Skip to main content
. 2022 May 11;60(7):2015–2038. doi: 10.1007/s11517-022-02564-6

Table 6.

The comparisons between the customized EyeNet, ResNet50 [40], Inception V3 [44], VGG19 [45], and the proposed E-DenseNet BC with different depths and weights on APTOS 2019 dataset due to ACC, SEN, SPE, DSC, QKS, calculation time (T) in minutes (m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T(m)
A customized EyeNet 75.7 76 82 74.9 0.61 14
ResNet50 [40] 67.4 70 52.6 66.2 0.51 27
Inception V3 [44] 49.3 53 51 49.1 0.13 38
VGG19 [45] 72.5 80 68 71 0.55 17
E-DenseNet BC-169-ImageNet 80.2 73.6 92 80 0.70 5.2
E-DenseNet BC-169 80.6 72 90 80.9 0.71 7
E-DenseNet BC-201-ImageNet 82.2 74.6 92.3 82 0.73 10
E-DenseNet BC-121-ImageNet 72 75 48.4 71.54 0.58 3
E-DenseNet BC-121 84 94 73 83.7 0.75 4