Skip to main content
. 2022 May 11;60(7):2015–2038. doi: 10.1007/s11517-022-02564-6

Table 7.

The comparisons between the customized EyeNet, ResNet50 [40], Inception V3 [44], VGG19 [45], the proposed E-DenseNet BC with different depths and weights on EyePACS dataset due to ACC, SEN, SPE, DSC, QKS, calculation time (T) in minutes (m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T(m)
A customized EyeNet 95.5 95.7 73 95 0.90 22
ResNet50 [40] 79.2 83 53 86.7 0.78 43
Inception V3 [44] 72.6 76.7 61 82 0.65 55
VGG19 [45] 82.3 87 49 80.6 0.69 45
E-DenseNet BC-169 86 90 55 93.3 0.89 8
E-DenseNet BC-169-ImageNet 83 87 61 91.6 0.86 7
E-DenseNet BC-201-ImageNet 90.6 94.3 53 95 0.92 9
E-DenseNet BC-121-ImageNet 88.1 93 68 93 0.89 5
E-DenseNet BC-121 96.8 98.3 72 98.3 0.97 5