Skip to main content
. 2021 Mar 4;49(9):2189–2207. doi: 10.1080/02664763.2021.1893285

Table 2.

Simulation results for the high-dimensional data (p = 4000): We used the proposed method, denoted by (A), Bayesian Cox method, denoted by (B), and Cox lasso method, denoted by (C).

      (A) (B) (C)
n p censor EˆIN PˆC PˆO EˆIN PˆC PˆO EˆIN PˆC PˆO
1000 4000 20% 0.03 0.97 0.03 553.48 0.00 1.00 1.91 0.41 0.59
      (0.03) (0.03) (0.03) (185.93) (0.00) (0.00) (8.37) (0.24) (0.24)
    30% 0.04 0.96 0.04 492.63 0.00 1.00 1.77 0.50 0.50
      (0.04) (0.04) (0.04) (183.71) (0.00) (0.00) (11.55) (0.25) (0.25)
    40% 0.02 0.98 0.02 427.08 0.00 1.00 1.88 0.44 0.56
      (0.02) (0.02) (0.02) (138.11) (0.00) (0.00) (8.81) (0.25) (0.25)
3000 4000 20% 0.08 0.93 0.07 1695.04 0.00 1.00 0.68 0.67 0.33
      (0.09) (0.07) (0.07) (406.50) (0.00) (0.00) (1.57) (0.22) (0.22)
    30% 0.09 0.92 0.08 1562.78 0.00 1.00 0.56 0.76 0.24
      (0.10) (0.07) (0.07) (497.41) (0.00) (0.00) (2.31) (0.18) (0.18)
    40% 0.13 0.88 0.12 1415.71 0.00 1.00 0.40 0.83 0.17
      (0.13) (0.11) (0.11) (382.23) (0.00) (0.00) (3.17) (0.14) (0.14)

Note: EˆIN is the expected number of the incorrect nonzero covariates, PˆC is the empirical probability of the correct model, PˆO is the empirical probability of the overfitted model, n is the sample size, p is the number of the covariates, and censor denotes the censoring rate. The variances of each member are provided below in parentheses.