Skip to main content
. 2022 Jun 17;12(6):988. doi: 10.3390/jpm12060988

Table 1.

Cardio-Net with feature concatenation, where the Downsample and Upsample blocks include Convolution (Conv), Bottleneck convolution (Bottleneck-C), Depth-wise separable convolution (DW-Sep-Conv), Concatenation, and Pool. Batch normalization and ReLU layers are used with convolutions and denoted as “**”.

Block Layer Name Layer Size
(Height × Width × Number of Channels), (Stride)
Filters/Groups Output
Downsample
block
Conv-1-1 ** 3 × 3 × 64 (S = 1) 64 350 × 350 × 64
Conv-1-2 3 × 3 × 64 (S = 1) 64 350 × 350 × 64
Concatenation-1 350 × 350 × 128
Bottleneck-C-1 ** 1 × 1 (S = 1) 64 350 × 350 × 64
Pool-1 2 × 2 (S = 2) 175 × 175 × 64
Conv-2-1 ** 3 × 3 × 64 (S = 1) 128 175 × 175 × 128
Conv-2-2 3 × 3 × 128 (S = 1) 128 175 × 175 × 128
Concatenation-2 175 × 175 × 256
Bottleneck-C-2 ** 1 × 1 (S = 1) 128 175 × 175 × 128
Pool-2 2 × 2 (S = 2) 87 × 87 × 128
Conv-3-1 ** 3 × 3 × 128 (S = 1) 256 87 × 87 × 256
DW-Sep-Conv-3-2 3 × 3 × 256 (S = 1) 256 87 × 87 × 256
Concatenation-3 87 × 87 × 512
Bottleneck-C-3 ** 1 × 1 (S = 1) 128 87 × 87 × 256
Pool-3 2 × 2 (S = 2) 43 × 43 × 256
DW-Sep-Conv-4-1 ** 3 × 3 × 256 (S = 1) 256 43 × 43 × 256
DW-Sep-Conv-4-2 3 × 3 × 256 (S = 1) 256 43 × 43 × 256
Concatenation-4 43 × 43 × 512
Bottleneck-C-4 ** 1 × 1 (S = 1) 256 43 × 43 × 256
Pool-4 2 × 2 (S = 2) 21 × 21 × 256
Upsample
block
UnPool-4 2 × 2 (S = 2) 43 × 43 × 256
DW-Sep-Conv-4-2 ** 3 × 3 × 256 (S = 1) 256 43 × 43 × 256
DW-Sep-Conv-4-1 3 × 3 × 256 (S = 1) 256 43 × 43 × 256
Concatenation-5 43 × 43 × 512
Bottleneck-C-5 ** 1 × 1 (S = 1) 256 43 × 43 × 256
UnPool-3 2 × 2 (S = 2) 87 × 87 × 256
DW-Sep-Conv-3-2 ** 3 × 3 × 256 (S = 1) 256 87 × 87 × 256
Conv-3-1 3 × 3 × 256 (S = 1) 128 87 × 87 × 128
Concatenation-6 87 × 87 × 640
Bottleneck-C-6 ** 1 × 1 (S = 1) 128 87 × 87 × 128
UnPool-2 2 × 2 (S = 2) 175 × 175 × 128
Conv-2-2 ** 3 × 3 × 128 (S = 1) 128 175 × 175 × 128
Conv-2-1 3 × 3 × 128 (S = 1) 64 175 × 175 × 64
Concatenation-7 175 × 175 × 320
Bottleneck-C-7 ** 1 × 1 (S = 1) 64 175 × 175 × 64
UnPool-1 2 × 2 (S = 2) 350 × 350 × 64
Conv-1-2 ** 3 × 3 × 64 (S = 1) 64 350 × 350 × 64
Conv-1-1 3 × 3 × 64 (S = 1) 64 350 × 350 × 64
Concatenation-8 350 × 350 × 160
Bottleneck-C-8 ** 1 × 1 (S = 1) 2 350 × 350 × 2