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ABSTRACT
Owing to the dominant functions of mitochondria in multiple cellular metabolisms and distinct types 
of regulated cell death, maintaining a functional mitochondrial network is fundamental for the 
cellular homeostasis and body fitness in response to physiological adaptations and stressed condi-
tions. The process of mitophagy, in which the dysfunctional or superfluous mitochondria are 
selectively engulfed by autophagosome and subsequently degraded in lysosome, has been well 
formulated as one of the major mechanisms for mitochondrial quality control. To date, the PINK1- 
PRKN-dependent and receptors (including proteins and lipids)-dependent pathways have been 
characterized to determine the mitophagy in mammalian cells. The mitophagy is highly responsive 
to the dynamics of endogenous metabolites, including iron-, calcium-, glycolysis-TCA-, NAD+-, amino 
acids-, fatty acids-, and cAMP-associated metabolites. Herein, we summarize the recent advances 
toward the molecular details of mitophagy regulation in mammalian cells. We also highlight the key 
regulations of mammalian mitophagy by endogenous metabolites, shed new light on the bidirec-
tional interplay between mitophagy and cellular metabolisms, with attempting to provide a perspec-
tive insight into the nutritional intervention of metabolic disorders with mitophagy deficit.
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Introduction

Mitochondria are critical organelles determining a myriad of 
cellular metabolisms, including but not limited to the ATP 
production via electron transport coupled with oxidative 
phosphorylation, tricarboxylic acid (TCA) cycle, fatty acid β- 
oxidation, amino acid synthesis, calcium homeostasis and 
iron metabolism (bio-synthesis of heme and iron-sulfur clus-
ter). Besides, from last two decades, it has been well 

understood that mitochondria serve as the signaling hubs to 
orchestrate intra-cellular and extra-cellular signals and com-
municate to other cellular compartments to fulfill the diverse 
functions under homeostatic and stressed conditions [1,2]. 
Moreover, mitochondria produce overwhelming majority of 
reactive oxygen species (ROS) as the inevitable by-product 
during the electron transport, while themself are particularly 
vulnerable to the ROS mediated oxidative damage [3]. 
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Mitochondria also dominate programmed cell death mainly 
by tuning the release of pro-apoptotic molecules, especially 
CYCS (cytochrome c, somatic) and DIABLO (diablo IAP- 
binding mitochondrial protein) [4,5]. The mitochondria asso-
ciated BCL2 family, categorized into three sub-families 
including the anti-apoptotic proteins, the BH3-only pro- 
apoptotic proteins, and the pore-forming apoptotic proteins, 
coordinates the mitochondrial membrane permeabilization 
and the release of these apoptogenic factors [6]. The compro-
mised mitochondria would also drive other forms of regulated 
cell death, including necroptosis, ferroptosis and pyroptosis 
[7]. Moreover, the accumulation of dysfunctional mitochon-
dria has been widely documented to associate with the patho-
genesis of multiple human diseases, especially the 
neurodegenerative diseases, autoimmune disorders and can-
cers [8]. Therefore, maintenance of a functional mitochondria 
pool is fundamental for the cellular homeostasis and body 
fitness.

Mitochondrial quality control is precisely achieved by dis-
tinct mechanisms. Mitochondrially resident proteases and 
chaperons determine the integrity of mitochondrial proteome 
by hydrolyzing and unfolding-refolding the misfolded pro-
teins, respectively [9,10]. Mitochondrial unfolded protein 
response (UPRmt), referring to the sufficient accumulation of 
misfolded mitochondrial proteins driving a retrograde signal-
ing to activate the transcriptional response and facilitate the 
expression of mitochondrial chaperones and proteases, could 
reduce the mitochondrial unfolded proteins and promote 
recovery of mitochondrial proteome [11]. Mitochondria are 
highly dynamic organelles, with constant fusion and fission, 
which is conferred by the fusion proteins MFNs (mitofusins), 
OPA1 (OPA1 mitochondrial dynamin like GTPase) and fis-
sion protein DNM1L (dynamin 1 like), as well as its mito-
chondrially localized receptors. Mitochondrial fusion 
neutralizes the damaged mitochondrial components, while 
mitochondrial fission could effectively segregate the damaged 
mitochondria from the whole mitochondrial architectural net-
work for the subsequent degradation [12]. Furthermore, mito-
chondria-derived vesicles (MDVs), generated through the 
selective incorporation of mitochondrial outer membrane, 
inner membrane, or matrix content, subsequently deliver 
specific mitochondrial contents to late endosome or multi-
vesicular bodies for degradation, are recognized as a novel 
avenue for mitochondrial quality control at sub-organelle 
level [13,14]. Increasing evidence has emerged that mito-
phagy, a selective recognition and degradation of mitochon-
dria by autophagic machinery, is regarded as one of the major 
mechanisms for mitochondrial quality control [15,16].

Pioneering studies reported the focal cytoplasmic degrada-
tion of mitochondria from 1950s to 1970s. Specifically, 
Hruban and colleagues observed that mitochondria are bro-
ken down within the cytoplasmic inclusions in 1963 [17]. In 
1979, Greene and colleagues observed a selective degeneration 
of mitochondria associates with electron-lucent mitochondrial 
inclusions in proximal renal tubular epithelium induced by 
hyperbaric oxygen exposure [18]. These early studies based on 
electron microscopy groundbreakingly proposed the concepts 
of autophagosome maturation and selective autophagy. The 
early history of mitophagy research was comprehensively 

summarized [19]. In 2002, the phenomenon was reemerged. 
A complete removal of mitochondria was observed in cul-
tured primary sympathetic neurons during apoptosis induc-
tion in the presence of CASPs (caspases) inhibitors [20]. In 
2005, the term “mitophagy” was first proposed to describe the 
selective mitochondrial autophagy by John Lemasters [21]. 
Since then, increasing studies focused on this booming field 
and several regulatory pathways including the PINK1 (PTEN 
induced kinase 1)-PRKN/PARKIN (parkin RBR E3 ubiquitin 
protein ligase)-dependent mitophagy and the receptors 
(including protein and lipid mitophagy receptors)-mediated 
mitophagy have been deciphered. Furthermore, defects in 
mitophagy have been evidenced to result in the accumulation 
of damaged mitochondria, which is implicated in several dis-
ease pathogenesis [22]. Herein, we critically summarize the 
major regulatory circuits of mitophagy in mammalian cells, 
with a focus on dissecting the mitophagy regulation by endo-
genous metabolites, in an attempt to provide a perspective 
insight into the nutritional intervention of metabolic disor-
ders with mitophagy deficit.

Major mitophagy pathways

Macroautophagy/autophagy refers to a cellular catabolic pro-
cess, sequentially manifested by the formation of sequestering 
compartments, phagophores, that engulf the to-be-degraded 
cellular components, including proteins, protein aggregates, 
lipid, organelles, invading pathogens and even nuclear lamina. 
The phagophores then mature into double-membraned vesi-
cles (autophagosomes) that fuse with an endosome and/or 
lysosome, resulting in subsequent degradation of the engulfed 
components by the lysosomal hydrolases [23]. Mitophagy is a 
specialized form of autophagy to selectively recognize and 
remove the damaged or superfluous mitochondria, sharing 
fundamental features and core proteins with general autopha-
gy. The specificity of the phagophore engulfing mitochondria 
is achieved by distinct mechanisms. To data, both the PINK1- 
PRKN-dependent mitophagy and receptor-mediated mito-
phagy have been elucidated in mammalian cells.

PINK1-PRKN axis-dependent mitophagy

Early studies using loss-of-function mutants of Drosophila sug-
gested that both the mutations in Pink1 (encoding a homolog of 
the serine-threonine kinase PINK1) and park (encoding a 
homolog of the E3 ubiquitin ligase PRKN), two major genes 
associated with Parkinson disease, result in disturbed mitochon-
drial morphology and declined mitochondrial functionalities, 
accompanied with locomotor deficits, muscle degeneration, 
male sterility and neuronal loss [24,25]. The transgenic expres-
sion of park markedly ameliorates mitochondrial functionalities 
and restores the neuronal fitness at the genetic background with 
Pink1 loss of function, but not vice versa, suggesting that PRKN 
functions downstream of PINK1 to determine the mitochon-
drial integrity [24,26].

The initial understanding of the PINK1-PRKN axis- 
dependent mitophagy was originated by Dr. Richard Youle 
and colleagues. In 2008, they reported that PRKN is recruited 
to the outer membrane of depolarized mitochondria, where it 
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facilitates the autophagic degradation of these damaged mito-
chondria [27]. This groundbreaking study boosted up the 
mitophagy research. Since then, the regulatory circuit of the 
PINK1-PRKN axis-dependent mitophagy has been well 
understood (Figure 1). Under basal condition, PINK1 is 
imported into the mitochondria, where it is cleaved by the 
mitochondrial rhomboid protease PARL (presenilin asso-
ciated rhomboid like) [28,29]. The processed product is 
released into the cytosol and constitutively degraded by the 
E3 ubiquitin ligases UBR1, UBR2 and UBR4 [30]. During 
mitochondrial depolarization, PINK1 escapes from PARL 
proteolytic cleavage and trans-localizes onto the mitochon-
drial outer membrane [31,32]. On the outer membrane, 
PINK1 forms a dimer and associates with the TOMM (trans-
locase of outer mitochondrial membrane) complex to reduce 
the mitochondrial import of newly synthesized proteins 
[31,33]. The TOMM complex guides the correct positioning 
of dimeric PINK1 and facilitates its kinase activity through 
supporting its auto-phosphorylation, which is required for 
the PRKN recruitment and mitophagy execution [32]. 
Besides, TOMM7 [34,35], IMMT/Mitofilin/MIC60 (inner 
membrane mitochondrial protein) [36] and mitochondrial 
protease OMA1 [34] are involved in regulating PINK1 stabi-
lization on the outer membrane [37]. On one hand, PINK1 
phosphorylates the preexisting ubiquitin at Ser65 on the 
mitochondrial surface [38,39]. On the other hand, the phos-
phorylated ubiquitin could be captured by PRKN, inspiring 
PRKN phosphorylation at Ser65 in the ubiquitin-like domain 
by PINK1 [40–42]. Phosphorylation at Ser65 and binding to 
the phosphorylated ubiquitin facilitate the conformational 
change of the ubiquitin-like domain and relieve of auto- 
inhibition [43–45], leading to PRKN activation to ubiquiti-
nate mitochondrial proteins on the outer membrane, which 

serves as a “eat-me” signaling for ultimate mitophagy [46,47]. 
Furthermore, phosphorylated MFN2 [48] and VDAC1 (vol-
tage dependent anion channel 1) [49] are also important for 
PRKN translocation. PINK1 and the phosphorylated ubiqui-
tin also drive the mitochondrial recruitment of autophagy 
receptor proteins including CALCOCO2/NDP52 (calcium 
binding and coiled-coil domain 2) and OPTN (optineurin), 
which facilitate mitochondria engulfed by autophagosome 
through direct interaction with MAP1LC3 (microtubule asso-
ciated protein 1 light chain 3) [50,51].

According to the mechanistic studies based on Drosophila, 
mammalian cells, mice and epidemiological analysis of 
Parkinson disease, genetic variations of PINK1 and PRKN are 
strongly associated with the pathogenesis of Parkinson disease, 
in which the mitochondrial dysfunction is primarily formulated 
[52]. However, it is still not certain whether this is due to their 
functions in mitophagy or others, as basal mammalian mito-
phagy could occur independently of PINK1 or PRKN in a 
variety of tissues including brain [53,54]. Moreover, PINK1 
and PRKN have been reported to engage in a wide range of 
mitochondrial behaviors. PINK1 could regulate mitochondrial 
mobility by phosphorylating and promoting the proteasomal 
degradation of RHOT/MIRO (ras homolog family member T) 
in a PRKN-dependent manner [55,56]. PRKN sustains 
PPARGC1A (PPARG coactivator 1 alpha) expression and sup-
ports mitochondrial biogenesis by ubiquitinating and promot-
ing the proteasomal degradation of ZNF746/PARIS (zinc finger 
protein 746), a transcriptional repressor of PPARGC1A [57,58]. 
Knockdown of PINK1 reduces the enzymatic activities of sev-
eral respiratory chain complexes [59,60]. Additionally, both 
Pink1 and Prkn genetically interact with multiple mitochondrial 
dynamics associated genes, including Dnm1l, Mfn and Opa1 
[61–63]. Recently, Han et al. reported that PINK1 could 

Figure 1. The regulatory circuit of PINK1-PRKN-mediated mitophagy. PINK1 is imported into healthy mitochondria and cleaved by mitochondrial protease, leading to 
a quick degradation. During mitochondrial depolarization, PINK1 is stabilized and translocated onto the outer mitochondrial membrane, where it recruits and 
phosphorylates PRKN, phosphorylates the ubiquitin molecules, leading to the enzymatic activation of PRKN. PRKN ubiquitinates numerous mitochondrial outer 
membrane proteins. These signals lead to autophagy receptors OPTN and CALCOCO2 translocating onto mitochondria for the selective recognition of mitochondria 
by the phagophore membrane.
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phosphorylate DNM1L at S616 to regulate mitochondrial fis-
sion [64]. Other studies elaborated that PINK1 and PRKN could 
modulate mitochondrial PRKA/PKA (protein kinase AMP- 
activated) signaling [65,66], mitochondrial calcium homeostasis 
[67,68] and mitochondrial chaperone [69]. Therefore, further 
studies are needed to dissect the exact physio-pathological func-
tions of the PINK1-PRKN-mediated mitophagy in Parkinson 
disease.

Receptor-mediated mitophagy
The specific sequestration of the certain cargo for selective 
autophagy is mainly achieved by autophagy receptors. The 
autophagy receptors always target the to-be-degraded cargo 
(damaged organelles, protein aggregates or invading patho-
gens) and tether them to the phagophore membrane by inter-
acting with MAP1LC3 members (including MAP1LC3A, 
MAP1LC3B, MAP1LC3B2 and MAP1LC3C) or the homologs 
(GABARAP, GABARAPL1 and GABARAPL2) via an LC3- 
interacting region (LIR) motif [70]. The canonical LIR is 
composed of a (W/F/Y)XX(L/I/V) core motif that interacts 
with two hydrophobic pockets of the LIR docking site in 
MAP1LC3 and the homologs anchored in the phagophore 
membrane (Figure 2) [71]. In yeast, Atg32 was identified as 
a selective mitophagy receptor by two independent groups 
[72,73]. In mammalian cells, more than 10 mitophagy recep-
tors have been identified for the specific sequestration of 
mitochondria for mitophagy program. Emerging evidence 
shows that these different receptors sense distinct stress sig-
nals to coordinate the mitochondrial quality control.

FUNDC1-mediated mitophagy
FUNDC1 (FUN14 domain containing 1) is a mitochondrial 
outer membrane protein, with its N terminus exposed to the 
cytosol and C terminus inserted into the mitochondrial outer 
membrane. In the N terminus, FUNDC1 possesses a canoni-
cal LIR motif (Y18XXL21) (Figure 2). Dependent on this LIR, 
FUNDC1 could directly interact with MAP1LC3 and homo-
logs, and thus drive mitophagy. Mutants in the LIR disrupt 
the FUNDC1-MAP1LC3 interaction and significantly prevent 
hypoxia-induced mitophagy [74]. The mitophagy-driving 
activity of FUNDC1 is determined by several dynamic phos-
phorylation and dephosphorylation. Specifically, SRC (SRC 
proto-oncogene, non-receptor tyrosine kinase) kinase and 
CSNK2 (casein kinase 2) phosphorylate FUNDC1 at Tyr18 
(exactly in the LIR motif) and Ser13, respectively, which 
restrain the FUNDC1-MAP1LC3 interaction. 
Dephosphorylation of FUNDC1 at Ser13 by the mitochon-
drial phosphatase PGAM5 strengthens the FUNDC1- 
MAP1LC3 interaction and facilitates the FUNDC1- 
dependent mitophagy [74–76]. BCL2L1 (BCL2 like 1), an 
anti-apoptotic member in BCL2 family, directly binds to 
PGAM5 phosphatase, limits the phosphatase activity, and 
thus maintains the FUNDC1 phosphorylation at Ser13 to 
antagonize the FUNDC1-dependent mitophagy [77,78]. 
Besides, ULK1 (unc-51 like autophagy activating kinase 1), 
an upstream kinase for autophagy initiation, phosphorylates 
FUNDC1 at Ser17, which expedites the FUNDC1-MAP1LC3 
interaction and is required for the FUNDC1-dependent mito-
phagy [79]. It is still elusive but of great interests that why 
FUNDC1 needs these distinct phosphorylated regulations, 

Figure 2. Major receptors mediated mitophagy. (A) Mitophagy receptors are mainly localized on mitochondrial outer membrane. The mitochondrial inner membrane 
resident cardiolipin could transfer to the outer membrane and bind to MAP1LC3 directly, while the rupture of outer membrane leads to the exposure of PHB2, 
leading to the PHB2-MAP1LC3 interaction to promote the PINK1-PRKN-mediated mitophagy. (B) Domain architectures of major protein mitophagy receptors. (C) 
Protein mitophagy receptors harbor LIR regions and directly bind to MAP1LC3 and homologs to initiate mitophagy.
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and why phosphorylation at different (but adjacent) sites by 
the corresponding kinases or phosphatases leads to comple-
tely opposite MAP1LC3-binding capacity. Furthermore, it is 
also unclear which phosphatases are involved in the depho-
sphorylation of FUNDC1 at Tyr18 and Ser17. Additionally, 
the mitochondrially resident E3 ligase MARCHF5 (membrane 
associated ring-CH-type finger 5) could directly interact with 
FUNDC1 and catalyze its ubiquitination at Lys119 for the 
subsequent proteasomal degradation, thus desensitize 
hypoxia-induced mitophagy (Figure 3) [80]. FUNDC1 is evo-
lutionally conserved. Recently, it has been reported that the 
FUNDC1 ortholog, FNDC-1 and Fundc1, similarly serve as 
mitophagy receptor and mediate mitophagy in C. elegans and 
D. rerio, respectively [81–83].

FUNDC1-mediated mitophagy is also finely tuned at tran-
scriptional and post-transcriptional levels (Figure 3). 
Specifically, our recent study reported that NRF1 (nuclear 
respiratory factor 1) and PPARGC1A, the key transcriptional 
factor and co-factor involved in mitochondrial biogenesis, 
transcriptionally up-regulate the FUNDC1 expression and 
expedite mitophagy [84], which highlights the coordination 
of mitochondrial integrity by coupling mitophagy and mito-
chondrial biogenesis via PPARGC1A-NRF1-FUNDC1 axis 
[85]. MIR137 (microRNA 137), a hypoxia down-regulated 
microRNA, could target 3′ UTR of FUNDC1 mRNA and 
significantly reduce the FUNDC1 protein level, leading to 
impaired mitophagy without affecting general autophagy [86].

Chen and colleagues reported that FUNDC1 could interact 
with the mitochondrial dynamics proteins OPA1 and 
DNM1L, thus coordinate both mitochondrial fusion and fis-
sion. Mitochondrial stress drives the disassembly of the 
FUNDC1-OPA1 complex while strengthens the DNM1L 
recruitment onto mitochondria by enhancing the FUNDC1- 

DNM1L interaction. The dephosphorylation at Ser13 is 
important for this switch from FUNDC1-OPA1 interaction 
to FUNDC1-DNM1L interaction, thus triggers the mitochon-
drial network disruption and mitophagy initiation [87]. 
Mitochondria always connect with endoplasmic reticulum 
(ER) by the so-called mitochondria-associated membrane 
(MAM) structure. MAM is important for rapid exchange of 
biological molecules between mitochondria and ER to fulfill 
the diverse signaling transduction [88]. Moreover, MAM pro-
vides a unique location for DNM1L recruitment and mito-
chondrial fission [89,90]. It has been reported that MAM 
involves in the autophagosome and specific mitophagosome 
formation [91,92]. Two independent studies reported that 
FUNDC1 is enriched in MAM structure, and binds to the 
MAM components CANX (calnexin) and ITPR2 (inositol 
1,4,5-trisphosphate receptor type 2) [93,94], which is func-
tionally important for mitochondrial fragmentation and mito-
phagy initiation (Figure 3).

By using fundc1 knockout mice, increasing evidence is 
emerging that the FUNDC1-dependent mitophagy is essential 
for mitochondrial quality control, while defect in this pathway 
leads to diverse disease pathogenesis. On one hand, FUNDC1- 
mediated mitophagy in brown fat tissue is essential for adap-
tive thermogenesis by coordinating mitophagy and mitochon-
drial biogenesis [84]. FUNDC1-mediated mitophagy in white 
adipose tissue is important for restraining high-fat diet 
induced obesity and insulin resistance. Deficiency in this 
mitophagy by specific deletion of Fundc1 in adipose tissue 
exacerbates the accumulation of dysfunctional mitochondria 
in adipocytes, leading to aggravated oxidative stress, apparent 
macrophages infiltration and abominable metabolic disorder 
[95]. Muscle-specific deletion of Fundc1 also impairs the 
mitochondrial function, however antagonizes the high-fat 

Figure 3. Regulatory circuit of FUNDC1-mediated mitophagy. FUNDC1 is phosphorylated by CSNK2, ULK1 and SRC kinases at Ser13, Ser17 and Tyr18, respectively. 
The Ser13 is dephosphorylated by mitochondrial phosphatase PGAM5, which is finely tuned by BCL2L1. The phosphorylation at Ser17 while dephosphorylation at 
Ser13 and Tyr18 under mitochondrial stresses (especially hypoxia) enhances the FUNDC1-MAP1LC3 interaction and stimulates mitophagy induction. The mitochon-
drial E3 ligase MARCHF5 could ubiquitinate FUNDC1 at Lys118 for its proteasomal degradation and thus desensitize hypoxia induced mitophagy. FUNDC1 is also 
tuned by transcriptional factor NRF1-PPARGC1A and MIR137 at transcriptional and post-transcriptional level, respectively. FUNDC1 is enriched in MAM structure by 
interacting with ER resident CANX and ITPR2, where it promotes the release of ER Ca2+ to mitochondria and cytosol. Under mitochondrial stresses, FUNDC1 
disassociates with OPA1 and CANX, while associates with DNM1L at MAMs to facilitate mitochondrial fission and mitophagy.
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diet-induced obesity and insulin resistance [96]. It is still 
unknown why FUNDC1 in adipose tissue and skeletal muscle 
possesses completely opposite impact on metabolic homeos-
tasis in mice, although in both tissues FUNDC1-mediated 
mitophagy is important for the removal of damaged mito-
chondria. On the other hand, it has been revealed that the 
FUNDC1-mediated mitophagy is indispensable for tissue pro-
tection from injury and toxic insults (especially the ischemia- 
reperfusion injury) in brain [97], heart [93,98–100], liver 
[101], kidney [102], and intestine [103]. Furthermore, 
FUNDC1 is regarded as a tumor suppressor and defect in 
this mitophagy accelerates the tumorigenesis of hepatocellular 
carcinoma by hyperactivating inflammasome and excessively 
secreting pro-inflammatory cytokines [104].

BNIP3- and BNIP3L-mediated mitophagy
Both BNIP3 (BCL2 interacting protein 3) and BNIP3L/NIX 
(BCL2 interacting protein 3 like) were originally identified as 
BH3-only pro-apoptotic proteins integrated in the mitochon-
drial outer membrane via C-terminal transmembrane 
domain, although their BH3 domains are poorly conserved 
[105]. BNIP3 harbors a canonical LIR motif essential for the 
interaction with MAP1LC3 and mitophagy induction (Figure 
2) [106–108]. The phosphorylation of BNIP3 at Ser17 and 
Ser24 flanking the LIR motif enhances the BNIP3-MAP1LC3 
interaction and facilitates mitophagy [109]. However, the 
detailed regulatory mechanism is still vague.

BNIP3L is essential for the maturation of red blood cells. 
Bnip3l ablation results in the retardation of erythroid cells 
differentiation, leading to anemia and splenomegaly in mice 
[110]. The following studies revealed that mitochondria are 
retained during the maturation of reticulocytes in bnip3l null 
mice [111,112]. Structurally, BNIP3L contains a LIR motif in 
the N terminus toward cytoplasm. Through this LIR, BNIP3L 
could directly interact with GABARAP and MAP1LC3 to 
initiate mitophagy (Figure 2) [113,114]. Similarly, BNIP3L- 
mediated mitophagy can be regulated by dynamic phosphory-
lated modifications. PRKA kinase phosphorylates BNIP3L at 
Ser212 leading to the translocation of BNIP3L from mito-
chondria and sarcoplasmic reticulum to cytosol, subsequently 
impairing mitophagy program [115]. The phosphorylation of 
Ser34 and Ser35 adjacent to the LIR motif strongly enhances 
the interaction between BNIP3L and MAP1LC3 homologs, 
thus facilitates the phagophore sequestration of mitochondria 
[116]. Ser81 was reported as another phosphorylable residue. 
Phosphorylation at this site reinforces the binding affinity to 
MAP1LC3 family members [117]. Additionally, BNIP3L 
dimerization robustly strengthens the MAP1LC3-BNIP3L 
interaction and subsequently boosts the mitophagy induction 
[118].

Both BNIP3 and BNIP3L are transcriptionally dominated 
by the transcriptional factor HIF1A (hypoxia inducible factor 
1 subunit alpha) [119–121]. The hypoxia-responsive element 
in the promoter region encoding by Bnip3 confers it hypoxia- 
responsive [122]. Alternatively, FOXO3 (forkhead box O3) 
was reported to transcriptionally regulate the expression of 
BNIP3 and BNIP3L [123]. Circadian gene ARNTL (aryl 
hydrocarbon receptor nuclear translocator like) also regulates 
the transcription of BNIP3 via binding to the E-Box element 

within its promoter region, which is important for mitophagy 
induction and sustains the cardiac function [124]. 
Additionally, BNIP3 is also transcriptionally regulated by 
TP53 (tumor protein p53), NFKB1 (nuclear factor kappa B 
subunit 1), and other tumor-relevant transcriptional factors in 
the corresponding circumstances [125]. Furthermore, the 
expression of BNIP3 could be epigenetically suppressed by 
hypermethylation of the promoter region [126,127]. These 
complicated regulations of BNIP3 and BNIP3L suggest a 
regulatory necessity of the BNIP3- and BNIP3L-mediated 
mitophagy in response to distinct physiological adaptions 
and stressed conditions.

Similar to FUNDC1, BNIP3- and BNIP3L-mediated mito-
phagy is important for maintaining the mitochondrial integ-
rity and tissue-protective. Specifically, the HIF1A-BNIP3 and 
HIF1A-BNIP3L axes are critical to protect brain [117,128] 
and kidney [129,130] against ischemia-reperfusion injury. 
On the contrary, Jin and colleagues reported that the BNIP3- 
mediated mitophagy overtly depletes the mitochondria result-
ing in metabolic disorder and aggregating cardiac ischemia- 
reperfusion injury [131]. BNIP3 is proved as a tumor sup-
pressor [125], and loss of BNIP3-mediated mitophagy pro-
motes mammary tumor growth and increases lung metastasis 
by remodeling the cellular metabolism toward the aerobic 
glycolysis [132]. BNIP3 expression also restrains the pancrea-
tic cancer [127] and colorectal cancer [126,133]. However, 
whether the mitophagy-driving activity of BNIP3 is involved 
in these tumor suppressions was not studied. On the contrary, 
BNIP3L-mediated mitophagy may function as a tumor pro-
moter in pancreatic ductal adenocarcinoma through limiting 
the mitochondrial glucose flux and supporting the redox 
regulation. Bnip3l deletion markedly delays the progression 
of pancreatic cancer and improves survival in a murine model 
of pancreatic ductal adenocarcinoma [134]. Hence, it is of 
great interest to further dissect the exact roles of BNIP3- 
and BNIP3L-mediated mitophagy in tissue injury and 
tumorigenesis.

It should not be ignored that both BNIP3 and BNIP3L are 
originally identified as pro-apoptotic proteins. They interact 
with BCL2 and BCL2L1 via the transmembrane domain, 
release BH3-only proteins to interact with BAX or BAK1 
and induce CYCS release, CASPs activation, and cell death. 
It has been assumed that the BNIP3- and BNIP3L-mediated 
mitophagy is cell-protective, while loss of this mitophagy 
would accelerate the cell death [121]. Moreover, BNIP3- and 
BNIP3L-mediated mitophagy and metabolic reprogramming 
regulate the cell fate determination during the differentiation 
of stem cells and de-differentiation of the induced pluripotent 
stem cells [135]. However, it is still unclear whether any 
endogenous metabolites could dominate the cellular fates 
decision toward protective mitophagy, apoptosis, differentia-
tion or de-differentiation by manipulating BNIP3 and 
BNIP3L.

BCL2L13-mediated mitophagy
BCL2L13/BCL-Rambo (BCL2 like 13) was originally identified 
as a pro-apoptotic protein anchored on mitochondrial outer 
membrane with its N terminus exposed to the cytosol and C 
terminus in the intermembrane space [136]. Previous studies 
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reported that BCL2L13 interacts with mitochondrial perme-
ability transition pore (mPTP) components SLC25A4/ANT 
(solute carrier family 25 member 4) and VDAC, thus regulates 
the conformational transformation of mPTP for the release of 
CYCS [137,138]. In 2015, BCL2L13 was nominated as a 
mammalian Atg32 homolog as evidenced by its compensation 
of Atg32 to initiate mitophagy in yeast [139]. The residues 
273–276 constitute a functional LIR to selectively interact with 
MAP1LC3C, GABARAP and GABARAPL1 to promote mito-
phagy in response to mitochondrial depolarization (Figure 2) 
[139,140]. Murakawa and colleagues recently reported that 
BCL2L13 recruits the ULK1 complex to drive mitophagy 
[141]. It has been well documented that BCL2L13 functions 
in multiple physiological processes including development 
and energy metabolism, while its dysregulation is associated 
with several pathological processes including tumorigenesis, 
bacterial infection, cardiovascular diseases and degenerative 
diseases [142]. However, whether BCL2L13-mediated mito-
phagy is engaged in these processes is still unclear.

FKBP8-mediated mitophagy
FKBP8 (FKBP prolyl isomerase 8), a unique member of the 
FK506-binding protein family, is predominantly localized in 
mitochondrial outer membrane. Early studies indicated that 
FKBP8 suppresses apoptosis by recruiting the anti-apoptotic 
proteins BCL2 and BCL2L1 to mitochondria [143]. In addi-
tion, FKBP8 serves as a multifunctional chaperone important 
in hypoxia signaling and MTOR (mechanistic target of rapa-
mycin kinase) pathway [144]. FKBP8 was reported as a 
MAP1LC3-interacting protein. Dependent on its LIR motif 
in the N terminus, FKBP8 can directly bind to MAP1LC3A 
and profoundly induce PRKN-independent mitophagy 
(Figure 2) [145]. A following study revealed that FKBP8 is 
critical for the mitochondrial fragmentation and mitophagy 
induction in response to iron depletion and hypoxia [146]. 
Interestingly, FKBP8 itself escapes from the to-be-degraded 
mitochondria to ER during both the PRKN-mediated mito-
phagy and the FKBP8 ectopic-expression-induced mitophagy. 
This translocation is highly dependent on the basic amino 
acids in its C-terminal signal sequences [145,147]. 
Nevertheless, the detailed regulatory mechanisms and the 
physiological relevance of the FKBP8-mediated mitophagy 
are far from understood.

PHB2-mediated mitophagy
PHB2 (prohibitin 2) is a multifunctional protein possessing 
multiple localizations. Notably, PHB2 in mitochondrial 
inner membrane functions as a chaperone to stabilize the 
mitochondrial respiratory complexes and support the mito-
chondrial bioenergetics. In the nucleus, PHB2 was reported 
to modulate several transcriptional factors involved in the 
cell cycle regulation. PHB2 also localizes on the plasma 
membrane to modulate the cell signaling [148]. In 2017, 
Wei and colleagues reported that PHB2 harbors a functional 
LIR motif and could interact with MAP1LC3, which is 
functionally important for the PRKN-mediated mitophagy 
in mammalian cells and C. elegans when the mitochondrial 
outer membrane is ruptured (Figure 2). Thus, PHB2 is the 
first protein mitophagy receptor identified in the 

mitochondrial inner membrane. This enlightening study 
revealed a novel mitophagy paradigm, in which mitochon-
drial inner membrane performs a key role in cargo recogni-
tion for mitophagy [149]. However, a recent study 
challenged this hypothesis and put forward an alternative 
proposal. Yan et. al found that the LIR motif is dispensable 
for PHB2-mediated mitophagy. PHB2 destabilizes and nega-
tively regulates the enzymatic activity of PARL, the mito-
chondrial protease resident in the inner membrane essential 
for PINK1 hydrolysis. In this regard, PHB2 enhances PINK1 
recruiting onto mitochondrial outer membrane and facili-
tates the PINK1-PRKN-mediated mitophagy [150]. 
Therefore, further investigations are needed to explore the 
detailed regulatory circuit and physiological significance of 
PHB2-mediated mitophagy.

Mitochondrial lipid as mitophagy receptors
Besides to these mitochondrial proteins functioning as mito-
phagy receptors, mitochondrial lipid molecules, especially 
cardiolipin and ceramide, similarly serve as mitophagy recep-
tors to mediate the specific sequestration of damaged mito-
chondria by autophagosome (Figure 2). Cardiolipin is a 
unique phospholipid exclusively located in the mitochondrial 
inner membrane, where it supports proper cristae folding, 
respiratory chain and ATP synthesis [151]. Upon pro- 
mitophagy stresses, cardiolipin externalizes to the mitochon-
drial surface, where it binds to MAP1LC3 for the subsequent 
phagophore recognition of mitochondria. Mechanistically, 
Arg10 and Arg11 residues in MAP1LC3 constitute the cardi-
olipin-binding pocket responsible for the MAP1LC3- 
cardiolipin interaction [152,153]. NME4 (NME/NM23 
nucleoside diphosphate kinase 4), a hexameric protein resi-
dent in the mitochondrial intermembrane space, enables the 
cardiolipin externalization and is important for mitophagy 
initiation [154]. A recent study reported that pro-IL1A (inter-
leukin 1 alpha) is translocating onto mitochondria, where it 
directly interacts with cardiolipin through a similar motif 
found in MAP1LC3 for interaction with cardiolipin. This pro- 
IL1A-cardiolipin interaction competitively disrupts the 
MAP1LC3-cardiolipin interaction, leading to mitophagy 
defect, damaged mitochondria accumulation, and NLRP3 
inflammasome hyper-activation. This study confirms the 
mitophagy-driving activity of cardiolipin [155]. In addition, 
ceramide, a group of bioactive sphingolipids present in the 
bio-membrane, was also reported as a novel mitophagy recep-
tor. Supplementation of a ceramide analog, or enhancing the 
generation of endogenous C18-ceramide by ectopic expression 
of CERS1 (ceramide synthase 1), triggers lethal mitophagy in 
cancer cells. The C18-ceramide can localize on mitochondria, 
where it binds to MAP1LC3 and mediates the phagophore 
engulfing mitochondria for mitophagy [156,157]. These find-
ings collectively define novel mitophagy pathways mediated 
by the phospholipid components of mitochondrial 
membrane.

Other mitophagy receptors
Various studies characterized some other mitochondrial pro-
teins as selective receptors for mitophagy in response to 
diverse stresses, including DISC1 (DISC1 scaffold protein) 
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[158], MCL1 [159], AMBRA1 (autophagy and beclin 1 reg-
ulator 1) [160] and ATAD3B (ATPase family AAA domain 
containing 3B) [161]. The canonical xenophagy receptors 
CALCOCO2 and OPTN are also engaged in the PINK1- 
PRKN-mediated mitophagy as discussed above (Figure 2).

It has been widely documented that different mitophagy 
pathways sense different mitochondrial stresses to initiate 
mitophagy for mitochondrial quality and quantity control in 
distinct circumstances [15]. Recent studies have revealed the 
cross-talk between different mitophagy pathways for the coor-
dination of mitophagy. The complicated but precise regula-
tions ensure a proper mitophagy activity to maintain the 
cellular homeostasis.

Endogenous metabolites determine mitophagy

As the fundamental compartments for cellular metabolisms, 
mitochondria are highly sensitive to the intracellular metabolic 
programs and extracellular nutrients availabilities. 
Mitochondrial behaviors including morphological dynamics, 
mitochondrial metabolism and mitochondrial retrograde sig-
naling are finely tuned by the physiological and pathological 
programs. Additionally, mitophagy, the major mechanism for 
mitochondrial quality and quantity control, is tightly manipu-
lated by certain endogenous metabolites. It has been well char-
acterized that the mitochondrial inevitable by-product ROS 
could facilitate mitophagy via distinct mechanisms, which has 
been comprehensively summarized in a recent review article 
[162]. Specifically, Dagda and colleagues reported that the loss 
of PINK1 increases the mitochondrial superoxide production 
and elicits oxidative stress, which are critically important for 
the coordination of mitophagy and mitochondrial dynamics 
[163]. Other studies suggested that the generation of mitochon-
drial ROS also initiates the PINK1-PRKN-dependent mito-
phagy, and this mitophagy could be abolished by expression 
of the mitochondrial antioxidant proteins [164]. The decline in 
ATP production due to certain mitochondrial stresses could 
drive mitophagy through activation of AMP-activated protein 
kinase (AMPK) signaling pathway [165]. Furthermore, other 
cellular metabolites associated with iron-, calcium-, glycolysis- 
TCA-, nicotinamide adenine dinucleotide (NAD)+-, amino 
acids-, fatty acids-, and cAMP-metabolism, also modulate 
mitophagy in corresponding circumstances.

Iron metabolites and mitophagy

Mitochondria provide the center compartment for cellular 
iron metabolism. The cytosolic iron is imported into mito-
chondrial matrix via the iron transporters SLC25A37/MFRN1 
in erythroid cells and SLC25A28/MFRN2 in non-erythroid 
cells [166]. Mitochondrial iron could be safely sequestered by 
FTMT (ferritin mitochondrial), or directly utilized for synth-
esis of heme and iron-sulfur cluster (ISC), two major iron- 
containing molecules required for a number of enzymes 
[167]. Iron deprivation has been well documented to trigger 
mitophagy in different models. By utilizing a chemical screen, 
iron chelator deferiprone (DFP) was nominated as a potent 
mitophagy inducer in U2OS osteosarcoma and SH-SY5Y 
neuroblastoma cells. The exposure of DFP declines the 

mitochondrial respiration and drives mitophagy induction 
independent on PINK1 and PRKN, leading to the metabolic 
reprogramming toward glycolysis [168]. DFP also elevates the 
expression of FTMT via HIF1A-SP1 (Sp1 transcription fac-
tor) axis and results in the translocation of FTMT precursor 
on the mitochondrial outer membrane, where FTMT precur-
sor specifically interacts with NCOA4 (nuclear receptor coac-
tivator 4, an autophagic receptor for ferritinophagy selectively 
degrading ferritin for iron turnover [169]) and initiates mito-
phagy [170]. Additionally, iron depletion was also reported to 
trigger mitophagy in pathogenic yeast Candida glabrata 
dependent on Atg32 homolog [171], and in C. elegans depen-
dent on pdr-1/PRKN and dct-1/BNIP3 [172]. Specifically, 
pyoverdine, an iron-cheatable siderophore derived from bac-
terium Pseudomonas aeruginosa, disrupts the mitochondrial 
iron homeostasis and triggers mitophagy in the host C. ele-
gans [173]. Taken together, these studies enlighten a crosstalk 
between mitophagy and iron homeostasis.

Recently, our group revealed a fundamental role of mito-
chondrial ISC assembly in determining mitophagy (Figure 4). 
RNAi screen identified that the silence of mitochondrial genes 
involved in ISC assembly triggers mitophagy in a FUNDC1- 
dependent manner. Mechanistically, ISC supports the aconi-
tase activity of ACO1 (aconitase 1), while defective ISC bio- 
synthesis switches ACO1 to ISC-free IRP1 (iron regulatory 
protein 1) apoprotein, which is then binding to the newly 
identified iron regulatory element (IRE) in the 5ʹUTR of 
BCL2L1 mRNA. IRP1 apoprotein binding leads to the transla-
tional repression of BCL2L1, triggering FUNDC1 depho-
sphorylation and mitophagy initiation by releasing the 
PGAM5 phosphatase [174]. This study enlightens a novel 
regulatory circuit comprising ACO1/IRP1-BCL2L1-PGAM5- 
FUNDC1 axis in determining mitophagy in response to iron 
stress and sheds new light on the mitophagy-restraining activ-
ity of ISC by supporting BCL2L1 translation. Similarly, a 
previous study revealed that the silence of FXN (frataxin), 
one of the most significant mitochondrial proteins involved 
in ISC bio-synthesis, also drives mitophagy program both in 
mammalian cells and C. elegans [172].

Hemin facilitates mitophagy in a BNIP3L-dependent man-
ner in human chronic myeloid leukemia cell line K562 [175]. 
Knockdown of ALAS2 (5ʹ-aminolevulinate synthase 2), the 
rate-limiting enzyme catalyzing heme synthesis, downregu-
lates the expression of BNIP3L [176]. HMOX1 (heme oxyge-
nase 1) is the stress-responsive enzyme catalyzing the 
degradation of heme and yielding biliverdin, carbon monox-
ide (CO) and ferrous iron. It was reported that HMOX1 is 
mitochondria-protective by maintaining the expression of 
PINK1 and PRKN [177,178]. CO is an endogenous gaseous 
molecule conferring protection against cellular stress at dis-
tinct aspects [179]. CO inhalation increases the expression of 
PINK1 and PRKN, leading to both mitophagy and mitochon-
drial biogenesis to maintain the mitochondrial homeostasis in 
cultured hepatocytes in vitro and in liver tissue in vivo [180]. 
However, the physiological role of endogenous CO in mito-
phagy is still unclear.

Collectively, the emerging evidence has revealed the tight 
communication between iron metabolism and mitophagy. 
As dozens of mitochondrial proteins possess heme or ISC 
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(or both) as the essential co-factors, it is not unexpected 
that iron deprivation and defective ISC assembly could 
disrupt the mitochondrial architecture, compromise mito-
chondrial functionalities and drive mitophagy. 
Furthermore, disrupted iron homeostasis (both iron deposi-
tion and iron deficiency) and abnormal iron metabolism 
have been widely reported to strongly associate with diverse 
disease pathogenesis, during which mitochondrial dysfunc-
tion is primarily formulated [181]. Therefore, it is of great 
clinical importance to explore the exact relevance of mito-
phagy and iron metabolism in the pathogenesis of these 
human diseases.

Ca2+ and mitophagy

Calcium ion (Ca2+) is one of the most versatile signal mole-
cules. Mitochondria serve as important regulators of cellular 
Ca2+. The appropriate mitochondrial Ca2+ facilitates mito-
chondrial bioenergetics by sustaining the TCA activity 
through supporting several fundamental enzymes, including 
pyruvate dehydrogenase, isocitrate dehydrogenase and α- 
ketoglutarate dehydrogenase. However, the uncontrolled 
increase in cytoplasmic Ca2+ and mitochondrial Ca2+ could 
drive cell death. Specifically, prolonged mitochondrial Ca2+ 

overload triggers the opening of mPTP, leading to the release 
of pro-apoptotic molecules and activation of downstream 
CASPs [182]. Mitochondrial outer membrane is permeable 
to solutes and ions, while Ca2+ across the inner membrane 
is highly regulated. Through the VDACs in the outer mem-
brane, MCU (mitochondrial Ca2+ uniporter) mediates the Ca2 

+ transfer through the inner membrane. The close contacts 
between mitochondria and ER render the rapid Ca2+ uptake 
by mitochondria from ER through ITPRs-VDACs-MCU. 

Additionally, mitochondria could also export excessive Ca2+ 

and thus ensure the mitochondrial Ca2+ homeostasis. 
SLC8B1/NCLX (solute carrier family 8 member B1) is the 
mitochondrial Na+-Ca2+ exchanger, mediates mitochondrial 
Ca2+ efflux by catalyzing Na+- or Li+-dependent Ca2+ 

export [183].
As a vital signal molecule, Ca2+ could regulate the auto-

phagic flux, although the mechanisms seem complicated and 
the effects are context-dependent [184]. Along with the down-
stream kinases, including PRKC/PKC (protein kinase C), 
CAMKK2 (calcium/calmodulin dependent protein kinase 
kinase 2), CAMK (calcium/calmodulin-dependent kinase), 
MAPK1/ERK2 (mitogen-activated protein kinase 1)-MAPK3 
/ERK1 and PIK3C3/VPS34 (phosphatidylinositol 3-kinase cat-
alytic subunit type 3), Ca2+ could stimulate the autophagy 
induction [184]. However, several studies reported that Ca2+ 

could antagonize the autophagic flux. Specifically, Ca2+ is 
indispensable for CAPN1 (calpain 1)-mediated cleavage of 
ATG5, and this ATG5 cleavage inhibits ATG12-ATG5 con-
jugation and prevents autophagy induction [185]. By sustain-
ing the mitochondrial bioenergetics, it is not unexpected that 
mitochondrial Ca2+ could inactivate AMPK pathway and 
hence suppress the autophagy by supporting ATP production 
[186,187].

Ca2+ could also modulate the selective mitophagy. The 
sequestering capacity of Ca2+ by mitochondria is highly 
dependent on the membrane potential. During mitochondrial 
depolarization, Ca2+ released from mitochondria is captured 
by RHOT2, a key component of the adaptor complex anchor-
ing mitochondria to motor proteins. The phosphorylated (by 
PINK1) and Ca2+-binding RHOT2 realigns from tetramers to 
monomers on the mitochondrial outer membrane, and func-
tions as a platform for the subsequent PRKN translocation 

Figure 4. ISC antagonizes FUNDC1-mediated mitophagy. ISC is mainly synthesized in mitochondria by the ISC assembly complex. The newly assembled ISC is 
transported into the cytosol to support the aconitase activity of ACO1/IRP1 for the TCA cycle. During iron deficiency or genetic susceptibility, defective ISC assembly 
enables ACO1/IRP1 unbound. The free ACO1/IRP1 targets to the IRE region of BCL2L1 mRNA, leading to the translational suppression and protein downregulation. 
The mitochondrial phosphatase PGAM5 is liberated to dephosphorylate FUNDC1 and facilitates mitophagy.
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[188]. Besides, there is a similar mechanism for RHOT1. Ca2 

+-binding RHOT1 promotes PRKN translocation, while 
RHOT1 mutations in the EF-hands essential for Ca2+ binding 
decrease glutamate-induced calcium-provoked mitophagy in 
neurons [189]. It has been widely recognized that the Ca2+- 
binding of RHOT1 and RHOT2 arrests mitochondrial mobi-
lity [190]. Therefore, Ca2+ sensors RHOT1 and RHOT2 act as 
key modulators for the coordination of mitochondrial mobi-
lity and the PINK1-PRKN-dependent mitophagy. Due to a 
significant implication of mitochondrial Ca2+ in determining 
mitochondrial integrity and programmed cell death, it is of 
great value to further elucidate the relationship between mito-
chondrial Ca2+ and mitophagy, especially in related human 
disease pathogenesis.

Glycolysis-TCA cycle associated metabolites and 
mitophagy

Mitochondria are located at the center for both catabolism 
and anabolism of bio-molecules. The cytosolic glycolysis 
breaks down glucose into pyruvate to fuel the TCA cycle. 
The following TCA cycle enzymatically catalyzes nutrients 
such as lipids, carbohydrates and amino acids to generate 
smaller units and metabolites, supporting the oxidative phos-
phorylation for ATP production. Normal mitochondrial func-
tionalities are important for these cellular metabolisms. 
Reversely, the related metabolites are potent modulators of 
mitophagy (Table 1).

Glucose provides the major carbon source for cellular 
bioenergetics. However, high plasma glucose (or hyperglyce-
mia) is one of the most causative factors of diabetes, and is 
strongly correlated with the diabetes-related complications by 
damaging a group of kidney cells, neurons and endothelial 
cells [191]. It was firstly reported by H. Crabtree in 1929 that 
high level of glucose could suppress the cellular respiratory 
flux, known as Crabtree effect [192]. A number of hypotheses 
on the mechanisms underlying the Crabtree effect have been 
formulated. Recently, it has been reported that high level of 
glucose could induce mitophagy in diabetic platelets [193] and 
neuronal cells [194]. Mechanistically, hyper-production of 
ROS due to the mitochondrial fission may trigger this mito-
phagy [195]. Furthermore, high level of glucose upregulates 
the HIF1A activity [196,197], and thus induces the expression 
of PINK1 [198] or BNIP3 [199] for mitophagy induction, 
leading to the decrease in oxidative phosphorylation and 
increase in glycolysis. Therefore, the mitophagy-driving capa-
city of glucose may partially contribute to the Crabtree effect, 
although some other studies suggested that high level of 
glucose could inhibit mitophagy in other types of cells. 

Furthermore, several glucose metabolites as discussed below 
could also modulate mitophagy in corresponding 
circumstances.

Lactate, previously regarded as the waste product of glyco-
lysis, is gradually proved to serve as a major circulating 
carbohydrate fuel and a circulating redox buffer that equili-
brates the NADH:NAD+ ratio across cells and tissues in 
mammals [200]. Additionally, lactate could facilitate mito-
chondrial biogenesis via upregulation of PPARGC1A [201]. 
Lactate could block the autophagic flux and suppress the 
BNIP3-related mitophagy by blunting the expression of 
BNIP3 through the NR4A1 (nuclear receptor subfamily 4 
group A member 1)-PRKDC (protein kinase, DNA- 
activated, catalytic subunit)-TP53 axis in vascular smooth 
muscle cells. This mitophagy inhibition aggregates the calci-
fication of vascular smooth muscle cells in the presence of 
lactate [202,203].

Pyruvate, the C3 product of glycolysis, fuels the TCA cycle 
through decarboxylation and generation of acetyl-coenzyme 
A (acetyl-CoA) inside mitochondria. Pyruvate can be reduced 
to lactate and NAD+ in the cytosol, thereby supporting the 
NAD+ pool [204]. Early studies elucidated that both pyruvate 
administration and enhanced MPC (mitochondrial pyruvate 
carrier)-mediated mitochondrial pyruvate utilization facilitate 
mitochondrial biogenesis [205,206]. Recently, two indepen-
dent groups reported that pyruvate could accelerate mito-
phagy by stabilizing PINK1. Ectopic expression of PDK4, a 
pyruvate dehydrogenase kinase phosphorylating and nega-
tively determining the enzymatic activity of pyruvate dehy-
drogenase complex, leads to pyruvate accumulation and 
expedites mitophagy in response to mitochondrial depolariza-
tion. Supplementation of pyruvate alone facilitates PINK1 
stabilization, drives PINK1 and MAP1LC3 recruitment onto 
mitochondrial surface and stimulates mitophagy induction 
[207]. The underlying mechanism was elaborated by Kim 
and colleagues. Pyruvate deprivation restrains the generation 
of NAD+ (an important mitophagy inducer, which will be 
discussed below), leading to the inhibition of lysosomal acid-
ification and mitophagy defect by increasing the acetylation of 
v-ATPase ATP6V0A1 [208].

Acetyl-CoA, the central cellular intermediate, is not only the 
catabolic product of the glycolytic pyruvate, fatty acids and 
branched-chain amino acids, but also the anabolic precursor 
for fatty acids, steroids and certain amino acids. Acetyl-CoA is 
the sole donor of acetyl groups for protein acetylation and thus 
extensively dominates the gene expression and cellular signal-
ing. Furthermore, acetyl-CoA metabolism is regulated by com-
partmentalization, and mitochondria locate at the center [209]. 
It has been well understood that acetyl-CoA is a master 

Table 1. Glycolysis-TCA cycle associated metabolites and mitophagy.

Metabolite
Molecular 
Formula Metabolic Precursor Effect on Mitophagy

Lactate C3H6O3 Glucose (anaerobic glycolysis) Lactate antagonizes mitophagy through NR4A1-PRKDC-TP53-BNIP3 axis.
Pyruvate C3H4O3 Glucose (aerobic glycolysis) Pyruvate accelerates mitophagy by stabilizing PINK1.  

Pyruvate sustains the generation of NAD+

Acetyl- 
CoA

C23H38N7O17P3S Pyruvate (oxidative 
decarboxylation)  
Fatty acid (β-oxidation)  
Acetate

Acetyl-CoA exhaustion reduces mitochondrial acetylation, leading to PRKN-independent 
mitophagy.  
Acetyl-CoA manipulates autophagy via dynamic acetylation of core autophagy proteins.
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autophagy regulator. Nutrient starvation causes a rapid deple-
tion of acetyl-CoA and initiates the autophagy program, while 
replenishment of acetyl-CoA or dimethyl-α-ketoglutarate to 
complement sufficient amount of acetyl-CoA, could strongly 
suppress the starvation-induced autophagy. Mechanistically, 
acetyl-CoA determines the acetylated status of several core 
autophagy components by controlling the enzymatic activity 
of acetyltransferase EP300 [210]. Alternatively, acetyl-CoA 
also dominates the acetylation of RPTOR (regulatory associated 
protein of MTOR complex 1) and manipulates MTOR activa-
tion [211,212]. Given the significant role of acetyl-CoA in 
metabolism and signaling transduction, it is not unexpected 
that acetyl-CoA could manipulate mitophagy. During starva-
tion, the mitochondrial acetyltransferase BLOC1S1/GCN5L1 
(biogenesis of lysosomal organelles complex 1 subunit 1) is 
inactivated due to the rapid exhaustion of acetyl-CoA. The 
inactivation of BLOC1S1 leads to an extensive reduction in 
the acetylated modifications of mitochondrial protein, leading 
to a PRKN-independent mitophagy [213]. However, the exact 
mechanism by which mitochondrial acetylation manipulates 
mitophagy is still unknown. It is assumed that the deacetyla-
tions of mitochondrial proteins enable or facilitate the ubiqui-
tination in an allosteric manner, which may signal to mitophagy 
induction [214].

Additionally, the TCA intermediate succinate could mod-
ulate mitophagy in certain circumstances [215]. Early studies 
revealed that succinate stabilizes the transcription factor 
HIF1A [216], boosts ROS generation [217], and modifies 
certain substrate proteins through succinylation [218]. It is 
still elusive whether HIF1A, ROS or succinylation is involved 
in succinate-induced mitophagy or not.

In conclusion, the glycolysis-TCA cycle associated inter-
mediates are important to fuel oxidative phosphorylation for 
ATP production and supply certain intermediates for anabo-
lism and redox determination. The anaerobically glycolytic 
lactate and the aerobically glycolytic pyruvate, as well as its 
downstream product acetyl-CoA could manipulate mitophagy 
as discussed above. It is assumed that the mitophagy-mediated 
metabolic remodeling confers the cellular adaption to the 
metabolic dynamics for maintaining the cellular homeostasis.

NAD+ and mitophagy

As a crucial co-enzyme important for hundreds of redox 
reactions and an essential co-factor for non-redox enzymes 
(including SIRTs [sirtuins] and PARPs [poly(ADP-ribose) 
polymerases]), NAD+ supports a group of metabolism path-
ways including glycolysis, TCA cycle, oxidative phosphoryla-
tion, and fatty acid oxidation, maintains the redox 
homeostasis by coordinating the generation and detoxifica-
tion of ROS, sustains genomic stability, and manipulates gene 
expression [219,220]. Furthermore, a gradual decline in the 
cellular NAD+ and prolonged disequilibrium of NAD+ meta-
bolism have been widely formulated in series of human dis-
eases, especially aging associated metabolic disorders, cancers 
and neurodegenerative diseases, suggesting NAD+ metabolism 
as a potential therapeutic target for these human diseases 
[220,221].

Although previous study implied that mitochondria could 
uptake cytosolic NAD+, it was just recently identified that 
SLC25A51 functions as the mitochondrial NAD+ transporter 
and dictates the mitochondrial NAD+ pool. SLC25A51 defi-
ciency leads to increase in the mitochondrial mass but sig-
nificant decrease in mitochondrial oxygen consumption rate, 
demonstrating a disturbed mitochondrial turnover during 
mitochondrial NAD+ depletion [222]. NAD+ repletion has 
been widely documented to ameliorate mitochondrial func-
tionalities and protect against certain metabolic disorders 
[223–226]. Although the UPRmt conferring the retrograde 
signal from mitochondria to nucleus contributes to the ben-
eficial effect of NAD+ [223,226,227], it is not surprised that 
NAD+ could modulate mitophagy to maintain the mitochon-
drial homeostasis (Figure 5). The challenge of nicotinamide 
(NAM), a metabolic precursor of NAD+, results in disturbed 
mitochondrial architecture and initiates mitophagy in a 
SIRT1-dependent manner. This mitophagy could be blocked 
by inhibition of NAM conversion to NAD+ [228,229]. 
Xeroderma pigmentosum is a rare autosomal-recessive disor-
der with severe ultraviolet sensitivity and an increased risk of 
skin cancers due to the defective DNA repair. Xeroderma 
pigmentosum patient-derived cells present a clinical mito-
chondrial pathology, with mitochondrial dysfunction and 
mitophagy deficit. Mechanistically, the PARP1 hyper- 
activation due to the DNA damage leads to NAD+ exhaustion, 
which results in mitochondrial hyper-polarization, excessive 
cleavage of PINK1, and disorder in the PINK1-PRKN- 
dependent mitophagy. Administration of NAD+ precursors 
nicotinamide riboside (NR) and nicotinamide mononucleo-
tide (NMN) are able to restore the mitophagy and improve 
the mitochondrial functionalities in patient derived cells 
[230]. Furthermore, defects in ATM (ATM serine/threonine 
kinase), the master sensor and repairing regulator of DNA 
double-strand breaks, leads to a similar decline in NAD+. 
Damaged mitochondria accumulate in ATM-deficient neu-
rons, mice, and worms. Treatment of NR or NMN comple-
ments NAD+ levels and restores mitophagy in ATM-deficient 
cells through reestablishing SIRT1 activity. dct-1/BNIP3 and 
pink-1/PINK1 engage in this mitophagy pathway [231]. 
Additionally, it was also reported that NAD+ replenishment 
could restore mitophagy, which is crashed in Alzheimer dis-
ease and Werner syndrome due to the depletion of NAD+ 

[232,233]. Overall, these impressive studies collectively elabo-
rated NAD+ as an endogenous mitophagy inducer.

AMPK locates at the center of NAD+-induced mitophagy. 
As a major metabolic regulator, AMPK is one of the most 
important guardians for mitochondrial homeostasis, includ-
ing dynamics, biogenesis and mitophagy [165]. Specifically, 
AMPK phosphorylates MFF, the primary receptor for 
DNM1L translocation onto mitochondrial outer membrane, 
leading to mitochondrial fission [234]. Furthermore, AMPK 
phosphorylates ULK1 to stimulate mitophagy induction [235]. 
AMPK activity is suppressed in NAD+-deficient cells, while 
NAD+ replenishment could restore AMPK activation [232]. 
Mechanistically, ATM-mediated activation of STK11/LKB1 
(serine/threonine kinase 11), the upstream kinase responsible 
for AMPK phosphorylation, is involved in NAD+-mediated 
AMPK activation and mitophagy induction. ATM could also 
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directly phosphorylate AMPK [236]. Furthermore, NAD+ 

could activate AMPK by sustaining SIRT1 deacetylation of 
STK11 [237]. However, other pathways are likely involved in 
the NAD+-induced mitophagy, as knockdown of AMPK is 
unable to completely ablate the NAD+-induced mitophagy 
[232]. The elevation of NAD+ supports the enzymatic activity 
of SIRT1, a master mitophagy regulator by finely tuning the 
acetylated status of MAP1LC3 [238], ATG5 and ATG7 [239], 
or activating the daf-16/FOXO-dct-1/BNIP3 pathway [231]. 
NAD+ also shapes mitochondrial morphology by manipulat-
ing the dynamics proteins [226]. Moreover, this NAD+- 
mediated mitophagy is mitochondria- and cell-protective. As 
a group of aging-related diseases are manifested by NAD+ 

exhaustion due to the elevated DNA damage, genetic or 
epigenetic insults and environmental toxins, replenishment 
of NAD+ by supplementation of the metabolic precursors 
provides a highly potent therapeutic design for these diseases.

Amino acids associated metabolites regulating 
mitophagy

Amino acids are the metabolic blocks for protein synthesis. 
They could also fuel cellular bioenergetics as carbon source, 
and certain amino acids are dedicating to signaling transduc-
tion as signal molecules. Specifically, amino acids are sensed 
by the corresponding sensors, leading to the activation of 
MTOR and suppression of autophagic flux [240]. It has 
been reported some amino acids associated metabolites as 

mitophagy regulators in corresponding circumstances 
(Table 2).

Glutamine, the most abundant amino acid, functions as the 
nitrogen source for the bio-synthesis of nucleotides, amino 
acids, and hexamine, as well as carbon source to fuel the TCA 
cycle for bioenergetics through glutaminolysis [241]. During 
glutaminolysis, glutamine is converted to α-ketoglutaric acid 
(α-KG) and ammonia, which is catalyzed by mitochondrial 
GLS (glutaminase). Ammonia was previously identified as a 
diffusible autophagy-inducing molecule in cancer cells [242]. 
Ammonia supplementation increases the expression of 
BNIP3, PINK1, and PRKN, leading to the increased mito-
phagy in mammalian cells. Inhibition of GLS activity and 
glutamine withdrawal reduce the expression of BNIP3 [243]. 
Mechanistically, ammonia exposure facilitates HIF1A stabili-
zation and elevates the transcription of the target genes 
(including BNIP3) under normoxic conditions [244]. 
Glutamate, the deamidated product of glutamine during glu-
taminolysis, was reported to facilitate PRKN translocation 
onto mitochondria. Excessive glutamate could trigger mito-
chondrial Ca2+ entry and Ca2+ binding to RHOT1, which 
leads to the arrest of mitochondrial mobility and PRKN 
recruitment onto mitochondria for the initiation of mito-
phagy, as discussed above [189,245].

γ-Aminobutyric acid (GABA), a well-recognized inhibitory 
neurotransmitter, is a four-carbon non-protein amino acid, 
which is synthesized primarily from glutamate catalyzed by 
GAD (glutamate decarboxylase). The disorders in GABA meta-
bolism are manifested in diverse human neurological diseases 

Figure 5. NAD+ boosts mitophagy. Cellular NAD+ could be complemented by food supplementation of the metabolic precursors including NAM, NR and NMN, or 
synthesized de novo. SIRTs and PARPs are two major NAD+-dependent enzymes catalyzing the NAD+ to yield NAM, which is gradually elevated during aging, DNA 
damage and other genetic or environmental insults. NAD+ is imported into mitochondria to sustain several mitochondrial metabolisms. It was reported that NAD+ 

facilitates mitochondrial biogenesis via SIRTs-PPARGC1A axis. Additionally, NAD+ activates AMPK kinase through supporting SIRTs deacetylation of STK11, or through 
ATM-STK11-AMPK or ATM-AMPK axes. Alternatively, the activated SIRTs could mediate deacetylation of autophagy core components MAP1LC3, ATG5 and ATG7, as 
well as deacetylation of FOXOs to promote the expression of BNIP3, MAP1LC3 and ATGs, or enhance PINK1 stabilization, which collaboratively strengthen the 
mitophagy program.
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[246]. It was reported that the increase in endogenous GABA 
level could inhibit the pexophagy (a selective type of autophagy 
degrading peroxisomes) and mitophagy, but not other autopha-
gy related pathways in yeast. This deficit in pexophagy and 
mitophagy could be restored by supplementation of rapamycin, 
indicating a TOR activation-dependent manner of GABA 
restraining pexophagy and mitophagy. Furthermore, supple-
mentation of GABA, or genetic ablation of ALDH5A1 (aldehyde 
dehydrogenase 5 family member A1; which catalyzes GABA to 
succinate to fuel the TCA cycle, leading to the decrease in 
endogenous GABA) leads to the accumulation of morphologi-
cally abnormal mitochondria and defective mitophagy in mam-
malian cells. This study elaborates the mitophagy-restraining 
activity of GABA, which may implicate in the pathogenesis of 
GABA disorder associated diseases [247].

Nitric oxide (NO) is a lipophilic, highly diffusible, and 
short-lived metabolite of NOS (nitric oxide synthase) that 
catalyzes the conversion of arginine into citrulline. It has 
been well understood that NO acts as a signaling molecule 
and plays the pleiotropic patho-physiological roles both in 
normal and diseased circumstances. Specifically, NO dictates 
S-nitrosylation of the target substrates and engages in the 
post-translational regulation and signaling transduction 
[248]. Excess NO is converted to the toxic reactive nitrogen 
species, which could bind to the electron transport chain 
components, leading to the disruption of mitochondrial func-
tionalities [249]. NO could initiate the PINK1-PRKN- 
mediated mitophagy. The exposure of NO donor triggers 
PRKN translocation onto mitochondria even in PINK1 
depleted cells. This NO-induced mitophagy facilitates PINK1- 
null dopaminergic neuronal cells to recover from mitochon-
drial damage [250]. It is assumed that S-nitrosylation of 
PRKN at Cys323 enhances the E3 ligase activity and acceler-
ates mitophagy [251]. However, other studies reported that 
S-nitrosylation of PINK1 or PRKN leads to significantly 
reduced PRKN translocation onto mitochondria [252,253]. 
Besides, NO was proved to disturb autophagosome formation 

through distinct mechanisms [254]. Therefore, it seems more 
complicated for NO manipulating mitophagy. Further 
mechanistic studies are needed.

Spermidine is another arginine derived polyamine meta-
bolite. For mammals, spermidine could be obtained via 
autonomous synthesis by using arginine as the precursor, 
synthesis by the gut microbiota and uptake from dietary 
supplementation. Spermidine was previously identified as an 
anti-aging molecule in yeast, worms, flies, mice, and human 
cells through an autophagy-dependent manner [255–257]. 
Specifically, spermidine performs highly cardiac-protective 
properties. Administration of spermidine stimulates mito-
phagy in cardiomyocytes, maintains the mitochondrial func-
tionalities and delays cardiac aging in mice [258,259]. 
Furthermore, exposure of spermidine also reestablishes mito-
phagy and leads to the reverse of senescence in muscle stem 
cell [260]. Mitophagy induction by spermidine has been 
linked to ATM kinase-dependent activation of PINK1-PRKN 
pathway [261]. Additionally, spermidine elevates autophagy- 
and mitophagy-related components including BECN1 (beclin 
1), MAP1LC3, PINK1, PRKN, ULK1, and ATG proteins, and 
promotes AMPK activation and MTOR inhibition [262]. 
However, these studies mainly utilized exogenous administra-
tion of spermidine as models. The exact function and 
mechanism of endogenous spermidine in mitophagy are less 
characterized.

N-Acetyl-5-methoxytryptamine (melatonin) is a trypto-
phan-derived pleiotropic endogenous hormone exclusively 
synthesized in pineal gland. Melatonin is mainly supporting 
the optimal coordination of daily and seasonal rhythms. 
Harboring a prominent mitochondria-protective property, 
melatonin could improve mitochondrial integrity and protect 
against a wide variety of cardiovascular and neurodegenera-
tive diseases. Melatonin could detoxify ROS, suppress ROS- 
mediated EIF2AK4/GCN2 (eukaryotic translation initiation 
factor 2 alpha kinase 4)-ATF4 (activating transcription factor 
4)-BNIP3 axis-dependent mitophagy in placental trophoblasts 

Table 2. Amino acids associated metabolites regulating mitophagy.

Metabolite
Molecular 
Formula Metabolic Precursor Effect on Mitophagy

Ammonia NH4
+ Amino acid (oxidative 

deamination)
Ammonia promotes the expression of BNIP3, PINK1 and PRKN, thus facilitates mitophagy.

Glutamate C5H9NO4 Glutamine 
(glutaminolysis)

Glutamate induces Ca2+ entry leading to RHOT1-dependent PRKN translocation and mitophagy.

GABA C₄H₉NO₂ Glutamate GABA activates MTOR and inhibits mitophagy.
NO NO Arginine (catalyzed by 

NOS)
NO triggers S-nitrosylation of PRKN and PRKN translocation to initiate mitophagy. 
S-nitrosylation of PINK1 and PRKN impairs mitophagy.  
NO disturbs phagophore formation to suppress mitophagy.

Spermidine C7H19N3 Arginine Spermidine activates ATM kinase-dependent activation of PINK1-PRKN pathway.  
Spermidine induces the expression of BECN1, MAP1LC3, PINK1, PRKN, ULK1, ATGs, AMPK activation and 
MTOR inhibition.

Melatonin C13H16N2O2 Tryptophan Melatonin suppresses ROS-mediated EIF2AK4-ATF4-BNIP3 axis-dependent mitophagy.  
Melatonin antagonizes mitophagy via PPARG-FUNDC1 axis in platelet and alleviates cardiac ischemia- 
reperfusion injury.  
Melatonin antagonizes mitophagy via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy 
axis in cardiac microvasculature. Melatonin activates ALDH2-CGAS-STING1-TBK1 signaling to restore 
mitophagy in cardiomyocytes of mice with Alzheimer disease.  
Melatonin activates mitophagy via NR4A1-PRKDC-TP53-BNIP3 axis and improves mitochondrial quality in 
hepatocytes of nonalcoholic fatty liver disease.

H2S H2S Cysteine H2S facilitates PINK1-PRKN mediated mitophagy via sulfhydration of PRKN and USP8.
GSH C10H17N3O6S Glutamate cysteine 

glycine
GSH inhibits mitophagy by suppression of Atg32 in yeast.
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and relieve cadmium-induced fetal growth restriction [263]. 
Furthermore, emerging evidence indicated that melatonin 
antagonizes mitophagy in platelet via PPARG (peroxisome 
proliferator activated receptor gamma)-FUNDC1 axis, which 
could inhibit mitochondrial energy production, suppress pla-
telet hyperactivity and alleviate cardiac ischemia-reperfusion 
injury [264]. However, how the PPARG signaling regulates 
FUNDC1-dependent mitophagy is elusive. Melatonin also 
antagonizes mitophagy in cardiac microvasculature via sup-
pression of mitochondrial fission-VDAC1-HK2-mPTP- 
mitophagy axis. Specifically, melatonin activates AMPK, facil-
itates DNM1L phosphorylation at Ser37 but dephosphoryla-
tion at Ser616, blunting the DNM1L-dependent 
mitochondrial fission. The maintenance of mitochondrial 
architecture restores VDAC1-HK2 interaction to prevent 
mPTP opening and the PINK1-PRKN activation, eventually 
block mitophagy and alleviate ischemia-reperfusion-induced 
cardiac injury [265]. However, the same group also reported 
that melatonin activates ALDH2 (aldehyde dehydrogenase 2)- 
CGAS (cyclic GMP-AMP synthase)-STING1 (stimulator of 
interferon response cGAMP interactor 1)-TBK1 (TANK bind-
ing kinase 1) signaling axis and restores mitophagy in cardi-
omyocytes in mice model with Alzheimer disease [266]. 
Melatonin could negate the increased expression of NR4A1, 
therefore block the activation of PRKDC and TP53, leading to 
BNIP3 upregulation, mitophagy reconstruction and improv-
ing mitochondrial functionalities in hepatocytes during the 
pathogenesis of nonalcoholic fatty liver disease [267]. 
Therefore, the effect of melatonin on mitophagy seems com-
plicated and context-dependent.

Besides supporting the biosynthesis of melatonin, tryptophan 
could also be mobilized to fuel the kynurenine pathway, the sole 
metabolism for de novo NAD+ synthesis. Disorder in kynurenine 
pathway is a potential causative factor for numerous aging dis-
eases. The enzymes involved in this pathway are gradually inac-
tivated with aging and mitochondrial dysfunction. The endpoint 
products of the kynurenine metabolism, kynurenic acid and 
NAD+, as well as several intermediate metabolites in the meta-
bolic branches, are potential intervention targets of these dis-
eases [268,269]. As a potent mitophagy inducer as discussed 
above, NAD+ de novo synthesis through the kynurenine pathway 
is critically important for the maintenance of mitochondrial 
integrity. Increase in NAD+ production by tryptophan supple-
mentation or enhanced metabolic flux enhances mitochondrial 
function, leading to the increased lifespan and delayed pathology 
in C. elegans [270], while loss of function of the kynurenine 
pathway associated critical enzymes results in congenital organ 
malformations [271]. Moreover, it is worth noting that the 
kynurenine pathway also modulates the mitochondrial integrity 
independent on metabolites. KMO (kynurenine 3-monooxygen-
ase), one of the rate-limiting enzymes in the kynurenine path-
way, localizes in the mitochondrial outer membrane. A genome- 
wide RNAi screen identified KMO as a modulator of mitochon-
drial morphology and PRKN-dependent mitophagy [272]. The 
increase in mitochondrial mass but decrease in respiratory capa-
city in cn/KMO-deficient flies supports the notion that KMO 
may regulate mitophagy. Drosophila studies showed that cn/ 

KMO genetically interacts with Pink1, park and Drp1/DNM1L 
in a manner independent on kynurenine metabolism [273]. 
However, the underlying mechanism is elusive.

Cysteine and methionine are primary sulfur-containing amino 
acids, which substantially maintain the cellular redox homeostasis 
by detoxifying free radicals and ROS [274]. Therefore, it is not 
unexpected that both cysteine and methionine could impinge on 
the mitophagy activity. Hydrogen sulfide (H2S), derived from 
cysteine by CTH (cystathionine gamma-lyase) and CBS 
(cystathionine beta-synthase), is an important gasotransmitter 
and plays a critical role in regulating cardiovascular functions 
[275]. Although lower concentration of H2S is beneficial for 
body fitness, higher level of H2S is toxic, especially to mitochon-
dria by interfering the oxidative phosphorylation or sulfhydrating 
certain mitochondrial proteins [276]. It was reported that exogen-
ous H2S facilitates PRKN recruitment onto mitochondria and 
enhances the PINK1-PRKN-mediated mitophagy [277]. H2 
S-mediated sulfhydration of PRKN and mitophagy associated 
deubiquitinase USP8 enhances the corresponding enzymatic 
activity and facilitates the PINK1-PRKN-mediated mitophagy 
[278,279]. However, other study demonstrated that the elevation 
of the endogenous H2S by CBS, CTH, and MPST triple gene 
therapy mitigates mitophagy in endothelial cells [280].

Glutathione (GSH), the γ-L-glutamyl-L-cysteinyl-glycine 
tripeptide as a key determinant of cellular redox homeostasis, 
is assembled by GCL (glutamate cysteine ligase) ligating 
cysteine to glutamate to produce γ-glutamylcysteine, and fol-
lowing by GSS (glutathione synthetase) catalyzing glycine and 
γ-glutamylcysteine to yield GSH [281]. GSH is converted into 
GSH disulfide (GSSG) and detoxifies oxidative stress by GSH- 
dependent peroxidases. Although GSH is not de novo synthe-
sized in mitochondria, a line of evidence has been raised that 
multiple mitochondria associated GSH carrier proteins could 
mediate the mitochondrial transport of cytosolic GSH and 
determine the redox homeostasis inside the mitochondria 
[282]. In yeast, decrease in endogenous GSH induced by 
chemical or genetic manipulation initiates selective mitophagy 
but not general autophagy, and this mitophagy could be 
suppressed by supplementation of a cell-permeable form of 
GSH or antioxidant N-acetyl-L-cysteine to normalize the cel-
lular GSH abundance [283]. Mechanistically, suppression of 
Atg32 expression by GSH leads to the mitophagy deficit [284]. 
However, it is still elusive whether GSH could modulate 
mitophagy in mammalian cells.

Besides cysteine, methionine is another sulfur-containing 
amino acid. The methionine residues in proteins are suscep-
tible to oxidation. Therefore, it was assumed that the methio-
nine constitutes an important antioxidant defense mechanism 
and substantially contributes to the cellular redox homeostasis 
[274,285]. The methionine-restricted diet could dramatically 
extend the healthspan of a variety of model organisms. 
Mitophagy is required for this lifespan extension [286]. 
Significant increases in PRKN and phosphorylated ubiquitin 
are observed during methionine restriction, suggesting that 
the PINK1-PRKN axis is involved in this mitophagy [287]. 
Mechanistically, S-adenosylmethionine, the most important 
methyl donor derived from methionine metabolism, facilitates 
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the methylation of the catalytic subunit of PPP2/PP2A (pro-
tein phosphatase 2), leading to the deficiency in autophagy 
and selective mitophagy [288].

Fatty acids associated metabolites regulating mitophagy

Fatty acids are major energy source and important constitu-
ents of membrane lipids. Mitochondria play a dominative role 
in fatty acid metabolism, especially β-oxidation. Furthermore, 
the mitochondria derived citrate could shuttle to cytosol, 
where it is used to synthesize acetyl-CoA for lipogenesis. 
Mitochondria can also synthesize several phospholipids 
autonomously. Reversely, several fatty acids and the asso-
ciated metabolites have been characterized to impinge on 
mitophagy activity to subsequently regulate the mitochondrial 
metabolism. Specifically, cardiolipin and ceramide are two 
well-characterized mitophagy receptors as discussed above. 
Furthermore, hyperlipemia could suppress mitophagy in a 
number of tissues via multiple mechanisms, suggesting a 
pathological role of the mitophagy suppression in obesity 
associated metabolic disorders [289,290].

Cholesterol, a key lipid molecule, is a metabolic precursor 
for the bio-synthesis of the steroid hormones, bile acids, and 
vitamin D. As mentioned above, mitochondria derived citrate 
could transport to cytosol and convert to acetyl-CoA for 
cholesterol de novo synthesis through the mevalonate path-
way. Lysosomal storage disease Niemann-Pick type A (NPA) 
is characterized by the lysosomal cholesterol accumulation in 
diseased tissues including brain, spleen and liver, due to the 
genetic susceptibility or chemical interference. It has been 
reported that the fusion of mitochondria-containing autopha-
gosomes with lysosomes is restrained in NPA hepatocytes, 
leading to the impaired mitophagy and aggregating acetami-
nophen induced liver injury [291]. The similar phenomenon 
is also observed in NPA neuron where lysosomal cholesterol 
accumulates [292]. Lysosomal cholesterol accumulation facil-
itates the hyper-activation of MTORC1 signaling, leading to 
the disruption of mitophagy program. Genetic or pharmaco-
logic inhibition of MTORC1 could restore the lysosomal 
degradation of mitochondria, and ameliorate mitochondrial 
integrity in NPA neurons [293]. Alternatively, cholesterol 
overload aggravates the oxidative damage to promote the 
formation of OPTN aggregates, thereby blocking the OPTN 
translocation onto mitochondria for the PINK1-PRKN- 
mediated mitophagy [294]. These studies thus collectively 
highlight the mitophagy-restraining capacity of cholesterol.

Phosphatidylcholine (PC) is the predominant phospholipid 
class and required for the buildup of cell membrane. An 
overwhelming majority of PC is synthesized via the 
Kennedy pathway by using choline as the substrate. 
Deacceleration of PC de novo bio-synthesis by genetic abla-
tion of choline kinase leads to mitochondrial damage, as 
evidenced by the impaired oxidative phosphorylation, 
decreased ATP production and increased ROS generation. 
Furthermore, PRKN, PINK1, MAP1LC3, polyubiquitin and 
SQSTM1/p62 are localized to these damaged mitochondria to 
initiate mitophagy [295]. Xiong et al. reported a strong asso-
ciation between aberrant choline-PC metabolism and mito-
phagy in diffuse large B-cell lymphoma [296]. Declined 

choline uptake and disordered PC bio-synthesis lead to the 
remodeling of mitochondrial lipidomic signature, decrease in 
ATP production and AMPK activation, which are critical for 
mitophagy initiation [297]. Collectively, these studies thus 
shed light on a pathomechanistic link between choline-PC 
metabolism and mitophagy induction. Additionally, other 
studies reported that coenzyme Q [298,299] and bile acid 
[300] could also impinge on mitochondrial autophagy in the 
corresponding models.

cAMP and mitophagy

cAMP (cyclic adenosine 3′,5′-monophosphate) is the first 
identified second messenger and plays fundamental roles in 
cellular signaling transduction, mainly by supporting the 
PRKA-CREB1 (cAMP responsive element binding protein 1) 
axis. ADCYs (adenylate cyclases), including transmembrane 
ADCYs (tmADCYs) and soluble ADCYs (sADCYs), are 
responsible for converting ATP into cAMP, while PDE (phos-
phodiesterase) catalyzes the hydrolysis of intracellular cAMP. 
It was reported that sADCYs reside at multiple subcellular 
organelles, including mitochondria [301]. sADCYs-mediated 
cAMP synthesis inside mitochondria sustains the mitochon-
drial bioenergetics through supporting PRKA-dependent 
phosphorylation of respiratory chain complexes [302]. 
Conversely, mitochondrial ATP, Ca2+ and bicarbonate could 
finely tune the enzymatic activity of sADCYs and facilitate the 
cAMP synthesis. Therefore, the mitochondrial health deter-
mines mitochondrial cAMP production and vice versa.

More than 100 mitochondrial proteins have been identified 
as potential PRKA substrates [303]. Specifically, PRKA could 
phosphorylate DNM1L and restrain its translocation onto the 
mitochondrial surface [304,305]. During starvation, cellular 
cAMP increases and supports DNM1L phosphorylation by 
PRKA, leading to mitochondrial elongation and protecting 
mitochondria from autophagic degradation [66,306,307]. 
The cAMP-PRKA also phosphorylates IMMT and 
CHCHD3/MIC19 (coiled-coil-helix-coiled-coil-helix domain 
containing 3), destabilizes PINK1 on the depolarized mito-
chondria, leading to the defect of the PINK1-PRKN-mediated 
mitophagy [36]. Furthermore, PRKN could be directly phos-
phorylated by PRKA. Similarly, this phosphorylation prevents 
the recruitment of PRKN onto mitochondria, resulting in 
defective mitophagy [308]. BNIP3L was recently reported as 
another PRKA substrate. PRKA phosphorylating BNIP3L 
abrogates BNIP3L-mediated mitochondrial fission and mito-
phagy [115]. Additionally, cAMP-PRKA axis also suppresses 
general autophagy by phosphorylating MAP1LC3 at its 
N-terminal region and abrogating MAP1LC3 recruitment to 
autophagosomes [309]. Collectively, these studies suggest a 
multifaceted modulation of mitophagy by the cAMP-PRKA 
axis (Figure 6).

Concluding remarks and perspective

Mitochondria are highly dynamic organelles with constant 
fusion, fission, mobility, biogenesis and removal. These mito-
chondrial behaviors are coordinated to maintain the proper 
mitochondrial quality and quantity [8]. As mentioned above, 
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distinct pathways are sensing different mitochondrial stresses 
to coordinate mitophagy for mitochondrial quality control, 
suggesting a strict necessity to maintain a proper mitophagy 
activity for the cellular homeostasis [15].

Programmed mitophagy refers to the physiological routine 
to remove partial or all mitochondria in certain developmen-
tal, metabolic and physiological circumstances. Specifically, 
BNIP3L-mediated mitophagy is physiologically important 
for the maturation of red blood cells [111], while elimination 
of paternal mitochondria after fertilization is critical for the 
zygote development post fertilization and supports the mater-
nal inheritance of the mitochondrial genome [310]. Besides, 
basal mitophagy, referred to the continuous removal of 
damaged mitochondria under steady-state level, was revealed 
by two transgenic mouse models to detect mitophagy in vivo, 
while its activity is highly tissue- and cell-dependent 
[311,312]. The induced mitophagy has attracted tremendous 
concerns. Although numerous studies utilized distinct mito-
chondrial toxins to trigger mitophagy, it is worth noting that 
the metabolic dynamics could impinge on mitophagy pro-
gram due to the altered metabolites as mentioned above. 
Conversely, the induced mitophagy could finely tune the 
mitochondrial integrity including quality and quantity, and 
subsequently remodel the cellular metabolism. However, a 
group of previous studies aimed to explore the physiological 

relevance of endogenous metabolites in mitophagy mainly 
rely on the exogenous administration of these metabolites or 
the metabolic precursors. These supplementations largely 
exceed the endogenous levels in some cases. Therefore, the 
exact physiological role of the endogenous metabolites in 
mitophagy regulation needs further investigations. The 
patients-derived cells with altered metabolic programs and 
metabolites are ideal models for these studies.

The defective mitophagy due to genetic susceptibility or 
environmental insults is manifested in several disease pathogen-
esis. Targeted normalization of proper mitophagy is believed to 
be a potent therapeutic design for these diseases. Exercise train-
ing is an effective nonpharmacological approach to resist patho-
genesis. It has been reported that exercise could activate 
mitophagy to remove the damaged mitochondria and stimulate 
mitochondrial biogenesis to improve the mitochondrial func-
tionalities in multiple tissues [313,314]. Furthermore, exercise- 
induced mitophagy is essential to reverse the high-fat diet- 
induced mitochondrial dysfunction [315]. The ATP-AMPK- 
ULK1 and NAD+-SIRTs axes are involved in this mitophagy, 
although the exact mechanism is complicated and exercise type- 
dependent [316]. Nevertheless, the optimal manipulation of 
endogenous metabolites as mentioned above could drive a 
proper level of mitophagy, which provides ideal nutritional 
designs for intervention of related diseases.

Figure 6. cAMP-PRKA signaling antagonizes mitophagy. Mitochondrial sADCYs are responsible for the biosynthesis of cAMP, which supports the PRKA activity. cAMP- 
PRKA phosphorylates CREB1 and activates the transcription of major mitochondrial biogenesis-associated factors. Mitochondrial fission protein DNM1L could be 
phosphorylated by PRKA, and this phosphorylation prevents its translocation onto the mitochondrial surface for mitochondrial fission. Furthermore, PRKA also 
phosphorylates IMMT, CHCHD3, PRKN and BNIP3L, abrogating PRKN- and BNIP3L-mediated mitophagy. MAP1LC3 phosphorylation by PRKA represses its translocation 
onto phagophores, thus inhibits general autophagy.
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