Genotypic Characterization of *Bradyrhizobium* Strains Nodulating Small Senegalese Legumes by 16S-23S rRNA Intergenic Gene Spacers and Amplified Fragment Length Polymorphism Fingerprint Analyses

FLORENCE DOIGNON-BOURCIER,¹ ANNE WILLEMS,² RENATA COOPMAN,² GISELE LAGUERRE,³ MONIQUE GILLIS,² and PHILIPPE de LAJUDIE¹*

Laboratoire des Symbioses Tropicales et Méditerranéennes, I. R. D., Campus de Baillarguet, 34398 Montpellier Cedex 5,¹ and Laboratoire de Microbiologie des Sols, CMSE, INRA, B.V. 1540, 21034 Dijon Cedex,³ France, and Laboratorium voor Microbiologie, Universiteit Ghent, K.-L. Ledeganckstraat, 35, B-9000, Ghent, Belgium²

Received 27 March 2000/Accepted 11 July 2000

We examined the genotypic diversity of 64 *Bradyrhizobium* strains isolated from nodules from 27 native leguminous plant species in Senegal (West Africa) belonging to the genera *Abrus, Alysicarpus, Bryaspis, Chamaecrista, Cassia, Crotalaria, Desmodium, Eriosema, Indigofera, Moghania, Rhynchosia, Sesbania, Tephrosia,* and *Zornia,* which play an ecological role and have agronomic potential in arid regions. The strains were characterized by intergenic spacer (between 16S and 23S rRNA genes) PCR and restriction fragment length polymorphism (IGS PCR-RFLP) and amplified fragment length polymorphism (AFLP) fingerprinting analyses. Fifty-three reference strains of the different *Bradyrhizobium* species and described groups were included for comparison. The strains were diverse and formed 27 groups by AFLP and 16 groups by IGS PCR-RFLP. The sizes of the IGS PCR products from the *Bradyrhizobium* strains that were studied varied from 780 to 1,038 bp and were correlated with the IGS PCR-RFLP results. The grouping of strains was consistent by the three methods AFLP, IGS PCR-RFLP, and previously reported 16S amplified ribosomal DNA restriction analysis. For investigating the whole genome, AFLP was the most discriminative technique, thus being of particular interest for future taxonomic studies in *Bradyrhizobium*, for which DNA is difficult to obtain in quantity and quality to perform extensive DNA:DNA hybridizations.

Due to their nitrogen-fixing symbiosis with soil bacteria collectively named rhizobia, legumes play an important role in the nitrogen cycle, especially in the tropics. They are used to restore or increase soil fertility of degraded soils in intercropping systems, as green manure, and to produce medicinal and commercial by-products. In Senegal (West Africa), many native legumes are important plant resources for many purposes, and they are the only alternatives to the costly and pollutive mineral nitrogen fertilizers used in agriculture. Many of these legumes are well adapted to the local arid climatic conditions. As drought and soil erosion progress, they are still present as colonizers. The family *Leguminosae* is considered to be of tropical or subtropical origin, and many of the recently proposed new rhizobial species originate from leguminous plants from these zones that had not been previously investigated.

After several prospections around the country, we focused on 27 native nodulated leguminous plants species belonging to the genera *Abrus, Alysicarpus, Bryaspis, Chamaecrista, Cassia, Crotalaria, Desmodium, Eriosema, Indigofera, Moghania, Rhynchosia, Sesbania, Tephrosia, Zornia*, which play an important ecological role and have agronomic potential in arid regions. As very little or no information concerning their associated rhizobia were available so far, we obtained 71 nodule isolates from these legumes in different regions in Senegal and first characterized them by sodium dodecyl sulfate-polyacrylamide gel electrophoresis whole-cell protein profiles and by 16S amplified ribosomal DNA restriction analysis (ARDRA) fingerprint analysis (9). Our main conclusion was that the strains were diverse and belonged to five phylogenetic subgroups inside *Bradyrhizobium*, but further genotypic characterization of these strains was needed to precisely place them in the general classification.

Taxonomically, rhizobia comprise six genera, *Rhizobium*, *Bradyrhizobium*, *Mesorhizobium*, *Sinorhizobium*, *Azorhizobium* (for a review, see reference 44), and *Allorhizobium* (8). They constitute a phylogenetically heterogeneous group, and their taxonomy is being reexamined. Some rhizobia are more closely related to clinical bacteria, like *Afipia*, *Blastobacter*, and other nonsymbiotic bacteria, like *Mycoplana* and *Bartonella*, than to other rhizobia (39, 43, 44). In addition, several new rhizobial groups have been described, but have not yet been classified or named (for reviews, see references 24 and 44). In particular, the precise taxonomical status of many *Bradyrhizobium* sp. strains isolated from various legumes is not clarified (9, 10, 25, 26, 27, 34). For this genus (*Bradyrhizobium*), several authors have reported the lack of consistency between results obtained by different taxonomic techniques (10, 20, 32, 45).

A need for a confident strategy to investigate diversity among *Bradyrhizobium* populations was claimed, specifically including molecular methods (9, 34). 16S-23S rRNA intergenic gene spacer (IGS; corresponding to the spacer between 16S and 23S rRNA genes) sequences exhibit a large variability and are useful to identify genomic groups at the intraspecific level (4, 16, 22). Moreover, PCR-restriction fragment length polymorphism (PCR-RFLP) of IGS has been reported to be a useful fingerprinting method to characterize bacterial strains, with a higher discriminating power than the 16S ARDRA method. It has been applied to known rhizobial species, such as *Rhizobium leguminosarum*, *Rhizobium "hedysari," Sinorhizobium meliloti*, and *Rhizobium galegae* (6, 22, 31, 33), and also

^{*} Corresponding author. Mailing address: Laboratoire des Symbioses Tropicales et Méditerranéennes, I. R. D., Campus de Baillarguet, 34398 Montpellier Cedex 5, France. Phone: (33) 04 67 61 58 00, ext. 4218. Fax: (33) 04 67 59 38 02. E-mail: P-De.Lajudie@mpl.ird.fr.

FIG. 1. Sites of sampling in Senegal.

tropical rhizobia strains (18) and *Bradyrhizobium* strains from the Canary Islands (37).

The amplification fragment length polymorphism (AFLP) technique (38, 46) is a highly discriminating fingerprinting method, based on the selective PCR amplification of certain restriction fragments from a digest of total genomic DNA. The technique involves three steps: (i) restriction of the DNA with two enzymes and ligation of oligonucleotide adapters, (ii) selective amplification of sets of restriction fragments, and (iii) polyacrylamide gel electrophoresis of the amplified fragments. Originally developed for plant genome studies, this technique has also been used to characterize various bacterial species (for a review, see reference 5). As this technique investigates the whole genome, and as the results were reported to be in good agreement with those obtained by DNA:DNA hybridization, it could be a good alternative to the latter, which is especially difficult to perform with *Bradyrhizobium*.

Here, 64 *Bradyrhizobium* sp. strains from small Senegalese legumes were further characterized genotypically by PCR-RFLP analysis of the IGS region between 16S and 23S rRNA genes and by AFLP analysis, including representative strains for *Bradyrhizobium* species and groups reported in the past (9, 10, 25, 26, 40). The results are compared with previous 16S ARDRA grouping, and taxonomic resolution levels of the three techniques are discussed.

MATERIALS AND METHODS

Bacterial strains and isolation procedures. The strains used in this study are listed in Table 1, and their places of isolation are indicated on Fig. 1. Bacterial strains were grown as previously described (9, 40).

PCR amplification of IGS (16S-23S rDNA) region. Total DNA was prepared as previously described (9). Alternatively, for some strains, the PCR amplification was done from bacterial cell preparation, prepared as follows: cells were grown on yeast extract-mannitol agar slants (36) for 72 h at 28°C and then washed with sterile distilled water. The cell suspension was adjusted to an optical density (620 nm) of 0.5 by dilution in water. An aliquot of 100 µl of this cell suspension was pelleted, and cells were resuspended in 100 µl of sterile Milli-Q water (Milli-Q plus; Millipore, Saint-Quentin-Yvelines, France) and lysed with 100 µl of 10 mM Tris-HCl (pH 8.2) and 13 µl of proteinase K (1 mg/ml) (Merck-Belgolabo, Overijse, Belgium) during 2 h at 55°C. Then, the cells were boiled for 10 min to denature the enzyme. The PCR was carried out with 250 ng of DNA or with 10 µl of bacterial cell suspension as template DNA.

Primers FGPS1490 (28) and FGPS132' (29) were used to amplify the IGS regions. FGPS1490 corresponds to conserved sequences in the 3' part of the 16S rDNA gene right next to the IGS (corresponding to the *Escherichia coli* numbering positions 1525 to 1541), and reverse primer FGPS132' corresponds to the beginning 5' part of the 23S rDNA (corresponding to the *E. coli* numbering positions 115 to 132). PCR was performed as described by Laguerre et al. (22).

PCR-amplified DNA was visualized by Hoefer HE 33 Mini Submarine electrophoresis (Amersham Pharmacia Biotech) at 70 V for 30 min with 5 μ l of the amplified mixture on 2% (wt/vol) Biozym DNA Agarose (Biozym, Landgraaf, The Netherlands) in TAE buffer (40 mM Tris-acetate, 2 mM EDTA, 20 mM acetic acid, pH 8.0) containing 0.5 mg of ethidium bromide/ml.

RFLP analysis. Aliquots (10 μ l) of PCR products were digested with 5 U of restriction endonuclease in 20- μ l reaction volumes by using the manufacturer's recommended buffer and incubation conditions. The following restriction enzymes were used: *AluI* and *NdeII* (Boehringer Mannheim Biochemica, Brussels, Belgium), *DdeI* (Amersham Pharmacia Biotech Benelux, Roosendaal, The Netherlands), and *HaeIII*, *HhaI*, *HintI*, *MspI*, and *RsaI* (New England Biolabs Inc., Leusden, The Netherlands). Restricted DNA was analyzed by horizontal electrophoresis in 4% Nusieve 3:1 or Metaphor agarose (FMC, Rockland, Maine) gels. DNA molecular-weight-marker VIII (Boehringer Mannheim) was used as standard for gel calibration. Electrophoreses were carried out at 80 V for 4 h with standard gels (11 by 14 cm or 10 by 15 cm) on a Bethesda Research Laboratories Horizon 11-14 apparatus or with a DNA Sub Cell unit (15-by-10-cm tray) (20 wells; Bio-Rad Laboratories NV, Nazareth-Eke, Belgium).

FIG. 2. Dendrogram (UPGMA) obtained by numerical analysis comparison of the normalized and combined IGS patterns by PCR-RFLP analysis. Clusters of strains were delineated above 70% similarity.

The gels were stained and photographed as described by Heyndrickx et al. (12).

The scanned gel images were digitized and stored in a computer as described by Heyndrickx et al. (12).

Pattern analysis was performed using the Gel Compar software (35) version 4.2 (Applied Maths, Kortrijk, Belgium), and an unweighted pair group method with averages (UPGMA) dendrogram was constructed using the Dice similarity coefficient (S_D).

AFLP analysis. The experimental protocol used was modified from that of Vos et al. (38) as described by Huys et al. (14) and was essentially similar to that used in the study of Willems et al. (40). In short, 1 μ g of total genomic DNA was digested by two restriction enzymes. Double-stranded oligonucleotide adapters with a single-stranded overhang homologous to the 5' and 3' ends generated during restriction were ligated to the DNA fragments. The ligated DNA fragments were amplified by PCR using primers complementary to the adapter and restriction site sequence with additional selective nucleotides at their 3' end. The amplified products were separated by polyacrylamide gel electrophoresis, and the resulting banding pattern was revealed through autoradiography. *Bordetella holmesii* strain LMG 15945 was used as the reference strain because AFLP analysis of this strain generated a banding pattern of the gel.

The cluster analysis of AFLP patterns was done by analyzing the scanned profiles on a personal computer with the Gel Compar program, version 4.2, using the Dice coefficient and the UPGMA clustering algorithm.

RESULTS

IGS PCR-RFLP analysis. (i) Cluster analysis of IGS RFLP patterns. The 16S-23S rDNA IGS region of 104 *Bradyrhizobium* strains was amplified by PCR and restricted with eight endonucleases. One to six DNA fragments were generated by each restriction enzyme. For each strain, the patterns obtained with the eight enzymes were combined, resulting in 70 different combinations referred to as IGS rDNA types (Table 2).

A dendrogram (Fig. 2) was constructed based on the UP-GMA algorithm by analyzing the similarity between the restriction fragments with the software Gel Compar, version 4.2 (35).

TABLE 1. Strains used

Strain ^a	Other strain designation	Host plant or origin	Geographical origin ^b	Reference or source	IGS PCR-RFLP grouping	AFLP grouping
ORS 18	LMG 15159	Alysicarpus ovalifolius	Dakar Bel-Air (CS)	9	VIII	17
ORS 23	LMG 15161	Tephrosia villosa	Dakar Bel-Air (CS)	9	VIII	17
ORS 28	LMG 15164	Indigofera tinctoria	Mbour (CS)	9	l	36
ORS 29 OPS 30	LMG 15165	Indigofera tinctoria Indigofera hirsuta	Mbour (CS) Dakar Bel Air (CS)	9	I T	43
ORS 31	LMG 15160	Indigofera tinctoria	Pal (NS)	9	VIII	17
ORS 84	LMG 15174	Indigofera astragalina	Pavar (CS)	9	I	37
ORS 85	LMG 15175	Indigofera astragalina	Payar (CS)	9	Î	47
ORS 86	LMG 15176	Tephrosia purpurea	Bourel (Ferlo, NS)	9	XIII	40
ORS 87	LMG 15177	Tephrosia purpurea	Bourel (Ferlo, NS)	9	XIII	40
ORS 88	LMG 15178	Tephrosia purpurea	Bourel (Ferlo, NS)	9	XIII	40
ORS 89	LMG 15179	Tephrosia purpurea	Bourel (Ferlo, NS)	9	XIII	34
ORS 90	R-2196	Tephrosia sp.	Bourel (Ferlo, NS)	9	XIII	34 NDC
ORS 325 OPS 035	K-2194 I MG 15260	Physickosia minima	Gueve Kadar (Earlo, NS)	9	VIII	20
ORS 936	LMG 15209	Rhynchosia minima	Gueve Kadar (Ferlo, NS)	9	V	20
ORS 937	LMG 15270	Rhynchosia minima	Gueve Kadar (Ferlo, NS)	9	v	20
ORS 938	LMG 15272	Rhynchosia minima	Gueve Kadar (Ferlo, NS)	9	V	20
ORS 976	R-2197	Indigofera senegalensis	Gueye Kadar (Ferlo, NS)	9	V	20
ORS 977	LMG 15273	Indigofera senegalensis	Gueye Kadar (Ferlo, NS)	9	V	20
ORS 978	LMG 15274	Indigofera senegalensis	Gueye Kadar (Ferlo, NS)	9	V	20
ORS 979	LMG 15275	Indigofera senegalensis	Gueye Kadar (Ferlo, NS)	9	VI	46
ORS 980	LMG 15276	Indigofera senegalensis	Gueye Kadar (Ferlo, NS)	9	VI	46
ORS 984	LMG 15279	Indigofera senegalensis	Mboumba (Ferlo, NS)	9	Sep.	Sep
ORS 980	LMG 15280	Indigofera senegalensis	Mboumba (Ferlo, NS)	9	VI	40
ORS 1216	LMG 15201	Indigofera senegalensis	Boki Namadi (Ferlo, NS)	9	ND	Sen
ORS 1217	LMG 15301	Indigofera senegalensis	Boki Namadi (Ferlo, NS)	9	VI	46
ORS 1218	R-2200	Indigofera senegalensis	Boki Namadi (Ferlo, NS)	9	VI	46
ORS 1219	LMG 15302	Indigofera senegalensis	Boki Namadi (Ferlo, NS)	9	VI	46
ORS 1220	LMG 15303	Indigofera senegalensis	Boki Namadi (Ferlo, NS)	9	VI	46
ORS 1228	LMG 15304	Indigofera astragalina	Payar (CS)	9	Ι	47
ORS 1229	LMG 15305	Indigofera astragalina	Payar (CS)	9	I	37
ORS 1810	LMG 15242	Crotalaria lathyroïdes	Kabrousse (Casamance, SS)	9	Sep	Sep
ORS 1811	LMG 15243	Crotalaria goreensis	Kabrousse (Casamance, SS)	9	Sep	Sep 42
ORS 1812	LMG 15505	Abrus suciosperma Crotalaria hyssopifolia	Kabrousse (Casamance, SS)	9	XII VI	42 Sen
ORS 1813	LMG 15244	Crotalaria hyssopifolia	Fanghote (Casamance, SS)	9	XI	19
ORS 1815	LMG 15246	Crotalaria hyssopifolia	Fanghote (Casamance, SS)	9	Sep	Sep
ORS 1816	LMG 15247	Crotalaria hyssopifolia	Fanghote (Casamance, SS)	9	I	38
ORS 1817	LMG 15366	Eriosema glomeratum	Oukout (Casamance, SS)	9	Sep	Sep
ORS 1818	LMG 15248	Indigofera microcarpa	Oukout (Casamance, SS)	9	Sep	Sep
ORS 1819	LMG 15249	Crotalaria retusa	Kabrousse (Casamance, SS)	9	Ι	38
ORS 1820	LMG 15250	Indigofera hirsuta	Fanghote (Casamance, SS)	9	I	38
ORS 1823	LMG 15367	Indigofera hirsuta	Wouring (Niokolokoba, SS)	9	XI	19
ORS 1824	LMG 15253	Indigofera hirsuta	Wouring (Niokolokoba, SS)	9	XI VI	19
ORS 1820	LMG 15255	Alysicarpus glumaceus	Fanghote (Casamance, SS)	9		19
ORS 1827	LMG 15250	Alysicarpus giunaceus Alysicarpus ovalifolius	Niokolokoba (SS)	9	V	20
ORS 1831	LMG 15369	Alvsicarpus rugosus	Fanghote (Casamance, SS)	9	ÎV	45
ORS 1832	LMG 15258	Bryaspis lupulina	Kagnout (Casamance, SS)	9	VIII	41
ORS 1836	LMG 15261	Crotalaria glaucoïdes	Kaparang (Casamance, SS)	9	XI	35
ORS 1838	LMG 15263	Sesbania rostrata	Kaolack (CS)	9	VIII	41
ORS 1844	LMG 15266	Chamaecrista sp.	Karounate (Casamance, SS)	9	Ι	38
ORS 1845	LMG 15267	Moghania faginea	Kaparang (Casamance, SS)	9	III	44
ORS 1847	LMG 15268	Zornia glochidiata	Fanghote (Casamance, SS)	9	Sep	Sep
ORS 1848	LMG 15373	Indigofera hirsuta	Kaparan (Casamance, SS)	9	Sep	35
ORS 1849	LMG 15574 LMG 15606	Indigofera hirsuta Indigofera hirsuta	Kolda (Casamance, SS)	9	AI I	19
ORS 1894	LMG 15697	Cassia absus	Kolda (Casamance, SS)	9	IV	47
ORS 1898	LMG 15699	Tephrosia bracteolata	Kolda (Casamance, SS)	9	I	37
ORS 1899	LMG 15700	Indigofera stenophylla	Kolda (Casamance, SS)	9	Î	43
ORS 1903	LMG 15702	Tephrosia villosa	Kolda (Casamance, SS)	9	Ι	37
ORS 1905	LMG 15703	Tephrosia bracteolata	Kolda (Casamance, SS)	9	Ι	33
Bradyrhizobium sp. (Faidherbia)						
ORS 101	LMG 10664	Faidherbia albida	Senegal	10	V	20
ORS 103	LMG 10665	Faidherbia albida	Dakar Bel-Air (CS)	10	V	20
ORS 110	LMG 10666	Faidherbia albida	Louga (NS)	10	XIII	Sep
ORS 112	LMG 10668	Faidherbia albida	Louga (NS)	10	XIII	33
ORS 117 ORS 121	LMG 10673	Faidherbia albida	Louga (NS)	10	XIII	33
UN3 121	LIVIG 100//	r'aianervia aivida	Louga (193)	10	ΛIV	29

Continued on following page

Stacing	Other strain	Host plant or origin	Coographical origin ^b	Reference	IGS PCR-RFLP	AFLP
Strain	designation	Host plant of origin	Geographical origin	or source	grouping	grouping
ORS 130	LMG 10686	Faidherbia albida	Louga (NS)	10	XIV	29
ORS 133	LMG 10689	Faidherbia albida	Louga (NS)	10	XIII	Sep
ORS 156	LMG 11951	Faidherbia albida	Djinaki, Senegal	10	ND	19
ORS 166	LMG 10709	Faidherbia albida	Casamance (SS)	10	Х	31
ORS 162	LMG 10705	Faidherbia albida	Casamance (SS)	10	Х	31
ORS 163	LMG 10706	Faidherbia albida	Oussouye (Casamance, SS)	10	Х	31
ORS 170	LMG 10713	Faidherbia albida	Bayotte (Casamance, SS)	10	XII	42
ORS 174	LMG 10717	Faidherbia albida	Badiana (Casamance, SS)	10	XIII	33
ORS 180	LMG 10719	Faidherbia albida	North Senegal	10	ND	37
ORS 184	LMG 10723	Faidherbia albida	Keur Momar Sarr (Guiers Lake, NS)	10	Sep	Sep
ORS 187	LMG 10726	Faidherbia albida	Dagana (NS)	10	XI	20
ORS 188	LMG 10727	Faidherbia albida	Dagana (NS)	10	V	20
Bradyrhizobium sp. (Aeschynomene)	1100 10100	4 1		25	0	C
ORS 277	LMG 12186	Aeschynomene sensitiva	Elinkine (Casamance, SS)	25	Sep	Sep
ORS 2/8	LMG 1218/	Aeschynomene sensitiva	Elinkine (Casamance, SS)	25	Sep	Sep
ORS 304	LMG 8069	Aeschynomene elaphroxylon	Guiers Lake (NS)	1	VIII	1/
ORS 306	LMG 8300	Aeschynomene indica	Guiers Lake (NS)	1		28
ORS 324	LMG 6295	Aeschynomene afraspera	Teher (Cosemones SS)	23	AVI Som	0
ORS 34/	LMG 10298	Aeschynomene afraspera	Lobor (Casamance, 55)	25	Sep	Sep
ORS 352 ORS 252	LMG 15364	Aeschynomene afraspera	Senegal	25		6
ORS 555 ORS 259	LMG 10303	Aeschynomene ujfusperu	Sellegal	25		24
OKS 550 DTA:1	LMG 10505	Aeschynomene hubucu	United States	25	ND	24
BIAII	LWIG 11795	Aeschynomene indica	United States	23	AV	20
Bradyrhizobium japonicum		~ .				
Bonnier 3.1	LMG 4252	Glycine max			II	15
Erdman 1BOa2	LMG 4262	Albizia julibrissin			ND	Sep
Erdman 3c3a1	LMG 4265	Ulex europaeus			ND	Sep
USDA 59	LMG 42/1	Glycine max	North Carolina		II	15
Erdman 314a8	LMG 42/2	Pueraria lobata			ND	Sep
Erdman 316n10	LMG 42/4	Vigna unguiculata			Sep	Sep
NZP 5533	LMG 6136	Glycine max	United States	17	VII	12
NZP 5549 ⁻	LMG 0138	Glycine max	Japan	17		15
USDA 135	LMG 8521	Glycine max	IOWA Elevide		V	20
USDA 110		Glycine max	FIORIDA		VII	12
Bradyrhizobium elkanii	LMC (124T	<i>a</i> . :		10	N/I	22
NZP 5531	LMG 6134*	Glycine max	Maryland	19		32
NZP 5552	LMG 0155	Glycine max	Wisconsin	19		32 ND
USDA 61		Glycine max	North Carolina		AI	ND
Bradyrhizobium liaoningense	I MC 18230 ^T	Cheine max	China	42	IX	16
SFI 2062	LMG 18230 LMG 18231	Glycine max	China	42	IX IX	16
Bradvrhizobium sp.						
NZP 2314	LMG 6129	Lotus pedunculatus	Australia	26	ND	39
USDA 3002	LMG 8888	Acacia decurens	Brazil	26	Sep	Sep
BR 6011	LMG 9514	Lonchocarpus costatus	Brazil	26	ND	Sep
BR 3606	LMG 9959	Acacia mollissima	Brazil	26	XI	Sep
BR 3621	LMG 9966	Acacia mangium	Espirito Santo, Brazil	26, 27	XI	48
BR 4406	LMG 9980	Enterolobium ellipticum Benth.	Rio de Janeiro, Brazil	26, 27	ND	Sep
BR 8406	LMG 10018	Dalbergia nigra Allem.	Rio de Janeiro. Brazil	26.27	ND	48
INPA 9A	LMG 10029	Derris sp.	Brazil	26	ND	Sen
TAL 1127	LMG 10295	Caianus caian			ND	36
ORS 58	LMG 10663	Dalbergia melanoxylon	Senegal	9	ND	17
MAR 1505	LMG 14304	Vigna unguiculata	0	34	ND	Sep
MAR 1587	LMG 14311	Arachis hypogaea		34	ND	Sep
MSDJ 718		Lupinus luteus	France	21	Sep	39
		-				

TABLE 1-Continued

^a Original strain number, or as received. BR, strains from the CNPBS/EMBRAPA, Centro Nacional de Pesquisa em Biologia do Solo, Seropedica 23851, Rio de Janeiro, Brazil/Emprasa Brasiliera de Pesquisa Agropequaria; BCCM/LMG, Bacteria Collection, Laboratorium voor Microbiologie, Ghent, Belgium; MAR, Soil Productivity Research Laboratory, Marondera, Zimbabwe; MSDJ, Institut National de la Recherche Agronomique (INRA), Microbiologie des Sols, Dijon, France; INPA, National Institute of Amazonia Research, Manaus, Brazil; NZP, Culture Collection of the Department for Scientific and Industrial Research, Biochemistry INVEA, INALIONAL INSULUE OL AMAZONIA KESEARCH, MANAUS, BEAZIL; NZP, Culture Collection of the Department for Scientific and Industrial Research, Biochemistry Division, Palmerston North, New Zealand; ORS, ORSTOM Collection, Institut de Recherche pour le Développement, BP 1386, Dakar, Senegal; R-, Research collection of the Laboratorium voor Microbiologie, Ghent, Belgium; SFI, Soils and Fertilizers Institute, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China; TAL, Nitrogen Fixation in Tropical Agricultural Legumes (NifTAL), University of Hawaii, Paia; USDA, U.S. Department of Agriculture, Belts-ville, Md. ^b CS, central Senegal; NS, north Senegal; SS, south Senegal.

^c ND, not determined.

^d Sep, separate.

TARIE 2	Different rDNA	IGS types and	restriction	natterns determined by	v PCR_RELP anal	weight of the rDNA IG	Sregions
IADLL 2.	Different iDivia	105 types and	restriction	patierns determined b	y i Cix-ixi Li anai	lysis of the ibitra io	5 regions

		Size ^b of IGS	Ľ	oifferent re	estriction p	atterns ty	pes ^c of rD	NA IGS d	igested wit	th:
rDNA IGS clusters and their composition	rDNA IGS type ^a	PCR product (bp)	AhI	DdeI	HaeIII	HhaI	Hinfl	MspI	NdeII	RsaI
Cluster I	1	825	2	2	2	31	3	2	2	2
	2	824	2	2	2	3	3	2	2	2
	3	820	2	2	2	4	3	2	3	2
	4	823	2	2	2	2	3	2	2	3
	5	816	2	2	2	3	3b	2	2	8
	6	802	2	2	2	31	2	2	2	5
	7	820	2	2	2	2	14	2	4	2
	8	825	2	2	2	2	2	2	2	2
	9	825	2	2	2	3	2	2	4	2
Cluster II	10	821	2b	2	2	28	2	9b	27b	17
B. japonicum	11	825	22	23	9	28	2	9b	27b	17
Cluster III	13	900	4	22	2	3	16	20	5	6
Cluster IV	18	820	4	22	30	11	21	35	3	5
	19	850	4	22	30	11	2	30	37	5
Cluster V	24	850	12	6	9	13	6	10	18	7
Bradyrhizobium sp. (F. albida)	25	854	12	19	9	2	6	10	18	7
B. japonicum	26	820	12	19	9	2	6	10	16	7
	27	860	12	6	9	11	6	10	18	8
	28	850	12	6	36	11	2	10	18	8
	29	864	12	6	10	2	6	10	18	7
	30	853	12	6	10	32	6	10	18	7
	31	900	12	6	10	2	2	10	18	7
	32	900	12	6	10	39	2	10	18	8
Cluster VI	33	804	11	6	34	40	2	29	15	5
	34	862	11	6	11	12	5	11	15	6
	35	862	29	6	11	5	5	29	31	2
Cluster VII	36	870	10	6	9	11	2	12	17	5
B. japonicum	37	880	10	6	9	11	6	12	17	6
Cluster VIII	38	900	7	3	5	23	5	6	7	5
	39	920	7	3	5	6b	6	6	7	6
	40	913	7	3b	6	6	6	6	7	6
	41	842	7	3	5	23	19	5b	7b	4
Bradyrhizobium sp. (A. elaphroxylon)	42	950	8	3	5	7	19	5	7	4
Cluster IX	44	780	5	2	15	45	2	10	4	5
B. liaoningense										
Cluster X	45	845	16	7	12	14	5	13	14	10
Bradyrhizobium sp. (F. albida)										
Cluster XI	46	850	15	20	14	20	5	15	13	12
	47	824	13	21	14	34	5	15	15	12
Bradvrhizobium sp. (A. mangium)	48	843	13	21	14	18	6	15	12	12
Bradyrhizobium sp. (A. mollissima)	49	862	14	10	15	18	6	17	12	11
Bradyrhizobium sp. (F. albida)	50	864	14	20	14	18	6	16	12	11
B. elkanii	51	860	14	20	15	8	2	16	12	11
	52	870	15	20	14	18	5	15	13	11
	53	852	23	10	15	18	6	17	12	11
Cluster XII	54	822	19	8	13	16	6	14	22	11
Bradyrhizobium sp. (F. albida)	55	800	19	8	13	15	6	14	22	11
Cluster XIII	57	866	21	4	7	8	7	7	9	6
	58	850	20	4	8	9	7	7	10	6
Bradyrhizobium sp. (F. albida)	59	840	20	4	8	9	7	8	10	6
	60	840	20	4	8	9	7	8	10	5
Cluster XIV	61	880	21	5	8	9	6	9	11	6
Bradyrhizobium sp. (F. albida)	62	862	21	5	8	31	6	9	11	6

Continued on following page

		Size ^b of IGS PCR product (bp)	Different restriction patterns types ^c of rDNA IGS digested with:							th:
rDNA IGS clusters and their composition	on $rDNA IGS type(s)^a$		AhI	DdeI	HaeIII	HhaI	Hinfl	MspI	NdeII	RsaI
Cluster XV	63	1,000	9	14	22	25	12	22	8	15
Bradyrhizobium sp. (A. indica)	64	1,000	9	14	23	25	12	23	8	15
Cluster XVI	66	1,038	17	11	19	22	10	19	19	13
Bradyrhizobium sp. (A. afraspera)	67	950	17	11	18	21	9	19	20	18
Separate	12	780	2	2	31	2	2	2	34	2
	14	795	3	2	2	37	2	2	4	21
	20	870	31	2	30	23	5	20	26	5
	21	832	4	28	32	31	21	31	3	20
	22	900	34	13	2	7	5	33	37	13
	23	920	32	29	2	23	23	26	35	13
	56	880	13	20b	30	15	6	35	38	23
	70	923	25	17	26	20	10	26	28	13
Bradyrhizobium sp. (A. decurens)	15	814	3	2	3	5	4	2	3	3
B. japonicum	16	840	37	33	3	20	4	9	18	2
Bradyrhizobium sp. (L. luteus)	17	806	5	23	3	28	4	3	3	5
Bradyrhizobium sp. (A. afraspera)	43	913	27	15	24	7	14	24	26	16
Bradyrhizobium sp. (A. sensitiva)	65	1,006	28	25	27	30	12	28	30	15
Bradyrhizobium sp. (A. sensitiva)	68	934	26	12	21	23	13	21	23	6
Bradyrhizobium sp. (F. albida)	69	910	25	9	7	17	8	2	29	13

TABLE 2—Continued

^a An rDNA IGS type corresponds to one combination of restriction patterns obtained with eight restriction enzymes.

^b The size of the PCR product corresponds to the mean size of the undigested PCR product estimated by summing the sizes of the restriction fragments. Results of *Bradyrhizobium* strains from small legumes are in bold.

^c A restriction pattern type refers to the pattern obtained for one strain with one restriction enzyme.

At a correlation coefficient of about 70%, the different IGS rDNA types formed 16 clusters (I to XVI), 6 of which together contained the majority of the strains studied (clusters I, V, VI, VIII, XI, and XIII). Fifteen strains occupied separate positions, namely eight Senegalese strains from small legumes (ORS 1811, ORS 1847, ORS 1810, ORS 1815, ORS 1817, ORS 1818, ORS 1848, and ORS 984), strain LMG 8888 (from Brazil), *Bradyrhizobium japonicum* strain LMG 4274, *Bradyrhizobium* sp. (*Lupinus luteus*) strain MSDJ 718, two photosynthetic *Bradyrhizobium* sp. (*Aeschynomene sensitiva*) strains (ORS 277) and ORS 278), *Bradyrhizobium* sp. (*Aeschynomene afraspera*) strain ORS 347, and *Bradyrhizobium* sp. (*Faidherbia albida*) strain ORS 184.

The three reference strains of *Bradyrhizobium elkanii* grouped in cluster XI, together with two strains from Brazil, BR 3606 and BR 3621, the latter having a 16S rDNA sequence close to that of *Bradyrhizobium elkanii* (3, 10). Cluster XI also included *Bradyrhizobium* sp. (*F. albida*) strain ORS 187 and seven strains from small legumes.

The two *Bradyrhizobium liaoningense* reference strains formed cluster IX.

Except for LMG 4274 (separate position, see above), *B. japonicum* reference strains were found in three clusters, namely II, V, and VII. Clusters II and VII consisted of only *B. japonicum* strains, the type strain (LMG 6138^T, hybridization group I [13]) being in cluster II, and USDA 110 (hybridization group Ia [13]) being in cluster VII. Cluster V included *B. japonicum* strain LMG 8321, three *Bradyrhizobium* sp. (*F. albida*) strains, and eight strains from small legumes.

Clusters X and XIV consisted of only *Bradyrhizobium* sp. (*F. albida*) strains. Clusters XV and XVI consisted of only photosynthetic *Bradyrhizobium* sp. (*Aeschynomene*) strains. Of the two nonphotosynthetic strains from *Aeschynomene* included in the study, one occupied a separate position in the dendrogram (ORS 347, see above) and the other (ORS 304) was grouped in

cluster VIII together with strains from small legumes. Clusters I, III, IV, and VI consisted only of strains from small legumes. Half of the strains of cluster I originated from south Senegal and half were from three *Indigofera* species in central Senegal. Clusters III and IV consisted of strains isolated from south Senegal, while all strains of cluster VI were isolated from north Senegal. Other strains from small legumes were found in clusters V (see above), VIII, XI (with *B. elkanii*, see above), XII, and XIII [half *Bradyrhizobium* sp. (*F. albida*) strains and half *Bradyrhizobium* sp. (*Tephrosia purpurea*) strains].

Most of the strains forming each of the clusters V and XI are strains from small legumes of the same geographical origin, north Senegal and south Senegal, respectively.

Consequently, there is some correlation between the clustering of the PCR-RFLP IGS rDNA patterns and the geographic origin of the strains.

In total, no obvious relationship was apparent between the PCR-RFLP IGS rDNA clustering and the host-plant origin or host range (9) of the strains.

(ii) Size of IGS PCR products. We estimated the sizes of IGS PCR products by summing the sizes of the restriction fragments. All strains produced a single PCR product ranging from 780 to 1,038 bp, depending on the strain (Table 2). The differences observed in the size of the PCR products could be in part explained by the presence of several tRNA genes varying in number and type in the IGS regions (16, 22, 23).

PCR products from the strains of *B. japonicum* were quite diverse in size. *B. japonicum* strains USDA 110 and LMG 6136 (cluster VII) each produced an amplification product of around 900 bp, which is in agreement with a report of Laguerre et al. (22). *B. japonicum* strains LMG 4252, LMG 6138^T, LMG 4271 (cluster II), and LMG 8321 (cluster V) produced single amplification products of 821 to 825 bp. *B. japonicum* LMG 4274 (Fig. 1, separate position in the dendrogram) produced a PCR product with an intermediate size of 840 bp.

The three *B. elkanii* strains (cluster XI) studied produced PCR products of almost identical size (860 to 864 bp).

The two strains of *B. liaoningense* (cluster IX) and one strain from a small legume, LMG 15243 (with a separate pattern), showed the smallest PCR product (780 bp).

PCR products of *Aeschynomene* photosynthetic strains were the largest, and sizes ranged between 934 and 1,038 bp. The two nonphotosynthetic strains of *Aeschynomene* included in the study yielded PCR products of 913 and 950 bp.

The sizes of the PCR products for the strains of F. *albida* were also diverse, ranging from 800 to 910 bp, and only four of the strains yielded PCR products of the same size.

The strains from small legumes produced single bands ranging from 780 to 923 bp. In general, the strains from small legumes exhibiting PCR products of approximately the same size grouped in the same cluster; exceptions are strains of cluster VIII (Fig. 2) exhibiting PCR products of heterogeneous sizes (842 to 920 bp).

AFLP analysis. (i) Optimization of the AFLP technique for *Bradyrhizobium* strains. Several enzyme combinations were tested to determine the most suitable one, i.e., one producing a large number of fragments (30 to 50) of many different lengths resulting in an evenly distributed banding pattern. For *Bradyrhizobium* organisms which have a high GC percentage in their genomes, the combination of *TaqI* (T/CGA) and *ApaI* (GGGCC/C) proved the most useful.

In the same way, four combinations of primers with different selective bases were tested, and primers 5'-GACTGCGTACA GGCCCG-3' and 5'-GATGAGTCCTGACCGAA-3' were retained (characters in bold were the selective bases).

(ii) Numerical analysis of *Bradyrhizobium* AFLP patterns. In our AFLP study, we included 63 strains from small legumes, 14 reference strains representative for *B. japonicum*, *B. elkanii*, and *Bradyrhizobium liaoningense*, 18 *Bradyrhizobium* sp. (*F. albida*) and 10 *Bradyrhizobium* sp. (*Aeschynomene*) strains representative for AFLP groups 6, 16, 17, 19, 20, 28, 29, 31, 33, and 34 described elsewhere (40), and 13 other *Bradyrhizobium* sp. strains from various host plants (10, 21, 26, 27, 34).

As 13 of the clusters corresponded to previous AFLP groups 6, 12, 15, 16, 17, 19, 20, 28, 29, 31, 32, 33, and 34 (40), we named them accordingly and we numbered our new clusters from 35 to 48. Similarities between AFLP patterns were calculated using the Dice coefficient, and the strains were then grouped by UPGMA cluster analysis (Fig. 3).

Considerable profile heterogeneity between strains was revealed, and at a similarity coefficient of 50% (which is commonly used to delineate AFLP clusters in other bacterial groups [14, 15] and in *Bradyrhizobium* [40]), 27 groups could be distinguished.

B. japonicum reference strains were found in different clusters. Five *B. japonicum* strains formed groups 12 (including USDA 110) and 15 (including the type strain, LMG 6138). *B. japonicum* strains LMG 4262, LMG 4265, and LMG 4272 had separate positions, and strain LMG 8321 grouped in cluster 20, which mainly consisted of new isolates from *Rynchosia minima* and *Indigofera senegalensis* and of three *Bradyrhizobium* sp. (*F. albida*) strains.

FIG. 3. Dendrogram obtained by UPGMA analysis of AFLP patterns of Senegalese isolates, some representative strains from Brazil, from *F. albida*, and from *Aeschynomene*, and the reference strains of *Bradyrhizobium*. The clusters were delineated at above 50% similarity. The clusters 6, 12, 15, 16, 17, 19, 20, 28, 29, 31, 32, 33, and 34 correspond to previously described AFLP clusters (42). The new groups identified in this study (35 to 48) are in bold.

TABLE 3. Comparison of results from 16S ARDRA and AFLP and PCR-RFLP analyses of 16S-23S rDNA IGS region

ARDRA groups ^a	ARDRA IGS rDNA groups ^a PCR-RFLP PCR-RFLP type(s)			
A, B, E, F	Ι	2 3 4, 5 6, 7, 9	33 47 38 37	
	II IV V VII VIII	8 10, 11 18, 19 25, 26, 27, 28, 29, 30, 31, 32 36, 37 38 39, 41	43 15 45 20 12 ND ^b 17	
	IX XI XIII XV XVI Sep	40 44 53 58 63, 64 66, 67 12, 14, 21, 22 17 20, 23	41 16 20 Sep ^c 28 6 Sep 39 Sep	
C, G	VI X XI	33, 34, 35 45 46 47 48 50, 51 52	46 31 48 Sep 19, 35 32 Sep	
	XII XIII XIV Sep	54, 55 57 60 61, 62 21, 22, 70 56	42 34, 40, Sep 33 29 Sep 35	
Sep	ND I	ND 1	Sep 36	
ND	I III V VIII XI XIII Sep	1 13 24 42 49 ^d 58, 59 15, 16, 43, 65, 68, 69	36 44 20 17 ND 33 Sep	

 a Group designations are according to those of Doignon-Bourcier et al. (9). b ND, not determined.

^c Sep, separate.

^d The IGS PCR-RFLP type 49 corresponds to *B. elkanii* reference strain USDA 61.

The two strains of *B. elkanii* formed cluster 32. The two *B. liaoningense* strains formed cluster 16.

Each of the 13 *Bradyrhizobium* sp. strains from various host plants (10, 21, 26, 27, 34) occupied separate positions in the dendrogram, except for the two of them forming cluster 48.

Of strains from small legumes, 19 grouped in previously described groups 17, 19, 20, 33, and 34 (40), 9 occupied separate positions, and 35 formed new clusters 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, and 47. Clusters 37 and 42 contained *Bradyrhizobium* sp. (*F. albida*) strains LMG 10719 and LMG 10713, which were previously described as separate (40). Cluster 36 consisted of two Senegalese strains and one *Bradyrhizobium* sp. (*Cajanus cajan*) strain.

In general, AFLP clusters consisted of strains isolated either from north Senegal or from south Senegal.

Except for one strain, all the strains from small legumes grouping in cluster 20 were isolated from the same place in north Senegal. The strains forming cluster 40 were isolated from the same host plant and had the same geographic origin.

So, a relationship may exist between AFLP grouping and the geographic origin of the strains.

On the other hand, there is no evident relationship between the plant origin or nodulation host range (9) of the strains and AFLP grouping except for cluster 46, which consisted of strains exclusively isolated from the same host plant.

DISCUSSION

For *Bradyrhizobium*, many groups have been identified during recent years, but their taxonomic status has remained unclear due to the inconsistency of the results obtained by different taxonomic methods. There is a need to use several methods, preferably genotypic ones, to draw more reliable taxonomic conclusions.

In a previous report, we isolated and performed initial characterization of 71 nodule isolates from small legumes in Senegal by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total proteins and by 16S ARDRA and compared them to a number of *Bradyrhizobium* reference strains. We concluded that these *Bradyrhizobium* strains were diverse and formed seven phylogenetic groups. Here, we continued the study of these strains by two genomic techniques, PCR-RFLP analysis of the IGS region between 16S and 23S rRNA genes and AFLP analysis. We focused on the applicability and comparison of the taxonomic resolution level of these two techniques to characterize *Bradyrhizobium* strains and help elucidate taxonomic problems encountered in this genus. Both IGS PCR-RFLP and AFLP analyses confirmed that *Bradyrhizobium* strains from small legumes are diverse.

By IGS PCR-RFLP using eight restriction enzymes, the 104 strains studied produced 70 types of combined restriction profiles, forming 16 groups. By AFLP analysis, the strains formed 27 groups. Table 3 shows comparative results obtained with essentially the same strains by the two techniques IGS PCR-RFLP and AFLP analyses and also by previous 16S ARDRA (9). There is very good agreement between results from the three techniques, except for the two *Bradyrhizobium* sp. (*F. albida*) strains ORS 187 and ORS 110. The 16S ARDRA and AFLP results for ORS 187 are consistent, but not with the IGS results; the 16S ARDRA and IGS results for ORS 110 do not match. In most cases, each AFLP cluster contained strains showing the same or very similar rDNA IGS types and belonging to one IGS PCR-RFLP cluster.

The strains belonging to the 16S ARDRA groups A, B, E, and F (*B. japonicum* lineage) belonged to 43 IGS PCR-RFLP types (corresponding to 12 main IGS PCR-RFLP clusters) and to 17 AFLP clusters. Interestingly, strains of 16S ARDRA group A, exclusively consisting of photosynthetic strains, were also separate from nonphotosynthetic strains in AFLP and IGS PCR-RFLP groups. The strains belonging to 16S ARDRA groups C and G (*B. elkanii* lineage) belonged to 20 IGS PCR-RFLP types (corresponding to six IGS PCR-RFLP main clusters) and 10 AFLP clusters.

This confirms, as expected from literature dealing with other bacterial groups, that IGS PCR-RFLP (4, 22) and AFLP (15) analyses are more discriminative than 16S ARDRA for *Bradyrhizobium* and do almost differentiate at the strain level. Moreover, it has been reported that the AFLP method was more efficient for assessing intrapathovar diversity of the genus

Pseudomonas than the rapid amplified polymorphic DNA method (7).

For screening purposes, fine discriminating genotypic techniques such as IGS PCR-RFLP and AFLP are recommended; IGS PCR-RFLP has some advantages because the experimental protocol is sure, simple, and similar to that used for other studies on the 16S rDNA gene and is less laborious than the AFLP technique. Our results agreed with the study of Leblond-Bourget et al. (23) on *Bifidobacterium* species, showing that IGS rDNA regions are useful for rapid identification or intraspecific phylogenetic studies, while 16S rRNA sequences are a good tool to infer interspecific links (11).

As expected from the literature (3, 9, 13, 19, 30, 40, 41, 45), our results show some heterogeneity among B. japonicum reference strains. Four of the B. japonicum reference strains included, LMG 4262, LMG 4265, LMG 4272, and LMG 4274, were of different plant origins, Albizzia, Ulex, Pueroria, and Vigna, respectively. They all occupied separate positions by both IGS PCR-RFLP and AFLP analyses. On the contrary, a majority of the *B. japonicum* reference strains originating from Glycine max clustered in two main groups, IGS II/AFLP 15 and IGS VII/AFLP 12. One exception is B. japonicum strain LMG 8321 grouping together with isolates from small legumes and from F. albida in IGS V/AFLP 20. By the two techniques, and also by 16S ARDRA (9), B. japonicum strain USDA 110 grouped separately from the B. japonicum type strain LMG 6138. This result corroborated other studies based on DNA: DNA hybridizations (13) and 16S rDNA analysis (3, 37).

By the three techniques, the *B. elkanii* strains grouped together; moreover, by AFLP analysis, they formed a separate group.

By ARDRA, both *B. liaoningense* strains were found in the same group as *B. japonicum* type strain LMG 6138; here, they were distinct from *B. japonicum* and formed a separate group by both IGS PCR-RFLP and AFLP analyses.

Of the eight restriction enzymes used for IGS PCR-RFLP in our study, *Hin*fI and *Rsa*I were the least discriminative. Except for three strains, LMG 15268, LMG 8888, and LMG 4274, all the strains could be differentiated by using the combination of the IGS PCR-RFLP patterns obtained with two enzymes, *Nde*II and *Msp*I.

No clear relationship could be evidenced between plant origin, host range (9), and the grouping of strains by AFLP and IGS PCR-RFLP analyses. On the contrary, we found a certain degree of relationship between AFLP and IGS PCR-RFLP groups and the geographical origins of the strains, especially between north and south Senegal, corresponding to different ecological regions. Senegal is a constrasting country, from its northern part being in the sahelian zone (dry steppe receiving 100 to 300 mm rainfall per year) to the southern part being in the guineo-soudanian zone (deciduous forest receiving 800 to 1,200 mm of rainfall per year). In general, groups mainly consisted of isolates either from north Senegal (IGS groups V, VI, XIII, and XIV corresponding to AFLP groups 20, 29, 33, 34, 40, and 46) or south or central Senegal (IGS groups I, III, IV, X, XI, and XII corresponding to AFLP groups 19, 31, 35, 36, 37, 38, 42, 43, 44, 45, and 47). However, this is not a general rule since some exceptions exist, like IGS group VIII and AFLP group 33 consisting of strains originating from everywhere in Senegal.

Here, we extended the screening of our *Bradyrhizobium* strain collection by AFLP analysis. The AFLP technique has been described as having a similar discriminating power as DNA:DNA hybridizations, making it a potentially useful taxonomic tool for species delineation for a number of different bacterial groups (7, 14, 15). This result is not unexpected since

ACKNOWLEDGMENTS

This work was supported by the BRG (Bureau des Resources Génétîques) and by the Commission of the European Communities (STD3 program, contracts TS2 0169-F, TS3*CT920047, and TS3*CT93-0232 [DG12 HSMU], and BRIDGE program, contracts BIOT-CT91-0263 and BIOT-CT91-0294).

F.D.-B. is indebted to the French Ministry of Education for a Ph.D. research grant. M.G. is indebted to the Fund for Scientific Research-Flanders (Belgium) for research and personnel grants. A.W. is indebted to the Fund for Scientific Research-Flanders (Belgium) for a position as a postdoctoral research fellow.

REFERENCES

- Alazard, D. 1985. Stem and root nodulation in *Aeschynomene* spp. Appl. Environ. Microbiol. 50:732–734.
- Alazard, D. 1991. La nodulation caulinaire dans le genre Aeschynomene. Ph.D. thesis. University Claude Bernard-Lyon I, Lyon, France.
- Barrera, L. L., M. E. Trujillo, M. Goodfellow, F. J. Garcia, I. Hernandez-Lucas, G. Davila, P. van Berkum, and E. Martinez-Romero. 1997. Biodiversity of bradyrhizobia nodulating *Lupinus* spp. Int. J. Syst. Bacteriol. 47:1086– 1091.
- Barry, T., G. Colleran, M. Glennon, L. K. Dunican, and F. Gannon. 1991. The 16s/23s ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods Appl. 1:51–56.
- Blears, M. J., S. A. de Grandis, H. L. Trevors, and J. T. Trevors. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. Ind. Microbiol. Biotechnol. 21:99–114.
- Brunel, B., S. Rome, R. Ziani, and J. C. Cleyet-Marel. 1996. Comparison of nucleotide diversity and symbiotic properties of *Rhizobium meliloti* populations from annual *Medicago* species. FEMS Microbiol. Ecol. 19:71–82.
- tions from annual *Medicago* species. FEMS Microbiol. Ecol. 19:71–82.
 Clerc, A., C. Manceau, and X. Nesme. 1998. Comparison of randomly amplified polymorphic DNA with amplified fragment length polymorphism to assess genetic diversity and genetic relatedness within genospecies III of *Pseudomonas syringae*. Appl. Environ. Microbiol. 64:1180–1187.
- de Lajudie, P., E. Laurent-Fulele, A. Willems, U. Tork, R. Coopman, M. D. Collins, K. Kersters, B. L. Dreyfus, and M. Gillis. 1998. Description of *Allorhizobium undicola* gen. nov. sp. nov. for nitrogen-fixing bacteria efficiently nodulating *Neptunia natans* in Senegal. Int. J. Syst. Bacteriol. 48: 1277–1290.
- Doignon-Bourcier, F., A. Sy, A. Willems, U. Torck, B. Dreyfus, M. Gillis, and P. de Lajudie. 1999. Diversity of bradyrhizobia from 27 tropical leguminosae species native of Senegal. Syst. Appl. Microbiol. 22:647–661.
- Dupuy, N., A. Willems, B. Pot, D. Dewettinck, I. Vandenbruaene, G. Maestrojuan, B. Dreyfus, K. Kersters, M. D. Collins, and M. Gillis. 1994. Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. Int. J. Syst. Bacteriol. 44:461–473.
- Fox, G. E., J. D. Wisotzeky, and P. Jurtshuk, Jr. 1992. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int. J. Syst. Bacteriol. 42:166–170.
- Heyndrickx, M., L. Vauterin, P. Vandamme, K. Kersters, and P. De Vos. 1996. Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J. Microbiol. Methods 26:247–259.
- Hollis, A. B., W. E. Kloos, and G. H. Elkan. 1981. DNA:DNA hybridization studies of *Rhizobium japonicum* and related *Rhizobiaceae*. J. Gen. Microbiol. 123:215–222.
- Huys, G., I. Kersters, R. Coopman, P. Janssen, and K. Kersters. 1996. Genotypic diversity among *Aeromonas* isolates recovered from drinking water production plants as revealed by AFLP[™] analysis. Syst. Appl. Microbiol. 19:428–435.
- Janssen, P., R. Coopman, G. Huys, J. Swings, M. Bleeker, P. Vos, M. Zabeau, and K. Kersters. 1996. Evaluation of the DNA fingerprinting method AFLP as a new tool in bacterial taxonomy. Microbiology 142:1881–1893
- Jensen, M. A., J. A. Webster, and N. Strauss. 1993. Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Appl. Environ. Microbiol. 59:945–952.
- Jordan, D. C. 1982. Transfer of *Rhizobium japonicum* Buchanan 1980 to *Bradyrhizobium* gen. nov., a genus of slow growing root nodule bacteria from leguminous plants. Int. J. Syst. Bacteriol. **32**:136–139.
- Khbaya, B., M. Neyra, P. Normand, K. Zerhari, and A. Filali-Maltouf. 1998. Genetic diversity and phylogeny of rhizobia that nodulate *Acacia* spp. in Morocco assessed by analysis of rRNA genes. Appl. Environ. Microbiol. 64:4912–4917.

- Kuykendall, L. M., B. Saxena, T. E. Devine, and S. E. Udell. 1992. Genetic diversity in *Bradyrhizobium japonicum* Jordan 1982 and a proposal for *Bradyrhizobium elkanii* sp. nov. Can. J. Microbiol. 38:501–503.
- Ladha, J. K., and R. B. So. 1994. Numerical taxonomy of photosynthetic rhizobia nodulating *Aeschynomene* species. Int. J. Syst. Bacteriol. 44:62–73.
- Laguerre, G., M. R. Allard, F. Revoy, and N. Amarger. 1994. Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16S rRNA genes. Appl. Environ. Microbiol. 60:56–63.
- 22. Laguerre, G., P. Mavingui, M. R. Allard, M. P. Charnay, P. Louvrier, S. I. Mazurier, L. Rigottier-Gois, and N. Amarger. 1996. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to *Rhizobium leguminosarum* and its different biovars. Appl. Environ. Microbiol. 62:2029–2036.
- Leblond-Bourget, N., H. Philippe, I. Mangin, and B. Decaris. 1996. 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter- and intraspecific *Bifidobacterium* phylogeny. Int. J. Syst. Bacteriol. 46:102–111.
- Martinez-Romero, E., and J. Caballero-Mellado. 1996. Rhizobium phylogenies and bacterial genetic diversity. Crit. Rev. Plant Sci. 15:113–140.
- Molouba, F., J. Lorquin, A. Willems, B. Hoste, E. Giraud, B. Dreyfus, M. Gillis, P. de Lajudie, and C. Masson-Boivin. 1999. Photosynthetic bradyrhizobia from *Aeschynomene* spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. Appl. Environ. Microbiol. 65:3084–3094.
- Moreira, F., M. Gillis, B. Pot, K. Kersters, and A. A. Franco. 1993. Characterization of rhizobia from different divergence groups of tropical *Leguminosae* by comparative polyacrylamide gel electrophoresis of their total proteins. Syst. Appl. Microbiol. 16:135–146.
- Moreira, F. M. S., K. Haukka, and J. P. W. Young. 1998. Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Mol. Ecol. 7:889–895.
- Navarro, E., P. Simonet, P. Normand, and R. Bardin. 1992. Characterization of natural populations of *Nitrobacter* spp. using PCR/RFLP analysis of the ribosomal intergenic spacer. Arch. Microbiol. 157:107–115.
- Ponsonnet, C., and X. Nesme. 1994. Identification of *Agrobacterium* strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch. Microbiol. 161:300–309.
- Scholla, H. M., J. A. Moorefield, and H. E. Elkan. 1990. DNA homology between species of the rhizobia. Syst. Appl. Microbiol. 13:288–294.
- Selenska-Pobell, S., E. Evguenieva-Hackenberg, G. Radeva, and A. Squartini. 1996. Characterization of *Rhizobium "hedysari*" by RFLP analysis of PCR amplified rDNA and by genomic PCR fingerprinting. J. Appl. Bacteriol. 80:517–528.
- So, R. B., J. K. Ladha, and J. P. W. Young. 1994. Photosynthetic symbionts of *Aeschynomene* spp. form a cluster with bradyrhizobia on the basis of fatty acid and rRNA analyses. Int. J. Syst. Bacteriol. 44:392–403.
- 33. Terefework, Z., G. Nick, S. Suomalainen, L. Paulin, and K. Lindström. 1998.

Phylogeny of *Rhizobium galegae* with respect to other rhizobia and agrobacteria. Int. J. Syst. Bacteriol. **48**:349–356.

- 34. Van Rossum, D., F. P. Schuurmans, M. Gillis, A. Muyotcha, H. W. Van Verseveld, A. H. Stouthamer, and F. C. Boogerd. 1995. Genetic and phenotypic analyses of *Bradyrhizobium* strains nodulating Peanut (*Arachis hypogaea* L.) roots. Appl. Environ. Microbiol. 61:1599–1609.
- Vauterin, L., and P. Vauterin. 1992. Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. Eur. Microbiol. 1:37–41.
- Vincent, J. M. 1970. A manual for the practical study of root nodule bacteria. International Biological Programme handbook no. 15. Blackwell Scientific Publ. Ltd., Oxford, United Kingdom.
- 37. Vinuesa, P., J. L. W. Rademaker, F. J. de Bruijn, and D. Werner. 1998. Genotypic characterization of *Bradyrhizobium* strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S-23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl. Environ. Microbiol. 64:2096–2104.
- 38. Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, and M. Zabeau. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407–4414.
- Willems, A., and M. D. Collins. 1993. Phylogenetic analysis of rhizobia and agrobacteria based on 16S rRNA gene sequences. Int. J. Syst. Bacteriol. 45:706–711.
- Willems, A., F. Doignon-Bourcier, R. Coopman, B. Hoste, P. de Lajudie, and M. Gillis. 1999. AFLP fingerprint analysis of *Bradyrhizobium* strains isolated from *Faidherbia albida* and *Aeschynomene* species. Syst. Appl. Microbiol. 23:137–147.
- 41. Wong, F. Y. K., E. Stackebrandt, J. K. Ladha, D. E. Fleischman, A. R. Date, and J. A. Fuerst. 1994. Phylogenetic analysis of *Bradyrhizobium japonicum* and photosynthetic stem-nodulating bacteria from *Aeschynomene* species grown in separated geographical regions. Appl. Environ. Microbiol. 60:940– 946.
- Xu, L. M., C. Ge, Z. Cui, J. Li, and H. Fan. 1995. *Bradyrhizobium liaoningense* sp. nov. isolated from the root nodules of soybean. Int. J. Syst. Bacteriol. 45:706–711.
- 43. Yanagi, M., and K. Yamasato. 1993. Phylogenetic analysis of the family *Rhizobiaceae* and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Lett. 107:115–120.
- Young, J. P. W., and K. E. Haukka. 1996. Diversity and phylogeny of rhizobia. New Phytol. 133:87–94.
- 45. Young, J. P. W., H. L. Downer, and B. D. Eardly. 1991. Phylogeny of the phototrophic *Rhizobium* strain BTAi1 by polymerase chain reaction-based sequencing of a 16S rRNA gene segment. J. Bacteriol. **173**:2271–2277.
- 46. Zabeau, M., and P. Vos. 1993. Selective restriction fragment amplification: a general method for DNA fingerprinting. Publication no. 0 534 858 A1. European Patent Office, Munich, Germany.