Skip to main content
. 2022 May 11;60(7):2015–2038. doi: 10.1007/s11517-022-02564-6

Table 9.

The comparisons between the customized EyeNet, ResNet50 [40], Inception V3 [44], VGG-19 [45], and the proposed E-DenseNet BC with different depths and weights on IDRiD dataset due to ACC, SEN, SPE, DSC, QKS, and and calculation time (T) in minutes (m) performance measures

Model ACC (%) SEN (%) SPE (%) DSC (%) QKS T(m)
A customized EyeNet 45 63 35 44.5 0.24 17.05
ResNet50 [40] 32.5 38 0 32.5 0 23.5
Inception V3 [44] 32.5 40 22 32.5 0 27.5
VGG19 [45] 33 40 22 32.5 0 16.4
E-DenseNet BC-169-ImageNet 66.3 70 49 66 0.53 6
E-DenseNet BC-169 61.4 70 43 60 0.46 4
E-DenseNet BC-121-ImageNet 64.2 61.3 50 63.8 0.49 3
E-DenseNet BC-201-ImageNet 62.2 61 55 61.1 0.48 7
E-DenseNet BC-121 93 96.7 72 96 0.94 3