Skip to main content
. 2022 May 31;12(6):908. doi: 10.3390/jpm12060908

Table 3.

Fractional Factorial Design Benchmark. Order and context of tuned parameters to optimize. the prediction quality in explainable and recoverable manner [Abbreviations: LR = Learning Rate; ML = Machine Learning].

Factor Actions
nepoch = 1000 Small initial LR (<default)
test all ML optimization algorithms
fixed: LR, fModelSpread, nModelDepth
LR = 10−6..10−1
(exp. step size)
Increase LR step-wisely
test all ML optimization algorithms with different LR
fixed: nepoch, fModelSpread, nModelDepth
fModelSpread = 1..6
nModelDepth = 1..6
Increase fModelSpread and fModelSpread step-wisely
test all ML optimization algorithms for different model sizes
fixed: nepoch, LR
t alg Test all ML optimization algorithms
fixed: nepoch, LR, fModelSpread, nModelDepth