Skip to main content
. 2022 May 11;60(7):2015–2038. doi: 10.1007/s11517-022-02564-6

Table 1.

The used abbreviations

ACC Accuracy MA Microaneurysms
AUC Area Under Curve ME Macular Edema
AP Average Pooling MLC Multi-Label Classification
APTOS 2019 Asia Pacific Tele-Ophthalmology Society MLSVM ML support vector machine
B-HM Blot Hemorrhages MP max-pooling
BV Blood Vessels MSE Mean Squared Error
BPs bifurcation points NPDR Non-proliferative DR
CAD Computer-Aided Diagnostic NV Neovascularization
CM confusion matrix OC optic cup
CNN Convolutional Neural Network OCT Optical Coherence Tomography
CONV convolution OCTA OCT Angiography
CLAHE contrast limited adaptive histogram equalization
D-HM Dot Hemorrhages OD Optic Disc
DL Deep Learning ON Optic Nerve
DO dropout PA Padding
DR Diabetic Retinopathy PDR Proliferative DR
DSC Dice Similarity Coefficient PO Pooling
EX Exudates QKS Quadratic Kappa Score
FC fully connected ReLU Rectified-Linear-Unit
F-HM Flame Hemorrhages RESNET Residential Energy Services Network
FKM fuzzy k-means ROC Receiver Operating Characteristic
FN False Negative ROIs region of interest
FOV Field of View S Stride
FP False positive S-EX Soft Exudates
FRCNN Fast Region-based CNN SEN Sensitivity
GANs generative adversarial networks SGD Stochastic Gradient Descent
GAP Global Average Pooling SHAP Shapley Additive exPlanations
GT Ground Truth SPE Specificity
H-EX Hard Exudates TN True Negative
HEBPDS Histogram Equalization for Brightness Preservation Based on a Dynamic Stretching Technique TP True positive
HM Hemorrhages VGG Very Deep Convolutional Networks
IDRiD Indian diabetic retinopathy image dataset VL Venous Loops
Lr Learning Rate VR Venous Reduplication