Skip to main content
. 2022 May 25;8(6):151. doi: 10.3390/jimaging8060151

Table 3.

Random forest classification results (the definition of the features can be found in Table A1 and Table A2 in the Appendix A).

Classification Method Feature Selection
Algorithm
Accu. Sensi. Speci. Preci. Best Features Sub-Set
Random
Forest
SFFS 0.8889 0.8947 0.8824 0.894 8 attributes{f2, f9, f16, f25, f27, f28, f34, f38}
SBFS 0.9167 0.9444 0.888 0.894 10 attributes{f1, f2, f14, f18, f21, f24, f27, f28, f32, f35}