Skip to main content
. 2022 Jun 24;49:103081. doi: 10.1016/j.frl.2022.103081

Table 5.

Two week return predictability of returns based on Covid-19 data.

Dependant variable ETH[1,14] BTC[1,14] Index[1,14] ETH[1,14] BTC[1,14] Index[1,14]
Cases[14,1]×Policyt 25.546
(13.091)
13.903
(11.193)
23.174
(11.809)
Deaths[14,1]×Policyt 1.384
(1.205)
1.279
(0.866)
0.952
(0.970)
Cases[14,1] 6.218
(3.819)
−0.305
(3.236)
2.799
(2.778)
Deaths[14,1] 1.613
(1.474)
0.358
(1.364)
1.468
(1.455)
Policyt 21.763⁎⁎
(10.461)
11.624
(9.024)
19.370⁎⁎
(9.401)
2.524⁎⁎
(1.095)
1.842
(1.037)
1.828
(0.977)
Ret[14,1] −2.463⁎⁎
(1.181)
−0.875
(0.760)
−1.586
(0.927)
1.784
(1.094)
−0.664
(0.747)
−1.054
(0.870)
Intercept 8.219⁎⁎
(2.177)
3.554
(1.965)
5.509⁎⁎
(1.738)
4.047⁎⁎
(0.939)
2.595⁎⁎
(0.771)
5.526⁎⁎
(0.730)

Table 5 shows the results of Eq. (1) re-configured to incorporate a two-week estimation period. We adjust the variables to account for a two-week estimation period. We estimate the dependent variable, listed in the top row, against the corresponding variables on each row below that. We estimate our regressions using Newey and West (1987) standard errors and control for up to 14 days of lag. Our standard errors are in parentheses.

**

represent statistical significance at the 5% level.

*

represent statistical significance at the 10% level.