Skip to main content
. 2022 May 11;60(7):2015–2038. doi: 10.1007/s11517-022-02564-6

Table 8.

The comparisons of the customized EyeNet, ResNet50 [40], Inception V3 [44], VGG-19 [45], and the proposed E-DenseNet BC with different depths and weights on MESSIDOR dataset due to ACC, SEN, SPE, DSC, QKS, and calculation time (T) in minutes (m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T (m)
A customized EyeNet 63 62.5 90.8 63 0.48 15
ResNet50 [40] 37.5 38 22 38 0 33
Inception V3 [44] 37.5 38 40 38 0 50
VGG19 [45] 43.7 44 37 44 0 28
E-DenseNet BC-169-ImageNet 38 38 21 37 0.09 4
E-DenseNet BC-169 62.5 63 76 61 0.44 4
E-DenseNet BC-121-ImageNet 69.2 70 90 68.7 0.53 2
E-DenseNet BC-201-ImageNet 50.2 52 80 51.5 0.11 4
E-DenseNet BC-121 91.6 95 58 95.1 0.92 2