Technique Parameter(s)

1 Rotation

−90◦

−60◦

−45◦

−30◦

30◦

45◦

60◦

90◦

2 Skewness

Right
Left
Forward
Backward

3 Flip

Bottom
Top
Left
Right

4 Shear Along X-axis at 10◦, 20◦

Along Y-axis at 10◦, 20◦

Table 2. Statistics of red palm weevil dataset.

Dataset No. of Images before
Augmentation

Parameters of
Augmentation Techniques

No. of Images after
Augmentation

Red palm
weevil 300 20 6000
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3.2. Proposed Architecture

Once the dataset was ready, the next step as training. For training purposes, we used
faster R-CNN, which can be easily deployed on embedded devices. We review the faster
R-CNN detection framework briefly in this section. Faster R-CNN was first proposed for
process object detection [12], in which an input image is given and the goal is to output
a set of detection bounding boxes, each labeled with an object-class label. The complete
pipeline consists of two stages: proposal generation and classification. First, an input
image is processed by using 2D ConvNet to generate a 2D feature map. Another 2D
ConvNet (referred to as the Region Proposal Network) is used to generate a sparse set of
class-agnostic region proposals by classifying a set of variable-scale linking boxes centered
at each pixel location of a feature map. The limits of the proposals are also adjusted with
respect to linking boxes by regression. Second, for each region proposal, the features within
the region are first aggregated into a feature map of constant size (i.e., RoI pooling [1]).
Using the pooling feature, a DNN classifier then computes the probabilities of object classes
and simultaneously regresses the detection limits for each object class. Figure 4 shows
the entire pipeline. The framework is traditionally trained by alternating phase-one and
phase-two training. Faster R-CNN naturally extends the temporal localization [13–15].
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The aim of object detection is to detect 2D spatial regions, while in temporal procedure
localization, the goal is to detect 1D temporal segments, each representing a start and end
time. Thus, the temporal procedure localizes the 1D counterpart of object detection. A
typical faster R-CNN pipeline for temporal procedure localization is as shown in Figure 4.
Similar to object detection, it consists of two stages. First, given the sequence of frames,
we extract a 1D feature map, usually via a 2D or 3D ConvNet. The feature map is then
passed to 1D ConvNet 1 (referred to as the Segment Proposal Network) to classify a group
of variable-size link segments at each temporal location and regress their boundaries. This
returns a sparse set of class-agnostic segment proposals. Second, for each segment proposal,
one computes the class probabilities and reviews the class-segment bounds further by first
applying a 1D RoI pooling layer (termed “SoI pooling”) followed by a DNN classifier.
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4. Results and Discussion

The use of deep learning in developing a model to accurately detect pests using
imaginary localizations and measurements was proposed. This study used two classes,
objects (palm weevil) and not-objects (backgrounds or other insects). As can be seen from
Figure 5, the results obtained through the use of the developed model to determine the
exact location of the RPW pest clearly showed an ability to distinguish the RPW pest
from other insects. It is a well-known fact that RPW infestations cause significant changes
in the trunk size of a palm tree compared to that of a non-infested one. Accordingly,
the developed model can be used to detect the presence of the RPW before it enters the
palm trunk. The performance of the developed model produced 100% results in terms of
detection and classification.

Several runs were made to obtain the results for identifying the RPW. In this study,
the proposed system network was evaluated by comparing different learning rates and
by using different numbers of convolutional layers and different activation functions. We
established that the proposed system network model is novel if one compares the results
with those of other state-of- the-art models.
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The proposed model was implemented in Python using TensorFlow along with
Google’s Keras deep-learning framework. A Core i5 CPU evaluated the model’s training
process by using an NVIDIA GeForce 1070, 8 GB GPU and 24 GB of RAM. The model was
trained over a period of 200 epochs.
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For training the proposed faster R-CNN method, a binary label was assigned to each
anchor. A positive label was assigned to an anchor that had an IoU (intersection over union)
greater than 0.7 for any ground-truth box, while a negative label was assigned to an anchor
that had less than 0.3 for all ground-truth boxes. The loss function of the proposed model
for an image was defined as:

L({Pn}, {tn}) =
1

Nclc
∑
n

Lclc(pn, p∗n)+
1

Nreg
∑
n

p∗nLreg(tn, t∗n) (1)

Here:
N = Index of an anchor
Pn = Predicted probability of an anchor
p∗n = Ground-truth label (one in a positive case and zero in a negative case)
tn = Four coordinates of a predicted bounding box
Lclc = Classification loss
Lreg = Regression loss
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= Balance weight
t∗n = Ground-truth box associated with a positive anchor
Nclc = Classification normalization
Nreg = Regression normalization
Figure 6 shows the multi-loss graphs of the proposed model. It includes classification

loss, localization loss, objectness loss, total loss and clone loss. The classification loss Lclc is
the log loss over the two classes (object and not object). The regression loss Lreg is concerned
with the parameterization of the four coordinates (x, y, width and height), is activated for
only a positive anchor (p∗n = 1) and is deactivated in other cases. The objectness loss shows
the positions of oriented factors and the horizontal labels. The clone loss is concerned with
lessening the within-class variance in features.
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Table 3 shows the comparative analysis of the proposed work with state-of-the art
algorithms [20]. For the detection of the RPW, the SVM, MLP, AdaBoost and Random Forest
algorithms each showed a 93.08% accuracy, whereas the Naïve Bayes algorithm showed an
82.58% accuracy. Using the proposed model (faster R-CNN), 99% of the RPW cases were
classified and located accurately.

Table 3. Comparative analysis of the proposed model.

S. No. Algorithm Accuracy

1 SVM 93.08%
2 Naive Bayes 82.58%
3 Random Forest 93.08%
4 MLP 93.08%
5 AdaBoost 93.08%
6 Faster R-CNN 99%

5. Conclusions

It should be noted that in the past few decades, the spread of the RPW, a detrimental
pest infesting palm trees, has increased drastically. With the objective of reducing palm
tree losses and the manipulation of this pest, this paper presented the development of
a model that can detect an infestation without having to sacrifice trees. Therefore, the
primary objective of the paper was to develop a model that can detect and classify the red
palm weevil pest and differentiate it from different types of insect pests. According to the
developed model, RPW infestations can be accurately detected. In order to demonstrate
the effectiveness of the developed model in different areas, a localization and classification
approach was applied [21]. For the purposes of cross-validation using a real dataset of
RPWs, the model was run by using different sizes of datasets. In the study, the ability of the
developed classification model to detect the RPW was compared to that of other models.
In terms of detection accuracy, the overall performance results of the classification model
came out as 99%. It was shown in the literature that there are other models of deep learning
that are more robust than faster R-CNN in the detection of real-time objects. In the future,
YOLO can also be utilized for the detection of RPWs [22,23]. For the survival of the trees, it
is highly important to use an effective method for the early detection of infestations by the
RPW in various types of trees.



J. Imaging 2022, 8, 170 10 of 11

Author Contributions: S.H. and M.I., methodology; N.F.K., software; S.K. and S.H., validation. N.F.K.
and M.F.A., formal analysis; N.F.K., M.I.; investigation; M.A. resources; M.F.A. data curation; S.H.
and N.F.K., writing—original draft preparation; S.K., M.A. and M.F.A. writing, review and editing;
M.F.A., visualization; S.H. and M.I., supervision; S.K. and M.A. project administration; M.A. and S.H.,
funding acquisition. All authors have read and agreed to the published version of the manuscript.

Funding: This research has received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The researchers would like to thank the Deanship of Scientific Research at
Qassim University for funding the publication of this project.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alturki, A.S.; Islam, M.; Alsharekh, M.F.; Almanee, M.S.; Ibrahim, A.H. Date Fruits Grading and Sorting Classification Algorithm

Using Colors and Shape Features. Int. J. Eng. Res. Technol. 2020, 13, 1917–1920. [CrossRef]
2. Lima, M.C.F.; de Almeida Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of

insect pests—A review. Agriculture 2020, 10, 161. [CrossRef]
3. Qian-Xia, L.; Zhi-Ping, S.; Hui-Hui, L.; Sheng-Ping, L.; Bing, M.; Yue, Z.; You-Ming, H.; Zhang-Hong, S. The Effect of Gut Bacteria

on the Physiology of Red Palm Weevil, Rhynchophorus ferrugineus Olivier and Their Potential for the Control of This Pest. Insects
2021, 12, 594.

4. Megeto, G.A.S.; Silva, A.G.D.; Bulgarelli, R.F.; Bublitz, C.F.; Valente, A.C.; Costa, D.A.G.D. Artificial intelligence applications in
the agriculture 4.0. Rev. Ciênc. Agron. 2021, 51, e20207701. [CrossRef]

5. Yang, H.; Liu, W.; Xing, K.; Qiao, J.; Wang, X.; Gao, L.; Shen, Z. Research on insect identification based on pattern recognition
technology. In Proceedings of the 2010 Sixth International Conference on Natural Computation, Yantai, China, 10–12 August
2010; Volume 2, pp. 545–548.

6. Cheong, J.L.; Azmi, W.A. Dataset on the influence of relative humidity on the pathogenicity of Metarhizium anisopliae isolates from
Thailand and Malaysia against red palm weevil (Rhynchophorus ferrugineus, Olivier) adult. Data Brief 2020, 30, 105482. [CrossRef]

7. Al-Saqer, S.M.; Hassan, G.M. Artificial neural networks based red palm weevil (Rynchophorus ferrugineous, Olivier) recognition
system. Am. J. Agric. Biol. Sci. 2011, 6, 356–364. [CrossRef]

8. Hassan, G.M.; Al-Saqer, S.M. Support vector machine based red palm weevil (Rynchophorus ferrugineous, Olivier) recognition
system. Am. J. Agric. Biol. Sci. 2012, 7, 36–42.

9. Mankin, R.W. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of red
palm weevil in agricultural environments. Fla. Entomol. 2011, 94, 761–765. [CrossRef]

10. Rach, M.M.; Gomis, H.M.; Granado, O.L.; Malumbres, M.P.; Campoy, A.M.; Martín, J.J.S. On the Design of a Bioacoustic Sensor
for the Early Detection of the Red Palm Weevil. Sensors 2013, 13, 1706–1729. [CrossRef]

11. Mohammed, M.; El-Shafie, H.; Alqahtani, N. Design and Validation of Computerized Flight-Testing Systems with Controlled
Atmosphere for Studying Flight Behavior of Red Palm Weevil, Rhynchophorus ferrugineus (Olivier). Sensors 2021, 21, 2112.
[CrossRef]

12. Tetila, E.C.; Machado, B.B.; Astolfi, G.; de Souza Belete, N.A.; Amorim, W.P.; Roel, A.R.; Pistori, H. Detection and classification of
soybean pests using deep learning with UAV images. Comput. Electron. Agric. 2020, 179, 105836. [CrossRef]

13. Adedeji, A.A.; Ekramirad, N.; Rady, A.; Hamidisepehr, A.; Donohue, K.D.; Villanueva, R.T.; Parrish, C.A.; Li, M. Non-destructive
technologies for detecting insect infestation in fruits and vegetables under postharvest conditions: A critical review. Foods 2020,
9, 927. [CrossRef] [PubMed]

14. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 9, 1137–1149. [CrossRef]

15. Ullah, R.; Hayat, H.; Siddiqui, A.A.; Siddiqui, U.A.; Khan, J.; Ullah, F.; Hassan, S.; Hasan, L.; Albattah, W.; Islam, M.; et al. A
Real-Time Framework for Human Face Detection and Recognition in CCTV Images. Math. Probl. Eng. 2022, 2022, 3276704.
[CrossRef]

16. Gao, J.; Yang, Z.; Nevatia, R. Cascaded boundary regression for temporal action detection. arXiv 2017, arXiv:1705.01180.
17. Xu, H.; Das, A.; Saenko, K. R-c3d: Region convolutional 3d network for temporal activity detection. In Proceedings of the IEEE

International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 5783–5792.
18. Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in Smart Cities: A Survey of Technologies. Pract. Chall. Smart Cities

2021, 4, 429–475. [CrossRef]
19. Kurdi, H.; Al-Aldawsari, A.; Al-Turaiki, I.; Aldawood, A.S. Early detection of red palm weevil, Rhynchophorus ferrugineus (Olivier),

infestation using data mining. Plants 2021, 10, 95. [CrossRef] [PubMed]

http://doi.org/10.37624/IJERT/13.8.2020.1917-1920
http://doi.org/10.3390/agriculture10050161
http://doi.org/10.5935/1806-6690.20200084
http://doi.org/10.1016/j.dib.2020.105482
http://doi.org/10.3844/ajabssp.2011.356.364
http://doi.org/10.1653/024.094.0405
http://doi.org/10.3390/s130201706
http://doi.org/10.3390/s21062112
http://doi.org/10.1016/j.compag.2020.105836
http://doi.org/10.3390/foods9070927
http://www.ncbi.nlm.nih.gov/pubmed/32674380
http://doi.org/10.1109/TPAMI.2016.2577031
http://doi.org/10.1155/2022/3276704
http://doi.org/10.3390/smartcities4020024
http://doi.org/10.3390/plants10010095
http://www.ncbi.nlm.nih.gov/pubmed/33418843


J. Imaging 2022, 8, 170 11 of 11

20. Alyahya, S.; Khan, W.U.; Ahmed, S.; Marwat, S.N.K.; Habib, S. Cyber Secure Framework for Smart Agriculture: Robust and
Tamper-Resistant Authentication Scheme for IoT Devices. Electronics 2022, 11, 963. [CrossRef]

21. Kuznetsova, A.; Maleva, T.; Soloviev, V. Using YOLOv3 algorithm with pre-and post-processing for apple detection in fruit-
harvesting robot. Agronomy 2020, 10, 1016. [CrossRef]

22. Harith-Fadzilah, N.; Lam, S.D.; Haris-Hussain, M.; Ghani, I.A.; Zainal, Z.; Jalinas, J.; Hassan, M. Proteomics and Interspecies
Interaction Analysis Revealed Abscisic Acid Signalling to Be the Primary Driver for Oil Palm’s Response against Red Palm Weevil
Infestation. Plants 2021, 10, 2574. [CrossRef]

23. Hwang, P.J.; Hsu, C.C.; Chou, P.Y.; Wang, W.Y.; Lin, C.H. Vision-Based Learning from Demonstration System for Robot Arms.
Sensors 2022, 22, 365–386. [CrossRef]

http://doi.org/10.3390/electronics11060963
http://doi.org/10.3390/agronomy10071016
http://doi.org/10.3390/plants10122574
http://doi.org/10.3390/s22072678

	Introduction 
	Related Work 
	Proposed Model 
	Dataset Preparation 
	Proposed Architecture 

	Results and Discussion 
	Conclusions 
	References

