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Introduction
Dental implant treatment is a way of restoring the func- 

tion of a permanent tooth after its loss.1 As implant treatment 
has grown more popular,2 more manufacturers have pro-
duced various implant systems.3-6 This diversity provides 
dentists with more options among implant systems. How-
ever, since each manufacturer produces implant systems  
with unique implant parts,3,5,6 if patient records containing 
the exact name of the implant system are not available, it 
can be quite challenging to identify the implant system.

Periapical radiographs or panoramic radiographs are often  
taken to help identify the implant system.7 However, with-
out extensive experience in implant treatment using various  
systems, it is almost impossible to differentiate among sys- 
tems based on imaging results,8 and sometimes dentists end  
up trying to apply every kind of implant part that would fit. 
To resolve this laborious situation, websites4 and programs6 
have been developed to facilitate identification based on  
several characteristics of implant fixtures. 

More recently, several studies have utilized deep con-
volutional neural networks (DCNNs) to detect or classify 
various lesions or objects in dental radiographs.8-15 DCNNs 
alone can be trained to show excellent performance, but 
transfer learning to DCNNs is considered to be more effi- 
cient.8,10,11 The concept of “transfer learning” refers to train-
ing neural networks that have already been trained before,  
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with related, but new data.16,17 For example, a DCNN can 
be pretrained with image data to develop a final network for 
the detection or classification of certain objects in a new im-
age dataset, and pretraining can be applied to language data 
for a new language dataset in the same way. The Micro- 
soft COCO (Common Objects in Context) image dataset 
is commonly used to pretrain DCNNs, and YOLOv3 (You 
Only Look Once version 3) is pretrained with the COCO 
dataset. Within the broader category of plain radiographs, 
periapical radiographs have better resolution than panora- 
mic radiographs and are recommended for the assessment 
of implants.7 Therefore, this study aimed to evaluate the 
performance of an implant fixture classification model 
through transfer learning to YOLOv3 with periapical radio-
graphs.

Materials and Methods
Data preparation
Periapical radiographs of adult patients who had under-

gone dental implant treatment at Yonsei University Dental 
Hospital were collected between April 2020 to July 2021 in 
Digital Imaging and Communication in Medicine (DICOM)  
format. The images were anonymized to prevent identifi-
cation, and the requirement for patient consent was waived 
by the Institutional Review Board (IRB) of Yonsei Univer-
sity Dental Hospital (IRB No. 2-2021-0104) for the retro-
spective collection of images. The DICOM files were con-

verted to bitmap files via ImageJ software for training and 
testing. 

The implant systems in the radiographs were noted, and 
3 systems - Superline (Dentium Co. Ltd., Seoul, Korea), TS 
III (Osstem Implant Co. Ltd., Seoul, Korea) and Bone Level  
Implant (Institut Straumann AG, Basel, Switzerland) - were 
selected. 

Every implant fixture in all the bitmap images was anno-
tated in LabelImg software (ver. 1.8.4, available at https://
github.com/tzutalin/labelImg). Rectangular boxes were 
drawn around only the fixtures and labeled with their class 
name (i.e., the name of the implant system) (Fig. 1): Super- 
line, TS III, or Bone Level Implant. The information of 
these annotation boxes was saved as eXtensible Markup 
Language (XML) files, separate from the bitmap files.

In total, 263 periapical radiographs with 355 implant fix-
tures constituted the dataset. The images of fixtures were 
allocated to the training dataset (284 fixtures in 212 images, 

A B C

Fig. 1. Examples of annotating implant fixtures using LabelImg software. A. Superline fixtures are annotated with light green boxes. B. TS 
III fixtures are annotated with purple boxes. C. Bone Level Implant fixtures are annotated with red boxes.

Table 1. The number of fixtures for each implant system in the 
dataset

Implant 
system Superline TS III Bone Level 

Implant Total

Train dataset 95 92 97 284
Test dataset 26 23 22 71

Total dataset 121 115 119 355
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80%) and test dataset (71 fixtures in 51 images, 20%). The 
detailed composition of the datasets is shown in Table 1.

Transfer learning of a deep convolutional  
neural network
A DCNN (YOLOv3) was used for training and testing. The 

Keras library 2.2.4 (available at https://github.com/keras-
team/keras/releases/tag/2.2.4) was used to implement the 
network, and TensorFlow 1.14 (available at https://github.
com/tensorflow/tensorflow) was used as the backend on  
a desktop with TITAN RTX Graphics Processing Unit 

(NVIDIA Corp., Santa Clara, CA, USA).
First, from the XML files of the training dataset, the upper  

left (X1, Y1) and the lower right (X2, Y2) corners’ coordinates 
of the annotations and their class names were extracted  
and saved in a comma-separated values (CSV) file. The 

training dataset was then divided into a 9 : 1 ratio, with 10% 
of the data allocated to the validation process regardless of 
the class names. The training dataset images were resized 
to 512 (width)×512 (height) pixels and used as input to the 
Darknet-53 backbone of YOLOv3 with the CSV file. 

Darknet-53 has 53 convolutional layers with batch nor-
malization applied. Its activation function was the leaky 
rectified linear unit. The output from this model is 3 feature 
maps, where implant fixtures are automatically classified at 
different resolutions (Fig. 2). 

In training, weights produced from pretraining YOLOv3 
with COCO dataset were used. This network was trained for 
100, 200, and 300 epochs. For the first half of the epochs,  
only the last 3 layers’ weights were trained with a batch size  
of 2. The other half of the epochs used the whole network’s 
weights for training with a batch size of 4. This process of 

Fig. 2. The structure of YOLOv3 used in this study. In training, the input data to Darknet-53, the backbone of this network, are resized 
images to 512 (width) × 512 (height) pixels and their annotation files. Then, 3 feature maps in different resolutions are produced with clas-
sification during the training via convolution layers. The final weights acquired from this procedure are used in testing.
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training an already pretrained network with a new dataset 
is called transfer learning.

The final weights were produced after training and utilized 
in testing. After testing, the sensitivity, specificity, accu- 
racy, and confidence score of correct classifications were 
assessed according to the number of epochs. 

Results
The sensitivity, specificity, and accuracy of implant fix-

ture classification according to the number of epochs are 
shown in Figure 3. The highest overall accuracy was 96.7% 
at 200 epochs, and the accuracy values for Superline, TS 

Fig. 3. The performance of implant fixture classification according to the number of epochs of training for YOLOv3. A. Sensitivity. B. 
Specificity. C. Accuracy.

A

C

B

Fig. 4. Confidence score range (top and bottom) and mean values (middle) of correct classifications during testing according to the number 
of epochs of training for YOLOv3.
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III, and Bone Level Implant classification were 94.4%, 
95.8%, and 100.0%, respectively. Overall sensitivity and 
specificity were also the highest at 200 epochs, (94.4% and 
97.9%, respectively); the sensitivity for Superline, TS III, 
and Bone Level Implant classification was 88.5%, 95.7%, 
and 100.0% and the specificity was 97.8%, 95.8%, and 
100.0%, respectively.

The mean values and the range of confidence scores for 
correct classifications according to the number of epochs 
are shown in Figure 4. They were also the highest at 200 
epochs for all classes, with an overall mean score of 0.75. 
Specifically, the mean confidence score for correct classifi-
cation was 0.75 for the Superline implant system, 0.71 for 
TSIII, and 0.79 for the Bone Level Implant. Figure 5 shows 
examples of correctly classified implant fixtures for each 
system with confidence scores. In these examples, not only 
did the network identify the implant systems, but the con-
fidence scores of the decision were also above the preset 
threshold.

Discussion
Through transfer learning of YOLOv3, the network was 

trained for 100, 200, or 300 epochs. The performance met-
rics of the network were the highest when it was trained 
for 200 epochs. Bone Level Implant fixtures were the 
best-classified system with 100.0% sensitivity, specificity, 
and accuracy. Simultaneously, the confidence scores were 
the highest at 200 epochs. These results demonstrate that 
after training for a certain number of epochs, performance 
does not necessarily show an incremental change.

The confidence score indicates the certainty of classifi-
cation during testing, and its threshold can be customized 
within the interval between 0 and 1. If a network can classi-
fy an implant fixture - that is, if the confidence score of the 

classification is above the threshold - it draws a box around 
the recognized implant fixture in the periapical image. In 
contrast, if the network cannot classify the implant fixture, 
or if the confidence score of the classification is below the 
threshold, it returns the periapical image without any box. 
Thus, for a given network, a higher threshold will yield 
fewer classification outcomes, while a lower threshold will 
lead to more classification outcomes being drawn.

There has been a dramatic increase in the number of 
DCNN studies in recent years.12 Various networks have 
been applied for the detection or classification of lesions 
or anatomical structures.8-11,13-15 Several studies have also 
evaluated the performance of DCNNs in implant fixture 
classification in a similar way. They mostly used networks 
other than YOLOv3,9 such as basic CNN,10 Visual Geome-
try Group,10 and GoogLeNet Inception v3.8,11 Takahashi et 
al.9 assessed the performance of implant fixture classifica-
tion of 4 implant systems based on panoramic radiographs 
using the same network as in this study. Their dataset con- 
sisted of more than 200 implants per system (as many as 
1919 implants), and they trained the network for 1000  
epochs. However, the highest sensitivity was only 0.82, 
which is lower than the lowest sensitivity observed in this 
study with 200 epochs of training. Other implant classifica-
tion studies also trained networks for much more than 200 
epochs, such as 70010 or 1000 epochs.8,9,11 Training for more 
epochs might improve performance to a certain extent, but  
it also consumes more time and leads to a higher probability  
of overfitting.17

Only periapical radiographs constituted the dataset of this 
study. Panoramic radiographs, which were used in other  
implant classification studies,8-11 are acceptable as a modal- 
ity for implant evaluation.7 Nevertheless, panoramic radio-
graphs have substantial drawbacks, such as blurring due to  
patient motion, superimposition of the normal anatomy, and  

A CB

Fig. 5. Test result examples of correctly classified implant fixtures with the confidence score for each decision. A. Superline. B. TS III. C. 
Bone Level Implant.
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geometric distortions.18 Periapical radiography offers a limi- 
ted field of view, but with a paralleling technique; thus, it 
has superb resolution and the least distortion, which makes 
it the first-choice modality after the installation of implant 
fixtures.7,19

Most other studies had datasets of thousands of images,  
much more than this study.8-11 The performance results of  
this study, however, were not inferior to them, as some stud- 
ies showed lower accuracy.9-11 This implies that the saying 
“the more, the merrier” does not apply to the number of 
epochs and the size of the dataset in developing DCNNs 
for implant classification. Even though some research has 
shown almost perfect accuracy in implant classification,8 
the increased number of implant systems used in real-world 
settings might require a larger dataset to maintain high accu- 
racy. It is worthwhile to search for more efficient ways to 
maintain dataset quality.

The ideal implant fixture classification by deep learning 
should classify all kinds of implant fixtures available in the  
market, although hundreds of systems exist.4 This is the 
major limitation of this study and other studies with the 
same purpose because the largest number of implant sys-
tems evaluated in a single study was 11.10 Another limita-
tion is that it did not include a testing process with external 
data. Even though this study showed that high performance 
in implant fixture classification by YOLOv3 can be accom-
plished through transfer learning even with a small amount 
of data, comprehensive studies are expected in the future.  
Larger studies with more implant systems and heterogen- 
eous datasets from various centers would help refine auto- 
matic implant fixture classification to the point that it is 
ready for use in clinical settings.
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