Skip to main content
. 2021 Mar 4;49(9):2189–2207. doi: 10.1080/02664763.2021.1893285

Table 1.

Simulation results for the low-dimensional data (p = 100): We used the proposed method, denoted by (A), Bayesian Cox method, denoted by (B), Cox lasso method, denoted by (C), and Cox method with the approximated information criterion, denoted by (D).

      (A) (B) (C) (D)
n p censor EˆIN PˆC PˆO EˆIN PˆC PˆO EˆIN PˆC PˆO EˆIN PˆC PˆO
1000 100 20% 0.13 0.88 0.12 34.80 0.00 1.00 0.72 0.57 0.43 3.59 0.08 0.92
      (0.13) (0.11) (0.11) (21.64) (0.00) (0.00) (1.29) (0.25) (0.25) (5.09) (0.07) (0.07)
    30% 0.06 0.94 0.06 32.07 0.00 1.00 0.73 0.62 0.38 2.86 0.12 0.88
      (0.06) (0.06) (0.06) (16.83) (0.00) (0.00) (1.86) (0.24) (0.24) (4.22) (0.11) (0.11)
    40% 0.11 0.89 0.11 28.11 0.00 1.00 0.52 0.69 0.31 2.86 0.09 0.91
      (0.10) (0.10) (0.10) (21.07) (0.00) (0.00) (1.02) (0.22) (0.22) (4.88) (0.08) (0.08)
3000 100 20% 0.05 0.95 0.05 58.11 0.00 1.00 0.12 0.92 0.08 2.81 0.05 0.95
      (0.05) (0.05) (0.05) (19.59) (0.00) (0.00) (0.21) (0.07) (0.07) (2.80) (0.05) (0.05)
    30% 0.08 0.93 0.07 54.35 0.00 1.00 0.08 0.93 0.07 3.03 0.05 0.95
      (0.09) (0.07) (0.07) (24.96) (0.00) (0.00) (0.09) (0.07) (0.07) (3.42) (0.05) (0.05)
    40% 0.11 0.90 0.10 53.19 0.00 1.00 0.14 0.92 0.08 3.32 0.05 0.95
      (0.12) (0.09) (0.09) (19.85) (0.00) (0.00) (0.38) (0.07) (0.07) (3.92) (0.05) (0.05)

Note: EˆIN is the expected number of the incorrect nonzero covariates, PˆC is the empirical probability of the correct model, PˆO is the empirical probability of the overfitted model, n is the sample size, p is the number of the covariates, and censor denotes the censoring rate. The variances are provided in parentheses.