Table 7.
The comparisons between the customized EyeNet, ResNet50 [40], Inception V3 [44], VGG19 [45], the proposed E-DenseNet BC with different depths and weights on EyePACS dataset due to ACC, SEN, SPE, DSC, QKS, calculation time (T) in minutes (m) performance measures
Model | ACC (%) | SEN (%) | SPE (%) | DSC (%) | QKS | T(m) |
---|---|---|---|---|---|---|
A customized EyeNet | 95.5 | 95.7 | 73 | 95 | 0.90 | 22 |
ResNet50 [40] | 79.2 | 83 | 53 | 86.7 | 0.78 | 43 |
Inception V3 [44] | 72.6 | 76.7 | 61 | 82 | 0.65 | 55 |
VGG19 [45] | 82.3 | 87 | 49 | 80.6 | 0.69 | 45 |
E-DenseNet BC-169 | 86 | 90 | 55 | 93.3 | 0.89 | 8 |
E-DenseNet BC-169-ImageNet | 83 | 87 | 61 | 91.6 | 0.86 | 7 |
E-DenseNet BC-201-ImageNet | 90.6 | 94.3 | 53 | 95 | 0.92 | 9 |
E-DenseNet BC-121-ImageNet | 88.1 | 93 | 68 | 93 | 0.89 | 5 |
E-DenseNet BC-121 | 96.8 | 98.3 | 72 | 98.3 | 0.97 | 5 |