Table 3.
Fractional Factorial Design Benchmark. Order and context of tuned parameters to optimize. the prediction quality in explainable and recoverable manner [Abbreviations: LR = Learning Rate; ML = Machine Learning].
| Factor | Actions |
|---|---|
| nepoch = 1000 | Small initial LR (<default) test all ML optimization algorithms fixed: LR, fModelSpread, nModelDepth |
| LR = 10−6..10−1 (exp. step size) |
Increase LR step-wisely test all ML optimization algorithms with different LR fixed: nepoch, fModelSpread, nModelDepth |
|
fModelSpread = 1..6 nModelDepth = 1..6 |
Increase fModelSpread and fModelSpread step-wisely test all ML optimization algorithms for different model sizes fixed: nepoch, LR |
| t alg | Test all ML optimization algorithms fixed: nepoch, LR, fModelSpread, nModelDepth |