Skip to main content
. 2022 Jun 17;12(6):988. doi: 10.3390/jpm12060988

Table 5.

Accuracies of CardioNet and existing methods for the JSRT dataset (unit: %).

Type Method Lungs Heart Clavicle Bone
Acc J D Acc J D Acc J D
Local feature-based methods Coppini et al. [53] - 92.7 95.5 - - - - - -
Jangam et al. [17] - 95.6 97.6 - - - - - -
ASM default [54] - 90.3 - - 79.3 - - 69.0 -
Chondro et al. [25] - 96.3 - - - - - - -
Candemir et al. [15] - 95.4 96.7 - - - - - -
Dawoud [23] - 94.0 - - - - - - -
Peng et al. [55] 97.0 93.6 96.7 - - - - - -
Wan Ahmed et al. [19] 95.77 - - - - - - - -
Deep feature-based methods Dai et al. FCN [56] - 94.7 97.3 - 86.6 92.7 - - -
Oliveira et al. FCN [35] 95.05 97.45 89.25 94.24 75.52 85.90
OR-Skip-Net [44] 98.92 96.14 98.02 98.94 88.8 94.01 99.70 83.79 91.07
ResNet101 [36] 95.3 97.6 90.4 94.9 85.2 92.0
ContextNet-2 [33] - 96.5 - - - - -
BFPN [52] - 87.0 93.0 - 82.0 90.0 - - -
InvertedNet [1] 94.9 97.4 88.8 94.1 83.3 91.0
HybridGNet [57] 97.43 93.34
RU-Net [58] 85.57
MPDC DDLA U-Net [59] 95.61 97.90
CardioNet
(Average of Fold 1
and Fold 2)
99.24 97.28 98.61 99.08 90.42 94.76 99.76 86.74 92.74