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Abstract: To guide analysts to select the right tool and parameters in differential gene expression
analyses of single-cell RNA sequencing (scRNA-seq) data, we developed a novel simulator that
recapitulates the data characteristics of real scRNA-seq datasets while accounting for all the relevant
sources of variation in a multi-subject, multi-condition scRNA-seq experiment: the cell-to-cell varia-
tion within a subject, the variation across subjects, the variability across cell types, the mean/variance
relationship of gene expression across genes, library size effects, group effects, and covariate effects.
By applying it to benchmark 12 differential gene expression analysis methods (including cell-level
and pseudo-bulk methods) on simulated multi-condition, multi-subject data of the 10× Genomics
platform, we demonstrated that methods originating from the negative binomial mixed model such
as glmmTMB and NEBULA-HL outperformed other methods. Utilizing NEBULA-HL in a statistical
analysis pipeline for single-cell analysis will enable scientists to better understand the cell-type-
specific transcriptomic response to disease or treatment effects and to discover new drug targets.
Further, application to two real datasets showed the outperformance of our differential expression
(DE) pipeline, with unified findings of differentially expressed genes (DEG) and a pseudo-time
trajectory transcriptomic result. In the end, we made recommendations for filtering strategies of cells
and genes based on simulation results to achieve optimal experimental goals.

Keywords: scRNA-seq; single-cell; RNA-seq; DEG; differential expression; DE; benchmarking;
scRNA-seq simulator

1. Introduction

In recent years, single-cell RNA sequencing technology has gained popularity due to its
advantages over bulk RNA sequencing [1]. This includes a better understanding of tissue
heterogeneity [2], characterizations of rare cell populations [3,4], and cell type-driven disease
etiology [5,6]. A key question in analyzing scRNA-seq data is the identification of cell-type
specific, differentially-expressed genes between groups by using appropriate methods.

To explore this question, we need to consider the unique challenges of scRNA-seq data
analysis, namely the dropout of lowly expressed genes, the sparsity of scRNA-seq datasets,
and the hierarchical nature of single-cell data. To properly model these data structures, we
need to consider all the relevant sources of variation in a multi-subject, multi-condition
scRNA-seq experiment: the cell-to-cell variation within a subject, the variation across
subjects, the variability across cell types, the mean/variance relationship of gene expression
across genes, library size effects, group effects, and covariate effects.

Since the ground truth of DEGs of a real scRNA-seq dataset is often unknown, we
utilized simulated datasets under various parameter settings to benchmark both bulk
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and single-cell DEG algorithms on multi-subject scRNA-seq datasets. In this present
work, we focused on developing a novel scRNA-seq simulator that recapitulates the
data characteristics of real scRNA-seq datasets, accommodates realistic designs, simulates
realistic cell numbers, and accounts for all the sources of variation noted above.

Our proposed simulator focuses on the multi-sample, multi-condition scenario and
improves upon previous literature with three contributions. First, we account for covariates
during the simulation step (we are not aware of any other simulators in the literature that
account for covariates). Second, our simulator can capture subject to subject variation,
which is not modelled in previous simulators such as Splatter or scDesign. Lastly, we
utilize data from all controls and all disease subjects during the estimation step of the
simulator. This differs from Soneson (2018)’s work [7] which uses a single subject as the
basis of estimation for their simulator.

Previous work in bulk RNA-seq/scRNA-seq simulation includes a non-parametric
simulator [8], semi-parametric simulation [9], Negative Binomial simulators [10,11], and
multinomial simulation [12]. Unfortunately, these simulators do not fully address the
complexities of the scRNA-seq data structure. For example, SimSeq [8] uses a subsampling
procedure on the columns (subjects) of pilot data and a weighted probability sampling on
rows (genes) to simulate DEGs in bulk RNA-seq data. This weighted probability sampling
on rows procedure does not guarantee that chosen genes are truly differentially expressed.
Additionally, SimSeq does not address the single-cell RNA-seq scenario and cannot account
for designs with covariates.

Addressing some of these limitations is SpSimSeq [9], a semiparametric simulator for
both bulk and single-cell RNAseq datasets. This algorithm utilizes density estimation on
pilot data to estimate the probability distribution of gene expression and then simulates
from this distribution. Their simulator is quite flexible and can model single-cell differential
expression, single-cell dropout, and the simulation of batch effects. However, the variation
across subjects and covariate effects are not accommodated.

Other simulators for scRNA-seq data include Splatter [11], the ZINB model from
IDEAS [11], the Negative Binomial model from Zimmerman et al. [13], and scDesign [12]
which utilizes a multinomial model for differential expression. These four approaches have
serious limitations: Splatter and scDesign do not simulate the multi-subject scRNA-seq
scenario. It is important to note that both Splatter and scDesign can simulate the data
subject by the subject using a fixed single sample as input, but this procedure does not
capture subject to subject variation. The model from Zimmerman et al. will simulate data
at the TPM level, but our aim is a count-level simulator, whereas IDEAS does simulate
count-level data, but does not accommodate covariates during the simulation step.

The simulation approach from Squair et al. [14] is based on Splatter. As mentioned pre-
viously, Splatter does not simulate the multiple subject scRNA-seq scenario. Additionally,
Squair et al. differ from this current work by not adjusting for covariates in the simulation
step nor in the DEG model fitting step.

After constructing our novel scRNA-seq simulator, named MSMC-Sim (multi-subject,
multi-condition simulator), we applied it to benchmark 12 differential expression (DE)
methods on simulated multi-condition, multi-subject count data, namely edgeR [15], limma-
voom [16], DESeq2 [17] with internal filtering and without log2FC shrinkage, DESeq2 with
internal filtering and with log2FC shrinkage, DESeq2 without log2FC shrinkage and with
internal filtering disabled, and four single-cell DE methods (glmmTMB [18], NEBULA-HL
and NEBULA-LN [19], and MAST [20]). Previous work in the literature has addressed
benchmarking pseudo bulk and single-cell DE algorithms on scRNA-seq data. Crowell
et al., Miao et al., and others [7,10,14,21–23] compare 15 DE methods comprising both
pseudo-bulk and cell-level DE methods on simulated multi-sample multi-condition scRNA-
seq data. Miao et al. [21] compare 14 popular DE algorithms on single-cell mouse data,
while Jaakkola [22] compare 5 DE methods on cell-level data in mouse and human tonsils.

In addition to providing a novel simulation approach, our DE benchmarking approach
contains several novel features when compared to the existing DE method benchmarking
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literature and focuses on the multi-sample, multi-condition scenario. Our most significant
contribution is that we account for covariates both in the simulation step and in the DEG
model fitting step [We are not aware of any other manuscripts that benchmark while
accounting for covariates]. We expect an increase in statistical power by accounting for
covariate effects in the design matrix when applying DEG algorithms to simulated datasets.
Additionally, our benchmarking approach is more comprehensive in its set of metrics
compared to previous work. We evaluated Type-1 error, FDR control, computation time,
AUROC, PRAUC, power, FC bias, and missingness in FDP. We also recommend bench-
marking recent/novel DE methods such as glmmTMB and NEBULA, so our benchmarking
effort includes these recent DE methods. Our final contribution is to benchmark realistic
cell numbers, which contrasts with some previous works [7]. In the future, we expect
scRNAseq datasets with high cellular abundances (hundreds of thousands of cells per
study) and with multiple samples to be the norm.

In this work, we used two human datasets to study DE method performance. These
two datasets were selected based on several criteria. The first criterion used was that we
wished to study 10× Genomics data as that is a predominant platform in the field of single-
cell analysis. The second criterion was a requirement for the dataset to have high-quality
cells obtained from multiple subjects from both healthy and disease conditions, each of
which had corresponding metadata that contained covariates that could be used within the
simulation study to adjust for subject-level effects. An additional practical consideration
was that the data should contain an adequate number of cells per cell type per subject for
DE analysis and that the cell types had been annotated within the published data by subject
matter experts. Finally, we wished to select datasets relevant to biologically meaningful
disease states, so that we could evaluate simulation performance from within a biological
context and further evaluate a real data DE analysis to compare our findings to previously
published findings. To this end, we selected single-cell data studying multiple sclerosis
(MS) [5] and a dataset studying pulmonary fibrosis [6]. Choosing two separate disease
areas helps verify the robustness of our conclusions.

MS is a progressive neuroinflammatory disease, which relapses and remits during
early stages and develops distinct lesions and neurodegeneration at later stages. MS is
related to demyelination and plaque formation [24,25], together with axonal damage in
white matter (WM) [26,27], which are usually caused by immune-related cytotoxic damage
of oligodendrocytes (OL). The progression of MS’s lesions and its mechanisms in different
brain tissues are still not well-understood. Using scRNA-seq to investigate cell-type-specific
gene expression can uncover the mechanisms of MS in different tissues and central nervous
system (CNS) cell types.

Pulmonary fibrosis is also a progressive disease with the replacement of normal alveo-
lar tissue with connective tissue which reduces the lung’s ability to exchange air [28]. This
replacement usually occurs in pathological wound healing, especially during repeated
injuries or chronic inflammation [29]. The cause of Pulmonary fibrosis is not well un-
derstood. Connective tissue disease, environmental pollution, and infection can cause
pulmonary fibrosis [6]. The mechanisms of different cell populations during pulmonary
fibrosis progression are poorly understood. Using scRNA-seq data, we can analyze the
gene expression in each cell population and uncover their progressive changes.

The rest of the paper is organized as follows. The Materials and Methods section
presents our simulator, different DE benchmarking methods, and metrics for evaluating
performance. The DEG results on both simulated and real data are in the Results section,
where the simulated data has performance comparisons using different metrics, e.g., FDR
and AUROC, and the real data are compared using normalized enrichment scores (NES).
As a benchmarking paper, we conclude with the performance of different single-cell
and pseudo-bulk DE methods and discuss our biological findings in the Conclusion and
Discussion sections.
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2. Materials and Methods
2.1. Analysis Datasets

Data from two publications were used for the simulation. The first dataset [5] (PR-
JNA544731) contained the Schirmer MS snRNA-seq data which profiled grey matter (GM)
and white matter (WM) of 12 MS samples at various MS stages and 9 control samples. We
re-processed the dataset to include 44,992 cells and 33,525 genes. Cell-type annotation
was from the authors, including excitatory neuron (EN) upper layers 2-3 (L2-3), EN-L4,
deeper layers EN-L5-6, EN-MIX, inhibitory neuron PVALB (IN-PVALB), IN-VIP, OL, Oligo-
dendrocyte precursor cells (OPC), and astrocytes. After batch correction harmonization
across samples done by Harmony [30], and followed by Louvain clustering, we decided to
collapse Oligodendrocyte A, B, and C (OL-A/B/C) and Excitatory neuron layer 2/3 A, B
(EN-L2-3A/B) to form single aggregated ‘Oligodendrocyte’ (OL) and ‘Excitatory neuron
layer 2/3’ (EN-L2-3). The original subclusters were driven by specific donors and no clear
subcluster was observed after batch correction. The contrast considered for simulation
was between multiple sclerosis (MS) subjects as the disease group and Control subjects as
the reference group. The cell types of stomal cells, phagocytes, T cells, and B cells were
dropped as there were too few cells after two rounds of filtering. The microglia cell type
was also excluded due to an external rule where each cell type must have at least 3 samples
per group with at least 10 cells per sample.

The second dataset was obtained from Reyfman 2018 (GSE122960) [6] and was pre-
processed to include 77,326 cells and 33,694 genes. Data were collected from 8 lung
biopsies (4 idiopathic pulmonary fibrosis, 2 systemic sclerosis, 1 polymyositis, 1 chronic
hypersensitivity pneumonitis) and 8 lung explants. The contrast considered was processed
to collapse 8 subjects into a single disease group versus 8 donors. Reyfman et al. annotated
the cells into cell types of Alveolar type I (AT1), alveolar type II (AT2), alveolar macrophages,
and ciliated epithelial cells (referred to as simply ‘ciliated’), F13A1 macrophages, SPP1-
macrophages, and SMC + Fibroblasts.

2.2. Simulation Methods

Simulations were performed on a per cell type basis for each data set. In total, 9 subjects
were chosen from each group in the Schirmer data, and 8 subjects were chosen for each
group of the Reyfman data. Fold changes (FCs) and DEG proportions were specified as
a priori for different simulation scenarios. For Schirmer data, FCs of 1.2 and 1.5 were
simulated setting 20% of genes as DEG for each cell type. For Reyfman data, FCs of 1.4 and
1.5 were simulated setting 15% of genes as DEG for each cell type. Utilizing Reyfman’s
simulated data given FC = 1.2, poor performance was observed by all 12 DE methods and
made evaluation comparison indistinct (e.g., power close to zero across all DE methods).
Null simulations were performed by setting the simulation FC to 1.0 while holding other
parameters constant. The simulation process workflow is outlined in Figure S1.

To simulate data, the subject means and dispersions were estimated for each subject
within each contrast group for given pilot data while accounting for library size effects.
Cell-level read counts were then sampled from a negative binomial distribution given the
means and dispersions for each subject for each contrast group. The estimated means and
dispersions from real reference subjects from non-zero genes (a gene of a given subject with
at least 1 cell with UMI > 0) were directly plugged into a negative binomial distribution to
generate synthetic read counts for the reference group.

In contrast, the disease group cell-level count means were estimated from the reference
means multiplied by the assumed FC parameter (or divided by the FC parameter) for
the simulated DEGs (a random sample of genes based on a preselected proportion of
differentially expressed (pDE) genes and FC = 1.0 for the simulated non-differentially
expressed genes). A total of 50% of simulated DEGs were upregulated and 50% were
downregulated. The disease group cell count dispersions were estimated from synthetic
disease group means in a general additive model (GAM) trained by regressing dispersions
against means in the real diseased subjects. Genes with all zero counts for a particular
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subject remained zero in the simulated counts. Covariate effects in the disease group were
replaced with reference group covariate values. This simplifying assumption guarantees
covariate distributions were the same for reference and disease groups. In special cases
where a random row was chosen to be DE but control samples were zero for a particular
subject, simulated disease counts were generated from the disease subject’s mean and
dispersion rather than the prior procedure described.

For Schirmer data, simulated cells per subject were down-sampled to 50%. For Reyf-
man data, simulated cells per subject were down-sampled to 25% for Alveolar Macrophage
(27.5k cells) and AT2 (26k cells) cell types due to a large number of cells in each of those cell
types. Down-sampling was not performed for simulated counts from other Reyfman cell
types. The data simulation was well-controlled by constant seed numbers when randomly
sampling cell-level counts from the negative binomial distribution, assigning differentially
expressed genes, allocating up/down-regulation on the DEGs, choosing arbitrary disease
group subjects, and randomly selecting cells per subject for down-sampling.

2.3. Diagnostic Plot Methods

To validate similarity in distributional aspects from the reference group subjects
between real and simulated data sets, means, dispersions, library sizes, and drop-out
proportion of cell-level counts from the reference group subjects were visually diagnosed in
various plots. Figure 1 illustrates a scatterplot of the all gene means from real vs. simulated
cell-level normalized counts, a scatterplot of the filtered dispersions from real vs. simulated
cell-level normalized counts, a boxplot of all library sizes from real vs. simulated cell-level
normalized counts, a scatterplot of the proportion of zero counts from real vs. simulated
cell-level normalized counts, and a Loess smoother with 95% confidence intervals of
the relationship between the means and dispersions from real vs. simulated cell-level
normalized counts. For each reference group subject, the simulated cell count means and
dispersions per gene were driven by the subject-level mean and dispersion. The filtered
genes were selected as having dispersion greater than the minimum dispersion for each
real and simulated data set. The dispersion for each gene was derived from non-zero
read counts where at least one cell contains the non-zero count. An additional analysis
was performed to compare our MSMC-Sim simulator performance to default settings
for SPsimSeq [9] using the diagnostic plot method (see Figure S9). The intersection of
the expressed genes where all cells’ UMI ≥ 2 with dispersion greater than the minimum
dispersion value in each real dataset for a cell type and those genes using the same filtering
approach that were simulated by both the MSMC-Sim and by SPsimseq was utilized so
that the diagnostic results would be comparable in this figure.

2.4. DE Benchmarking Methods

DE benchmarking on simulated cell counts was performed using 12 DE methods after
applying cell- and gene-level filtering on the simulated data. Filtering occurred in two
rounds. The first round of filtering removed mitochondrial genes and cells with library
size less than 200 UMI counts or greater than 20 M UMI counts. For the second round of
filtering, genes were kept based on a threshold of 10% of the cellular abundance of the
smaller of the two groups of a particular cell type. Two types of filtering strategies were
used in the second round of filtering. Using ‘or’ logic filtering, the second round of filtering
kept genes expressed in at least 10% of cells in either contrast group. Using ‘and’ logic
filtering, the second round of filtering requires genes to be expressed in at least 10% of cells
in both contrast groups. To account for cell types with small abundances, if 10% of the cell
abundance of either group of a particular cell type is below 50 cells, a threshold of 50 cells
replaces the 10% threshold. Additional filtering steps include; (1) subjects were dropped
from a cell type contrast when fewer than 5 cells remained in the subject after filtering; (2) a
cell type contrast was not performed if fewer than 2 subjects remained in either contrast
group. All DE methods were benchmarked on the same simulated cell count data.
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Figure 1. Diagnostic plots to compare the simulation with real data. (a) One control sample from
EN-MIX cell type in Schirmer et al. [5]; (b) one control sample from AT1 cell type in Reyfman et al. [6].
P1: scatterplot of all gene means from real vs. simulated cell-level normalized counts, P2: scatterplot
of filtered dispersions from real vs. simulated cell-level normalized counts, P3: boxplot of all library
sizes from real vs. simulated cell-level normalized counts, P4: scatterplot of the proportion of zero
counts from real vs. simulated cell-level normalized counts, and P5: Loess smoother with 95%
confidence intervals of the relationship between the filtered means and dispersions from real vs.
simulated cell-level normalized counts.

Eight pseudobulk DE methods were tested: t-test, ANCOVA, u-test, edgeR [15], limma-
voom [16], DESeq2 [17] with internal filtering and without log2FC shrinkage, DESeq2 with
internal filtering and with log2FC shrinkage, and DESeq2 without log2FC shrinkage and
with internal filtering disabled. Four single-cell methods were tested: glmmTMB (using
nbinom2 family function) [18], NEBULA (HL and LN methods) [19], and MAST (with
cellular detection rate enabled) [20]. For single-cell DE methods of glmmTMB and NEBULA
(LN and HL methods), the library size was included as an offset term and the subject
random effect was also modeled. For DE methods of ANCOVA, edgeR, limma-voom,
DESeq2 (3 scenarios: without shrinkage and with internal filtering, with shrinkage and
with internal filtering, or without shrinkage with no internal filtering), NEBULA (LN and
HL methods), glmmTMB, and MAST, additional covariates were modeled in the design matrix.
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For Schirmer data, age, sex, and cell capture batches were included as covariates. For
Reyfman data, age and sex were included as covariates.

2.5. Simulation Performance Methods

Multiple performance metrics were calculated for each DE method: empirical false-
positive rate (empirical FPR), true positive rate (TPR or power), observed false discovery
proportion (observed FDP), area under the receiver operating characteristic curve (AUROC),
area under the precision-recall curve (PRAUC), absolute FC bias, and computation time.
To assess type-I error control, the proportion of DEGs identified at a nominal type-I error
rate of 0.05 to the total number of genes analyzed under the null hypothesis was calculated
as the empirical FPR. Power was determined under the alternative hypothesis as the
proportion of true positive DEGs detected to the total true simulated DEGs using multiple
comparison testing at FDR = 0.05. Observed FDP was calculated as the proportion of
false positive DEGs detected to the total number of DEGs significantly detected at fixed
FDR = 0.05. Two R packages, ROCR [31] and PRROC [32], were employed to calculate
AUROC and PRAUC. Absolute FC bias was calculated by taking the absolute difference in
DE method identified FC estimates from simulated FC values. The computation time for
each simulation data set was measured by the elapsed time in seconds. For each evaluation
metric, 12 DE methods were assigned into good/intermediate/poor performance according
to specific thresholds. For instance, k-means clustering was applied to classify the DE
methods into three groups in power medians: the group containing the highest power
median was assigned a good performance; the group involving the lowest power median
was assigned a poor performance; otherwise, the performance was assigned as intermediate.
For FDR control, good performance was assigned if the observed FDP median fell between
0.0167 and 0.15 with no more than 75% on one side; poor performance was assigned if
the observed FDP median was ≥0.25 or ≤0.01 or at least one observed FDP was missing;
otherwise, intermediate performance was assigned [7]. For the proportion of missing FDP,
good performance was assigned if no missing value of observed FDP exists; intermediate
performance was assigned if the proportion of missing observed FDP < 0.5; otherwise, poor
performance was assigned (see Table 1 for more details regarding the thresholds for other
metrics). The clustering was then color-coded in a heatmap for each cell type: good in blue,
intermediate in yellow, and poor in red (see Results Section 3.9).

Table 1. DEG assessment metrics clustered into good, intermediate, and poor performance.

Good Intermediate Poor

Power.median Kmean class including max.
median power Otherwise Kmean class including min.

median power

FDP.median

no more than 75% of FDPs (False
Discovery Proportion) on one side

(above or below) of 0.05 and
0.0167 < median FDP < 0.15

Otherwise
median FDP ≥ 0.25 or median
FDP ≤ 0.01 or at least one FDP

is missing

missFDP 0 <0.5 ≥0.5

AUROC.median ≥0.9 0.7≤ and <0.9 <0.7

PRAUC.median ≥0.8 0.4≤ and <0.8 <0.4

FPR.median
∣∣∣log2

(
median FPR

0.05

)∣∣∣ < log2(1.5)
log2(1.5) ≤

∣∣∣log2

(
median FPR

0.05

)∣∣∣ <
2

2 ≤
∣∣∣log2

(
median FPR

0.05

)∣∣∣
Time.median ≤10 10< and ≤500 >500

Abs(FC bias.median)
(FCw is 1.2 for Schirmer et al. [5]

or 1.4 for Reyfman et al. [6])
≤ 0.05 × FC

FCw 0.05 × FC
FCw < and ≤ 0.10 × FC

FCw > 0.10 × FC
FCw

2.6. Real Data DE Application Methods

Real DE analysis was performed on the full set of samples in Schirmer data and in
Reyfman data based on the top-performing DE methods according to our simulation study.
The filtering settings used were identical to those described in the DE benchmarking meth-
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ods, using the ‘and’ logic filtering described for the second round of filtering. Covariates
and DE formulae used for the real analysis were also identical to those used in the DE
benchmarking methods. The cell types selected to analyze in the real data were cell types
of relevance from the results of the DE analyses in the Schirmer and Reyfman publications.
For the Schirmer data, we chose to perform real DE analysis on the EN-L2-3, EN-L4, OL,
and OPC cell types. For the Reyfman data, we chose to perform real DE analysis on the
Alveolar macrophage, AT2, and SMC + Fibroblast cell types.

For top-performing DE methods, we first obtained a list of DEGs together with their
FDR adjusted p-value and log2FC. Upset plots and volcano plots were then generated to
compare the three methods and to visualize the up- and down-regulated DEGs. DEGs
between disease and control conditions were obtained using DESeq2, glmmTMB, and
NEBULA methods separately, because they are the top performing DE methods identified
by the simulation exercise (see Results). The cutoff setting is the same as that of simulated
data for both datasets, with FDR = 0.05. For DEG overlaps in the upset plots, a further
criterion of FC = 1.5 thresholds was applied. After that, we conducted a gene set enrich-
ment analysis (GSEA) using the gene ontology (GO) biological process database (MSigDB
version 7.5.1) [33,34], which was also used in the original works as the GSEA database.
We adopted Fgsea (https://github.com/ctlab/fgsea, last accessed 22 April 2022) [35], a
fast pre-ranked GSEA tool, to perform GSEA analysis. For Schirmer data GSEA analysis,
enrichment is considered significant if FDR < 0.05, following the setting in Schirmer’s
work [5]. For Reyfman’s data GSEA analysis, enrichment is considered significant if the
adjusted p-value < 0.01, following the setting in Reyfman’s work [6].

3. Results
3.1. Diagnostic Plots

Diagnostic plots (P1–P5) in Figure 1a display that distributional characteristics of
genes within the simulated reference group subject (C1) are approximately the same as
those within the real subject in EN-MIX cells from Schirmer et al.: the scatterplot (P1) shows
high concordance in means across all genes; the scatterplot (P2) exhibits that the majority of
filtered genes shared the identical dispersions from real vs. simulated data sets; the boxplot
(P3) compared log-scale of library sizes and almost identical distributions from both data
sets were observed; the scatterplot (P4) shows a strong positive correlation between two
data sets in the proportion of zero counts for each gene, and the last plot (P5) exhibits a
Loess smoother with 95% confidence interval on the mean/dispersion and a monotonically
decreasing relationship between mean and dispersion was observed comparing real vs.
simulated data. Interestingly, from P5 in Figure 1a, dispersion from simulated data was
consistently higher than real data across means, but the distance is negligible.

The visualization results can vary depending on different subjects or cell types. Using
another reference group subject (C4) in the same EN-MIX cell type, the boxplot in Figure S2a
shows that the median of simulated library sizes shifted relatively down from the median
of real library sizes. Unlike P5 in Figure 1a consistently displaying larger dispersion
from simulated data compared to real data, a smaller dispersion from simulated data was
observed in comparison to real data when the means were small from P5 in Figure S2a.
Nevertheless, the overall investigation of multiple reference group subjects from EN-MIX
did not demonstrate a substantial discrepancy between simulated and real data in various
distributional features. Likewise, diagnostic plots within Astrocytes cell-type (Figure S2b,c)
did not exhibit a severe departure of simulated data from real data.

Figure 1b visualized the distributional similarity across genes in one reference group
subject of AT1 cell-type from Reyfman et al. High concordance in the means, library
sizes, and drop-out rates were detected from P1, P3, and P4, respectively. On the contrary,
compared to Figure 1a, lower concordance was observed in the dispersions (P2) and
relationships between mean and dispersion (P5) from Figure 1b. The plots from another
reference group subject (Figure S2d) and different SMC + Fibroblasts cell-type (Figure S2e,f)
resulted in similar patterns to Figure 1b and 1a, respectively. Figure S9 visualizes the

https://github.com/ctlab/fgsea
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diagnostic plot for the same sample and cell types depicted in Figure 1 for the Schirmer and
Reyfman datasets. A difference is observed in the simulated library sizes for the selected
combination of sample and cell type in SPsimSeq (plot P3 in Figure S9c,d compared to P3
in Figure S9a,b).

3.2. Type-I Error Rate Control

Under the null hypothesis where no DEG is assumed with FC = 1.0 for every gene, the
proportion of falsely rejected genes (empirical FPR) was compared with the nominal type-I
error rate fixed as 0.05. Note that a gene was detected as DE if its raw p-value < 0.05. From
Figure 2a, the empirical FPR medians, which were estimated by glmmTMB and NEBULA,
were closest to the nominal type-I error rate from cell types such as EN-L2-3, EN-L4, EN-
L5-6, and IN-VIP. For other cell types, inflated or deflated FPR medians were observed,
but the medians computed by glmmTMB and NEBULA were consistently much closer to
the nominal type-I error rate than other DE methods. Noticeably, MAST.cdr was the most
liberal DEG method by showing the highest rejection rate across all cell types in Figure 2.
The biggest number of rejected genes enabled MAST.cdr to achieve a median FPR closest
to the nominal type-I error rate when empirical FPR from other methods was severely
deflated (Figure 2b). When ‘or’ filtering was employed to test more lowly-expressed genes,
the smallest deviation by glmmTMB and NEBULA methods from target type-I error rate
was again detected for all cell types in Schirmer et al. and SMC + Fibroblasts cell-type in
Reyfman et al. (Figure S3).
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3.3. FC Bias

To assess FC estimates departing from true (assumed) FC values, absolute FC bias was
computed for each DE method where the absolute FC bias equals |FC estimate—true FC|.
Figure 3 displays distributions of the metric in addition to the proportion of outliers.
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Under the small arrow on top of the boxplot, outliers were defined as the absolute
biases greater than the 3rd quartile + 1.5 X IQR (Inter-quantile Range). For EN-L4 cells,
most DE methods returned similar distributions with 3~4% outliers proportion excluding
MAST.cdr and DESeq2.shrink in Figure S4a. Noticeably, DESeq2.shrink achieved higher
consistency in FC estimates as producing no outliers (0% from Figure S4a). Most observa-
tions are similar from Figure S4b compared to Figure S4a. However, bigger variances for
MAST.cdr and DESeq2-shrink were detected, and the outlier’s proportions became higher
(4~6%) across the other ten DE methods from Alveolar-macrophages cells in Reyfman et al.
When FC was increased to 1.5, the same rankings among DE methods in the absolute bias
of FC estimates were displayed (Figure 3).

3.4. FC Correlations

Pairwise comparison of FC estimates among the twelve DE methods was measured by
Spearman’s rank correlation coefficient (rho). Figure 4 includes the correlation coefficient
matrices calculated from Schirmer et al. and Reyfman et al datasets. Across the two
data sets, it was commonly observed that FC estimates derived by either NEBULA-LN
or NEBULA-HL were almost the same as those by glmmTMB (rho≈1). Moreover, it was
noticeable that FC estimates by edgeR, DESeq2, and DESeq2 with no internal filtering were
closer to NEBULA or glmmTMB than other pseudo-bulk DE methods such as ANCOVA,
t-test, and u-test (rho < 0.95). As Figure 3 shows the greatest absolute bias in FC estimates
by MAST.cdr and DESeq2.shrink, FC estimates by those two DE methods evaluated the
lowest correlation coefficients with other DE methods in Figure 4b (rho < 0.85). The
pairwise comparison did not include genes with at least one missing FC among the twelve
FC estimates.
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3.5. FDR Control

Figure 5 displays the distribution of observed false discovery proportion (FDP) and sug-
gests that glmmTMB and NEBULA control FDR better than other DEG methods because the
median FDP is closest to the nominal FDR, 0.05. These methods showed the closest proximity
to the nominal FDR in the Schirmer data simulations in Figure 5a. Although pseudobulk DE
methods failed to control FDR by showing severely deflated FDP across all cell types, MAST.cdr
resulted in high inflation of FDP above the fixed FDR. Similarly, Figure 2a depicted failures of
Type-I error rate control due to MAST.cdr’s inflation and pseudo-bulk DE methods’ deflation.
The figures can be explained in which MAST.cdr tends to select many false positives while pseu-
dobulk DE methods are too conservative to detect true DEG. From Figure 5b, some pseudo-bulk
DE methods returned all missing observed FDP over 50 simulation data sets (e.g., u.test for AT1
cell-type). The missingness (Figure 5b) mostly happened when a DEG method could identify no
DEG (i.e., zero power in Figure S6a). As more lowly-expressed genes were tested, pseudo-bulk
DE methods produced more missing observed FDP except for Alveolar-Macrophages, AT2, and
SMC + Fibroblasts cell types (Figure S5).

3.6. Power

Power (true positive rate, TPR) is defined by a proportion of true DEG detected over
true DEG as simulated. In this experiment, the Benjamini-Hochberg method which is a
classical multiple-comparison testing procedure, adjusted the raw p-value of each gene.
The adjusted p-value was compared with 0.05 of the nominal FDR to call DEGs. In Figure 6,
glmmTMB and NEBULA cell-level methods outperformed MAST.cdr and pseudo-bulk DE
methods as achieving higher power regardless of FC magnitudes assumed. Noticeably,
when independent filtering embedded in DESeq2 was inactivated (DESeq2-nofilt), the
power from regular DESeq2 (DESeq2) was substantially diminished for most cell types
in Figure 6b. The decrease in power implies that DESeq2 and the shrinkage version of
DESeq2 (DESeq2-shrink) tested fewer lowly-expressed genes and calculated power after
the additional independent filtering, which was not employed in other DE methods.
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3.7. AUROC and PRAUC

Figure 7 shows better rankings of DESeq2.shrink and DESeq2 in medians of AUROC
and PRAUC for the cell types such as Astrocytes, EN-L2-3, EN-L4, EN-L5-6, and IN-
PVALB. However, the metrics from DESeq2_nofilt were dramatically decreased and are
comparable to those from glmmTMB or NEBULA cell-level methods. Moreover, for cell
types of IN-PVALB and IN-VIP, the distribution of AUROC or PRAUC from DESeq2 is more
widely spread out than glmmTMB and NEBULA. All medians of AUROC (PRAUC) from
glmmTMB and NEBULA cell-level methods were greater than 0.75 (0.5) across different
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cell types, demonstrating high accuracy to identify true DEGs. In terms of AUROC and
PRAUC performance from the Reyfman et al. data set (Figure S7), DESeq2 and edgeR were
in the first place with higher values. However, the difference is very small from other DE
methods in the second decimal place, such as the glmmTMB and NEBULA methods.
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3.8. Computation Time

MAST.cdr and glmmTMB implementation consume much more computational bur-
den: >1000 s to run each simulation data set on average. Although NEBULA methods
are cell-level methods like MAST.cdr or glmmTMB, they took substantially less time with
<300 (≈102.5) seconds for each simulation, implying that NEBULA methods were three
times faster than glmmTMB or MAST.cdr overall. Computation by NEBULA-HL was
consistently longer than NEBULA-LN. Pseudo-bulk DE methods except for ANCOVA,
are relatively time-efficient compared to cell-level methods in Figure 8. The rankings are
identical across all cell types and are not affected by a larger number of lowly expressed
genes in the DEG testing set (Figure 8b).

3.9. Heatmap

Based on the clustering thresholds described in the Methods section (Table 1), color-
coded heatmaps across all DE methods and performance evaluation metrics for specifically
EN-L2-3 and SPP1-Macrophages cells are presented in Figure 9. By executing stringent
‘and’ filtering in Figure 9a, both NEBULA-HL and NEBULA-LN methods showed superior
performance in most metrics except for time efficiency. In contrast to the other cell-level
methods like MAST.cdr or glmmTMB, NEBULA’s running time was comparatively efficient
(see “Time” column in Figure 9). In Figure 9b, most DE methods struggled more to identify
true DEG overall and produced more intermediate/poor performance than Figure 9a. For
instance, NEBULA-HL failed to control FDR and Type-I error rate in Figure 9b, whereas
the method is successful in Figure 9a. Nevertheless, NEBULA methods and glmmTMB
achieved relatively high power and derived no missing FDP. Moreover, higher AUROC and
PRAUC than MAST.cdr were consistently observed by NEBULA methods and glmmTMB
(Figure 9b). Additional heatmaps from other cell types such as Astrocytes, EN-MIX, and
IN-VIP from Schirmer et al. and Ciliated, SMC + Fibroblasts, and Alveolar macrophages
from Reyfman et al., are displayed in Figure S8a–f. Consequently, the overall performance
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evaluation in heatmaps illustrated the superior performance of glmmTMB and NEBULA
in power, FDR control, and type-I error control and superior performance of DESeq2 in
AUROC and PRAUC.
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Figure 9. Heatmaps of 12 DE methods in a variety of overall performance metrics given FC = 1.5
using ‘and’ filtering scheme (a) EN-L2-3 cell type from Schirmer et al. [5]; (b) SPP1-Macrophages cell
type from Reyfman et al. [6].

3.10. Real Data Application Results

For each cell type of interest in the Schirmer data, upset plots (Figure 10) and volcano
plots (Figure 11) were generated to compare the three DE methods and the up- and down-
regulated DEGs. From Figure 10, the results of NEBULA-HL and glmmTMB are similar,
with highly overlapped DEG lists and comparable list size, while DESeq2 detected much
fewer DEGs. Volcano plots (Figure 11) also demonstrate that NEBULA-HL and glmmTMB
were comparable in terms of DEG list size while DESeq2 detected much fewer DEGs. More-
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over, both NEBULA-HL and glmmTMB detected dysregulation of PPIA (Peptidylprolyl
isomerase A) and CUX2 (a marker of supragranular layers) [36], two important genes
validated in Schirmer’s work using a smFISH experiment. PPIA is a disease modifier that
is a translational biomarker for amyotrophic lateral sclerosis and is associated with fron-
totemporal lobar degeneration [37]. EN CUX2 upper cortical neurons are more vulnerable
to meningeal-driven oxidative stress and cell death [5]. The failure of DESeq2 in detecting
PPIA and CUX2 further demonstrated the superiority of NEBULA-HL and glmmTMB. A
heatmap plot (Figure 12) of the enriched GO terms was generated to compare the three
DEG methods. Higher NES indicates that the GO term is more over-represented. More
rows of NES = 0 indicates the worse performance of the DEG method. From the heatmap
(Figure 12), the DEGs detected by NEBULA-HL enriched the most GO terms.
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Figure 10. Upset plots showing the overlap of real-data DEGs identified by three DE methods
(DESeq2, Nebula HL, and glmmTMB) at FC 1.5 and FDR 0.05 cutoffs for Schirmer data. Upset plot
overlap is shown per cell type. (a) Overlap of DEGs for EN-L2-3 cells, (b) Overlap of DEGs for EN-L4
cells, (c) Overlap of DEGs for OL cells, and (d) Overlap of DEGs for OPC cells.

We selected the highly MS-related GO terms (Table S1–S3) and compared the results
to the findings in Schirmer’s work [5]. Only EN-L2-3, EN-L4, and EN-L5-6 were included
for comparison as Schirmer’s work only reported the GO enrichment results of these
three cell types. Schirmer et al. conducted two versions of DEG analyses: 1. a pseudo-
time trajectory DEG analysis in upper cortical layer EN-L2-3 using control, acute, and
chronic MS patients; 2. a regular DEG analysis of MS versus controls. EN-L2-3 was
used for trajectory analysis because its demyelination and the number of cells showed
a high correlation with the pseudo-time progression. We detected the dysregulation of
protein folding and protein targeting in upper neuron layers EN-L2-3, which is consistent
with the findings in Schirmer’s regular DEG enrichments. On the other hand, our work
detected the dysregulation of cell death and oxidative phosphorylation, which were found
in Schirmer’s pseudo-time trajectory DEG enrichment. The dysregulation of oxidative
stress [38,39] and cell death in upper cortical layers might be a cause of MS. In addition, we
found dysregulations of response to a toxic substance in EN-L2-3 and L4, and response to
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the virus in L4, which suggested MS patients might have had infections [40] in neurons.
Pseudo-time trajectory DEG analysis provides an additional view of the transcriptomic
changes during different disease stages but has more prerequisites such as progressive
disease and additional labeling of disease subtypes or stages. By only using regular DEG
analysis, our work detected pathways both in Schirmer’s regular DEG results and their
pseudo-time trajectory DEG results, as well as new findings of dysregulation in response to
toxic substances and viruses. This demonstrates the outperformance of our DEG methods
over conventional methods.
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For real Reyfman data analysis for each cell type of interest, we generated upset plots
(Figure 13) and volcano plots (Figure 14) to compare the three DEG methods for up- and
down-regulated genes. From Figure 13, DESeq2 can find a comparably sized DEG list,
and the overlaps between the three DEG methods are high. NEBULA-HL and glmmTMB
are still relatively more similar, with larger overlaps. A heatmap plot (Figure 15) of the
enriched GO terms was generated to compare the three DEG methods. From the heatmap
(Figure 15), the DEGs detected by NEBULA-HL enriched the most GO terms. We selected
the highly Fibrosis-related GO terms and compared the result of the two important cell
types (alveolar-macrophages, AT2) [6] (Tables S4 and S5) to that in Reyfman’s work.
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Compared to Reyfman’s findings, our results (Tables S4 and S5) detected dysregula-
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are early causes of pulmonary fibrosis [42], while immune and inflammation might be 
secondary features [43]. The dysregulation of these wound healing, immune and 

Figure 13. Upset plots showing the overlap of real-data DEGs identified by three DE methods
(DESeq2, Nebula HL, and glmmTMB) at FC 1.5 and FDR 0.05 cutoffs for Reyfman data [6]. Upset
plot overlap is shown per cell type. (a) Overlap of DEGs for Alveolar macrophage cells; (b) Overlap
of DEGs for AT2 cells; (c) Overlap of DEGs for SMC+ Fibroblast cells.

Compared to Reyfman’s findings, our results (Tables S4 and S5) detected dysregulation
of immune-related GO terms in AT2, including activation of immune response, cell acti-
vation involved in immune response, immune effector process, innate immune response,
leukocyte medicated immunity, as well as inflammatory response, wound healing, and
response to wounding. Research [41] has shown that immune, inflammation, and wound
healing were related to pulmonary fibrosis. The injury and wound healing in AT2 are early
causes of pulmonary fibrosis [42], while immune and inflammation might be secondary
features [43]. The dysregulation of these wound healing, immune and inflammation-related
transcriptions suggests that the fibrosis lungs might have undergone injuries and healing.
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normalized enrichment score (NES). Higher NES absolute value indicates more significant; NES = 0
indicates that pathway cannot be enriched. The more rows with NES = 0, the worse performance of
the DEG method.

4. Discussion

In this manuscript, we presented a novel approach for the simulation and bench-
marking of multi-subject multi-condition single-cell/single nuclear RNA-seq datasets. Our
simulator differs from previous approaches by focusing on the multi-subject scenario,
accounting for covariate effects, flexibly modeling the mean/dispersion relation with GAM,
and capturing subject-to-subject variation. The diagnostic plots illustrate that our simula-
tor recapitulated distributional characteristics of real data including average expression,
expression dispersion, mean/dispersion relationship, and dropout proportion.

Applying our simulator to the MS dataset from Schirmer et al. and the lung fibrosis
data from Reyfman et al., we benchmarked 12 DE methods spanning pseudo-bulk and
single-cell DE methods and assessed their performance by utilizing a comprehensive set
of metrics (type-1 error rate control, computation time, AUROC, PRAUC, FDR control,
power, absolute FC bias, FC correlation, and others). Results from this benchmarking
study demonstrated the superior performance of NEBULA-HL for the multi-subject multi-
condition scenario (shown in heatmaps: Figure 9 and Figure S8). In detail, NEBULA-
HL showed a good overall performance for the metrics of statistical power, AUROC,
and PRAUC. In terms of type-1 error rate and false discovery rate control, NEBULA-HL
controlled these metrics near the nominal rate for the MS data but showed deflation for
the lung data. The deflation was observed when the cell-to-cell variation was crucially
small for both control and disease subjects within specific cell types such as Alveolar-
macrophages, AT1, AT2, and Ciliated. Computation time for NEBULA-HL was reasonable.
GlmmTMB and MAST were typically 1–2 orders of magnitude slower than NEBULA, while
pseudo-bulk methods were faster than NEBULA.
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Extensive investigation of heatmaps across all cell types recommended NEBULA
methods that derived superior performance in the most evaluation metrics: the highest
detection power from both data sets (Figure 6 and Figure S6), the closest observed FDP and
empirical FPR to the target FDR and target type-I error rate from Schirmer et al. (Figure 2a,
Figure 5a, Figures S3a and S5a), respectively. Some pseudo-bulk DE methods such as
DESeq2 and its variants achieved the highest AUROC and PRAUC for most cell types
(Figure 7 and Figure S7). However, medians of AUROC and PRAUC from NEBULA
methods were very close to those from DESeq2 for most cell types. More importantly,
severe deflations of observed FDP and empirical FPR, hence failures of FDR and type-I
error rate controls across all cell types, made an unfavorable decision of the pseudo-bulk
DE methods (Figure 2, Figure 5, Figures S3 and S5).

Between two NEBULA methods (LN and HL), many evaluation metrics exhibited high
concordance from most cell types (e.g., similar medians of observed FPR in Figure 2a, iden-
tical distribution of absolute FC bias in Figure 3, correlation coefficient close to 1 in Figure 4).
Interestingly, performance by glmmTMB showed more similar results to NEBULA-HL than
NEBULA-LN (e.g., observed FPR in Astrocytes/EN-L2-3/EN-L4/OL/OPC cell types from
Figure 2a and cell types in Reyfman et al. excluding SMC + Fibroblasts from Figure 2b).
The similarity is plausible because glmmTMB and NEBULA-HL were developed on a basis
of the same underlying distribution, a negative binomial mixed model while NEBULA-
LN leverages Large Number approximation to enhance computational efficiency. For
robustness, we would recommend NEBULA-HL unless the computation time is unrealistic.

Depending on the goal of the DE analysis, the choice of genes to analyze in a single-cell
experiment will rely on careful evaluation of the experimental data. Gene-level filtering
for discovery may involve using a looser criterion to retain genes that are lowly expressed,
whereas gene-level filtering for the purposes of this study requires stricter filtering to
evaluate genes consistently expressed between contrast groups. Similarly, there should be
careful consideration given to the handling of rare cell types, which may contain inadequate
numbers of cells per sample to perform DE analysis.

Other important considerations when choosing a DE method for multi-sample multi-
condition datasets are package usability and complex experimental design support (Table 2).
For most DE methods, ample documentation is provided containing example files, reference
documentation, quick start guides, and vignettes. In terms of covariate support, all methods
except for t-test/u-test support covariate adjustment. More complex designs involving
fixed effect design matrices are supported by most DE method packages while general
random effect design matrices are supported by only MAST and glmmTMB.

Table 2. Comparison of DEG approaches for covariate handling, documentation, and complex
design support.

Method Covariates? Documentation? Fixed Effect Matrix? Random Design Matrix? Download Link

t-test No Textbook No no N/A
u-test No Textbook No no N/A
ancova Yes Textbook No 1 no N/A

edgeR Yes vignette, users
guide, reference yes no

https://bioconductor.org/packages/
release/bioc/html/edgeR.html

(last accessed 22 April 2022)

limma Yes quickstart, users
guide, reference yes no

https://bioconductor.org/packages/
release/bioc/html/limma.html
(last accessed 8 February 2022)

DESeq2 Yes quick start, users
guide, reference yes no

https://bioconductor.org/packages/
release/bioc/html/DESeq2.html
(last accessed 11 February 2022)

MAST Yes intro, MAST
examples, reference yes yes

https:
//www.bioconductor.org/packages/
release/bioc/html/MAST.html (last

accessed 10 February 2022)

glmmTMB Yes multiple vignettes
and reference yes yes

https://cran.r-project.org/web/
packages/glmmTMB/index.html

(last accessed 1 April 2022)

https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/edgeR.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://bioconductor.org/packages/release/bioc/html/DESeq2.html
https://www.bioconductor.org/packages/release/bioc/html/MAST.html
https://www.bioconductor.org/packages/release/bioc/html/MAST.html
https://www.bioconductor.org/packages/release/bioc/html/MAST.html
https://cran.r-project.org/web/packages/glmmTMB/index.html
https://cran.r-project.org/web/packages/glmmTMB/index.html
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Table 2. Cont.

Method Covariates? Documentation? Fixed Effect Matrix? Random Design Matrix? Download Link

NEBULA Yes vignette and reference yes no
https://cran.r-project.org/web/

packages/nebula/index.html
(last accessed 2 June 2022)

1 Traditional ancova is a single group effect with one or more covariates. However, more complex designs are
possible with ancova.

Our methodology for simulation and benchmarking has a few key limitations. First,
our simulation approach may not capture the correlation structure of real data. This in-
cludes across-cell type correlations, gene-gene correlations, and correlations of cells within
the same cell type of the same subject. Furthermore, none of our simulation diagnostic met-
rics assessed the recapitulation of real-life correlations. Another important limitation occurs
in the modelling of covariates in our simulator; we used a simplifying assumption that
covariate distributions in control and disease groups would be similar. Thirdly, our conclu-
sions for our simulator and benchmarking have only been assessed on the 10× Genomics
platform. Further research is needed to confirm our conclusions hold for other platforms.

We also need to be mindful of genes that are reasonably expressed in one group
but have near-zero expression in the other group. Determining DEGs for this subset of
genes is challenging since DE algorithm modelling assumptions may no longer hold true.
An alternative approach such as comparing the proportion of expression across groups
could be employed. Although it is beyond the scope of this discussion, there are methods
that attempt to perform this type of proportional zero binary expression analysis [44].
Special attention should be paid to the identities of genes that fall into this category when
considering DEG results as their results may be unreliable.

Some of our key findings differ from previous work in the literature. For example, our
benchmarking findings illustrate that cell-level methods such as NEBULA and glmmTMB
outperformed pseudo-bulk DE methods overall. These findings contradict the work of [14,45],
who claim pseudo-bulk methods outperform cell-level DE methods.

Comparing Squair et al. [14] to our present work, their work assumed bulk RNA-
seq differential expression as the ground truth and quantified DE concordance between
bulk and single-cell expression with the AUCC metric, whereas, in the present study, we
assumed simulated DEGs in our multi-subject multi-condition simulator as the ground
truth. Additionally, Squair et al. did not consider recent single-cell approaches such as
glmmTMB or NEBULA in their benchmarking study. As for benchmarking metrics, this
present work considers many more evaluation metrics (type-1 error control, computation
time, AUROC, PRAUC, fdr control, power, usability, and FC bias) compared to Squair’s
benchmarking metrics (computation time, AUCC, number of false positives, etc.).

Murphy et al. [45] performed a reanalysis of the work from Zimmerman et al. [46]
by considering the Matthews correlation coefficient (MCC) metric, allowing the user to
choose the proportion of DEGs, and ensuring the same simulated datasets were utilized
across all DE methods. Zimmerman et al.’s results advocate for mixed model methods over
pseudo-bulk methods, but the reanalysis of Murphy et al. claims pseudo-bulk methods
have the best performance.

Our present work differs from Murphy et al. in several ways. First, our simulator
uses raw counts as input and simulates raw counts as output. Both Murphy et al. and
Zimmerman et al. expect TPM input data and simulate TPM level data. Consequently,
our work uses simulated raw counts as input to the 12 DEG methods but Murphy and
Zimmerman utilize TPM as DE method input. Other important differences include no
covariate adjustment during the benchmarking of Murphy et al. and Zimmerman et al.
and different simulator assumptions.

Application of the DE methods to real data for both the Schirmer and Reyfman datasets
demonstrates that two scRNA-seq DEG methods, NEBULA and glmmTMB, outperformed
DESeq2 in terms of DEG detected and the subsequent gene set enrichment. NEBULA was

https://cran.r-project.org/web/packages/nebula/index.html
https://cran.r-project.org/web/packages/nebula/index.html
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slightly better than glmmTMB, according to the DEG results and pathway NES heatmaps.
Our DEG analysis detected GO terms both in Schirmer’s conventional DEG result and their
pseudo-time trajectory transcriptomic result, which further showed the superiority of our
DE pipeline.

The result of this study shows that, despite the limitations inherent in the simulation
of scRNA-seq count data, the current simulation results support the use of mixed models
for DE (in contrast to previous simulation studies [14,45]). Pseudobulk DE methods
tend to be too conservative in the results we studied, as observed in their deflated FDP
and empirical FPR. Consequently, pseudobulk DE methods may lose power to detect
DEGs, and we observe some evidence of that in our real data application. Lastly, the
computational burden of mixed-model methods like glmmTMB is a reasonable obstacle,
as has been previously acknowledged [14,45]; however, NEBULA offers a significantly
improved runtime and lower computational burden for a mixed-model single-cell DE
method. Future work for this study has several possibilities. For the simulation effort, we
would like to include additional parameters to simulate FC distributions and an imbalanced
contrast group design as opposed to requiring simulation of equal numbers of disease and
control samples as in the present study. We would also like to enable the simulation of
real covariates from input data for disease samples rather than using the current control
covariate subject-mapping approach. Correlation structures, both between cell types and
between individual cells, could also be modelled in future simulations. We would also
like to incorporate into our simulator and DE pipeline codes the ability to ingest other
single-cell sequence data formats to broaden the datasets capable of being studied using
this simulation workflow.

5. Conclusions

A broad internal investigation of all simulation scenarios (various cell types, different
FC values, two types of filtering strategies, and two data sets) including both Figure 9 and
Figure S8 suggests that cell-level DE methods originating from negative binomial mixed
models such as glmmTMB and NEBULA-HL outperformed MAST.cdr and pseudo-bulk DE
methods on average. Moreover, the primary merit of running NEBULA-HL over glmmTMB
is time efficiency.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/life12060850/s1, Figure S1: A flowchart representation
of DE simulation and DE method performance evaluation methods; Figure S2: Diagnostic plots;
Figure S3: Distributions of observed false positive rate (FPR) given type-I error rate is 0.05 (red dotted
line); Figure S4: Boxplots of absolute FC bias given “or” filtering scheme with lower FC; Figure S5:
Distribution of observed false discovery proportion (FDP) given a fixed FDR is 0.05 (red dotted line)
given “or” filtering scheme and lower FC; Figure S6: Distribution of power over 50 simulation data
sets based on Reyfman et al.; Figure S7: Distribution of AUROC and PRAUC over 50 simulation
data sets based on Reyfman et al. given FC = 1.4 and lowly-expressed genes were excluded by “or”
filtering scheme; Figure S8: Heatmaps of 12 DE methods in a variety of overall performance metrics;
Figure S9: Diagnostic plots to compare simulation with real data using different simulation methods;
Figure S10: Boxplot of elapsed time in logarithmic scale at base 10 based on Reyfman et al. when
FC = 1.5; Table S1: Enriched GO terms for cell type EN-L2-3 (Schirmer data); Table S2: Enriched
GO terms for cell type EN-L4 (Schirmer data); Table S3: Enriched GO terms for cell type EN-L5-6
(Schirmer data); Table S4: Enriched GO terms for cell type Alveolar-macrophages (Reyfman data);
Table S5: Enriched GO terms for cell type AT2 (Reyfman data).
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