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A B S T R A C T   

We aim to investigate the static and dynamic time-frequency connectedness between energy and nonenergy 
commodity markets in China during COVID-19 based on Baruník and Křehlík (2018) method. First, in this paper, 
we find that the short-term connectedness dominates the long-term one, and the total connectedness increases 
after the COVID-19 outbreak. Second, the energy commodity is the receiver and is influenced much by the 
spillovers of non-energy commodity markets (e.g. chemical commodities and non-ferrous metals) in the short 
run. At the same time, the impact is less at the long-term investment horizons. In addition, chemical commodities 
and soft commodities are the primary transmitters in this system in the short run. In contrast, chemical com-
modities and coal steel iron commodities are the main long-run primary transmitters. Third, the spillover role 
varies with the time-frequency domain during COVID-19. To be more specific, the energy commodity shows a net 
receiver role in the short and long run before the COVID-19 pandemic, but after it, the role of the net transmitter 
can be seen in the long run with ease. Finally, we show that COVID can reduce the hedging effectiveness at 
different investment horizons. The mineral policymakers should note our dynamic empirical results between 
energy and nonenergy commodity.   

1. Introduction 

The dynamic interdependence between energy and nonenergy 
commodities has attracted extensive attention from academia and in-
dustry (Meng et al., 2020). Especially during the COVID period, adverse 
external shocks can influence economic activities (Jiang et al., 2021a), 
financial instability (Albulescu, 2021), and social safety (Bitler et al., 
2020), and portfolio management (Li and Meng, 2022). Meanwhile, the 
commodities experience a price fluctuation in the recent data,1 and the 
different commodities sectors can show a strong comovement pattern 
(Jiang and Chen, 2022). Previous literature usually studies the rela-
tionship between commodities from the aggregate level, either from 
price volatility or return linkages (Jiang et al., 2019a). In addition, the 
macro- or micro-level dynamic links between oil and nonenergy com-
modities are investigated in the previous papers (see, e.g., Khalfaoui 
et al., 2021; Mo et al., 2022). However, few studies explore the price 
transmission mechanism between energy and nonenergy commodities 

from a time-frequency domain. There are theoretic channels, e.g., 
supply-demand channels. financial investments, behavioral channels, 
etc., for causing the spillovers between energy and nonenergy com-
modities are justified in much literature (Liu et al., 2018; Rehman et al., 
2019; Bouri et al., 2021). In other words, most non-energy sectors 
depend on energy sectors, and energy prices can impact non-energy 
sectors in many lines. In this case, empirically detecting the trans-
mission between energy and nonenergy commodities and the role of the 
commodity in the commodities system should be meaningful. 

This paper targets China’s commodities markets since China is the 
largest oil consummation country globally. In addition, China seeks to 
extend its clout in commodity markets.2 To be more specific, China’s 
commodity exchanges are now world-beating. The most important ex-
changes in China are in Dalian, Shanghai, and Zhengzhou. The number 
of contracts traded on these in 2020 was six times higher than on 
America’s CME Group’s exchanges (The Economist, 2021). Due to 
China’s sugaring important role in the commodity markets and China’s 

* Corresponding author. School of Finance, Hubei University of Economics, Wuhan, 430205, China 
E-mail address: contribute2022@163.com (C. Xu).   

1 In the first two quarters of 2021, Bloomberg’s general commodity price index rallied more than 20%. There is a 44.5% rise in energy prices, a 20.5% rise in 
agricultural goods (20.5%), and a 17.6% rise in industrial metal, from the Blomberg database.  

2 For example, China consumes 55% of the world’s supply of the coal from the IMF 2020 report. 
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world-beating commodity exchanges, more and more attention is paid to 
China’s commodity markets. With the rapid development in domestic 
commodities, the price fluctuation can be more inter-connected, leading 
to spillovers between energy and nonenergy sectors (Chen et al., 2021a). 
However, little literature has worked on the dynamic spillovers feature 
in China’s commodity markets at the sector level (Ji and Fan, 2016) and 
even less from the frequency domain. Against this background, an ac-
curate exploration of the time-frequency connectedness and hedging 
performance between energy and nonenergy commodity markets at 
different investment horizons can be helpful for policy design in China. 
Besides, investors can adjust the investment strategy with accurate dy-
namic spillovers. 

In this context, we aim to capture the linkages relevant to application 
areas addressed in previous literature; we contribute to investigating the 
static and dynamic time-frequency connectedness; instead of the inter-
dependence structure of the global commodity markets, we examine the 
connectedness between energy and nonenergy commodity markets in 
China during COVID-19 based on Baruník and Křehlík (2018) method. 
In addition, we design comprehensive portfolio strategies for investors. 
Finally, we address the effects of COVID-19 on the dynamic spillovers 
and hedging performance. 

We provide the potential contributions of this paper in the following 
lines. First, much literature considers the dynamic spillovers and port-
folio management from the time domain using Diebold and Yilmaz 
(2015) and Diebold and Yılmaz (2014) method (see, e.g., Magkonis and 
Tsouknidis, 2017; Jiang et al., 2019b; Antonakakis et al., 2020; Liu and 
Gong, 2020; Costa et al., 2022). However, this paper investigates the 
static and dynamic time-frequency connectedness between energy and 
nonenergy commodity markets in China during COVID-19 based on 
Baruník and Křehlík (2018) method. This method can allow us to revisit 
the same issues from different investment horizons. In addition, to align 
with Baruník and Křehlík (2018) method, we utilize the wavelet method 
to decompose the raw data to design portfolios from a frequency 
domain. 

Second, we are closely related to Jiang et al. (2019a), Meng et al. 
(2020), and Chen et al. (2021a) to examine the time-varying relation-
ship in the commodities markets in China. In this work, we are different 
in the following lines. For one thing, these works only consider the time 
domain; however, we investigate the dynamic relationship not only 
from a time-domain but also from a frequency domain. For another 
thing, our data are more comprehensive. Since we include all the pri-
mary commodities in the Wind database, the spillover system can be 
more complete relative to these papers. Besides, our data are long 
enough to explore the role of COVID in the dynamic relationship. Third, 
our comprehensive results provide a complete view of China’s 
time-frequency connectedness and hedging performance between en-
ergy and nonenergy commodity markets. The results can guide policy-
makers in making decisions and investors to adjust the investment 
strategy varying to different market horizons. 

Based on Baruník and Křehlík (2018) method, we find that the 
short-run spillovers dominate the long-run case, and the total connect-
edness increases a great deal after the COVID-19 outbreak. Second, the 
energy commodity is influenced much by the spillovers of non-energy 
commodity markets in the short run, while the impact is less at the 
long-term investment horizons. In addition, chemical commodities and 
soft commodities are the primary transmitters in this system in the short 
run, while chemical commodities and coal steel iron commodities are 
the main long-run primary transmitters. Third, the role of the connect-
edness system varies with the time-frequency domain during COVID-19. 
Finally, the portfolio results show that the portfolio strategy is efficient 
by including energy and nonenergy commodities. In addition, even 
though COVID can reduce the hedging effectiveness in the short and 
long run, the hedging ratio is always positive, and COVID cannot reverse 
it in the long run. 

2. Literature review 

This paper is related to two strands of literature. The first one is the 
dynamic relationships between commodities (see, e.g., Mensi et al., 
2014; Xiarchos and Burnett, 2018; Shah and Dar, 2021; Tan et al., 2020; 
Costa et al., 2022).3 For example, Green et al. (2018) investigate vola-
tility spillovers to electric power from large exogenous shocks in the 
prices of gas, coal, and carbon emission allowances in the German en-
ergy market. The results show that the magnitude of spillovers between 
commodities is vast and significant. Chuliá et al. (2019) check the links 
between energy markets using a broad data set consisting of a total of 17 
series of prices for commodities such as electricity, natural gas, coal, oil, 
and carbon in European countries. Likewise, Barbaglia et al. (2020) 
examine volatility spillovers among energy, agriculture, and biofuel 
commodities, and the significant spillovers between energy and agri-
cultural commodities are detected. Noting that the main research com-
modities are the developed indexes. However, the survey of the 
connectedness in China’s commodities is still in its infancy (see Khal-
faoui et al. (2021) for a comprehensive reading) even if China’s com-
modities are more and more mature and international, and the 
composite indexes and products have also improved (Jiang at al. 2019a). 
Since China has become the second-largest economy globally, we aim to 
have an in-depth study on the spillovers between energy and nonenergy 
commodity markets in China. 

In particular, among them, there are a few studies focusing on the 
commodities in China (Jiang et al., 2019a; Meng et al., 2020; Chen et al., 
2021a). Jiang et al. (2019a) are closely related to this paper to examine 
the time-varying relationship in the commodities markets in China and 
provide discussion on the role financial crisis (GFC) on the hedging 
performance. The main results show that the volatility relationship is 
time varying and GFC can impact the hedging performance. In this 
paper, we are different to theirs in the following ways. On the one hand, 
these works only consider the time domain, however, we investigate the 
dynamic relationship not only from a time domain but also from a fre-
quency domain. On the other hand, our data are more comprehensive. 
Since we include all the main commodities in the Wind database, the 
spillover system can be more complete relative to these papers since 
they only add four or six commodities in their work. Besides, our data 
are long enough to explore the role of COVID on the dynamic 
relationship. 

The second one is the portfolio design. Many papers discuss the 
portfolio strategy and check the portfolio performance. For example, Li 
and Meng (2022) use the renewable energy stock markets and crypto-
currencies to show the dynamic nexus between these financial markets. 
It indicates that the stock markets can be partially hedged by crypto-
currencies. More importantly, they show that COVID-19 can revise the 
hedging performance. Likewise, there is literature using commodities to 
construct portfolios (see, e.g. Zhang and Chen, 2018; Ahmad and Rais, 
2018; Bannigidadmath and Narayan, 2022). Aslet al. (2021) find 
diversification opportunities between S&P Global Clean Energy, Oil, 
energy, and crude oil distillation products. Similarly, Wang et al. (2021) 
study the impact of diversification with five energy futures, showing that 
the optimal portfolios can increase expected return and reduce the 
volatility simultaneously. In this paper, we speak to the previous papers 
to assess hedging performance between energy and nonenergy com-
modity markets. Besides, we aim to gauge the effects of COVID-19 on the 
constructed portfolio. 

There are many connectedness approaches targeting to detect the 
nexus among financial markets. The first generation is Vector autore-
gression (VAR)-based method, i.e. the Diebold and Yilmaz (2015) and 
Diebold and Yılmaz (2014) method. Antonakakis et al. (2015) explore 
the dynamic connectedness between the business cycle and financial 

3 See Khalfaoui et al. (2021) for a comprehensive reading on the review of 
commodity spillover research. 
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cycles in the G7 countries. However, there are some shortcomings in this 
method. For example, it has an arbitrarily set problem. To overcome 
this, the Antonakakis and Gabauer (2017) method is developed to use 
the time-varying VAR method to replace the VAR method. Antonakakis 
et al. (2018) employ this Antonakakis and Gabauer (2017) method to 
detect the dynamic linkages between economics uncertainties in the 
developed countries. However, this method is still limited in the time 
domain. The recent Baruník and Křehlík (2018) method is widely used in 
recent academic papers since this method can allow us to investigate the 
static and dynamic time-frequency connectedness. For example, Liu 
et al. (2022) examine the risk spillovers between the global stock mar-
kets. Xia et al. (2020) study the dynamic time-frequency spillovers be-
tween the policy uncertainty and housing markets. To the best of our 
knowledge, this paper is the first to document the time-frequency 
connectedness and hedging performance between energy and nonen-
ergy commodity markets in China using the Baruník and Křehlík (2018) 
method. 

The review above demonstrated that the work related to the dynamic 
linkages between commodities has been increasing in recent years. 
However, the survey of the connectedness in China’s commodities is still 
in its infancy even if China’s commodities are more and more mature 
and international, and the composite indexes and products have also 
improved (Jiang et al., 2019a). In this way, we investigate the 
connectedness and portfolio design between energy and nonenergy 
commodity markets in China from the time-frequency perspective. 
Finally, due to the extensive influence of the COVID-19 in the financial 
markets (Jiang et al., 2021a), we further the effects of COVID. 

The rest of this paper proceeds as follows. We will elaborate on the 
methods used in this paper in Section 3. Section 4 has a clear expression 
of the data and the way to deal with the data. In addition, introductory 
statistics and linear pairwise relationships are shown in this section. 
Section 5 provides the empirical results on the time-frequency 
connectedness and hedging performance between energy and nonen-
ergy commodity markets in China during COVID-19. Section 6 
concludes. 

3. Model 

This paper investigates the static and dynamic time-frequency 
connectedness between energy and nonenergy commodity markets in 
China during COVID-19 based on Baruník and Křehlík (2018) method. 
This method can allow us to revisit the same issues from different in-
vestment horizons. In addition, to be in line with Baruník and Křehlík 
(2018) method, we utilize the wavelet method to decompose the raw 
data to design portfolios from a frequency domain. 

3.1. Time and frequency dynamic connectedness 

VAR-based connectedness method is used to measure the dynamic 
spillovers between financial markets (Diebold and Yılmaz, 2014; Die-
bold and Yilmaz, 2015; Jena et al., 2021; Bouri et al., 2021).4 Antona-
kakis and Gabauer (2017) then propose the seminal time-varying VAR 
connectedness and this method has been widely used since it can 
overcome the shortcoming of the conventional VAR model. Baruník and 
Křehlík (2018) further extend this model and in this paper, we use this 
model to detect dynamic relationship from different investment hori-
zons.5 We can compute the overall connectedness within the frequency 
band d as follows: 

Cd = 1 −

∑
j=1(Θ̃d)jk

∑
jk(Θ̃d)jk

.

Following Baruník and Křehlík (2018), we estimate the directional 
connectedness from the financial market j to market k: 

Cd
j→* =

∑

j=1,j∕=k

(Θ̃d)jk.

In addition, the contribution of directional connectedness from k to j 
is expressed as: 

Cd
*→j =

∑

j=1,j∕=k

(Θ̃d)jk.

In this way, we use the directional connectedness to yield the net 
connectedness: 

Cd
i,net =Cd

i→* − Cd
*→i, (1)  

where the positive (negative) values of net directional connectedness 
signify whether a market is a transmitter (receiver) of connectedness. 

3.2. Wavelet 

The wavelet method is widely used in economic and financial 
research (Jiang et al., 2017, 2018; Lao et al., 2018) since it can allow us 
to decompose the raw data into different time horizons.6 In this case, one 
can use this method to have a clear picture of the dependence structure 
of financial markets from the frequency domain. We follow Mo et al. 
(2019) to employ the maximal overlapped discrete wavelet transform 
(MODWT) to decompose the commodities time series in this paper. To 
be more specific, the return series of energy and nonenergy commodity 
markets are estimated as follows: 

rt = SJ(t) +
∑J

j=1
Dj(t),

where SJ(t) is the smoothed version of rt at scale J and Dj(t) can be read 
as the wavelet scales, representing the decomposed part. As in Crowley 
(2007) and Jiang et al. (2020), we see that the wavelet method can boil 
the raw weekly data into different scales D1-D5.7 In this paper, to be 
consistent with the time-frequency in Baruník and Křehlík (2018), we 
follow Li and Meng (2022) to utilize the sum of D1 and series corre-
sponding to the periods of 2–4 weeks, whereas the sum of D2, D3, and 
D4 is used as the long-term horizon, corresponding to the periods 4–32 
weeks. 

3.2. Portfolio construction 

We use the dynamic conditional correlation (DCC) model developed 
by Engle (2002) to estimate the dynamic relationship of our data.8 This 
model has already attracted significant attention from economic and 
financial literature, investigating issues such as stock market in-
terdependencies, portfolio construction and risk measurement.9 

Following Kroner and Ng (1998), the optimal portfolio weights ωcf ,t for 
nonenergy commodities at time t is defined in equation (2) 10: 

4 See literature review part for details.  
5 For a textbook treatment, see Baruník and Křehlík (2018) for details. 

6 By using the time horizon method, we can divide the investors into long- 
term investors or short-term investors. The long-run investors can usually 
refer to the institutional investors who are experienced in the financial markets. 
On the contrary, the short-run investors are the investors who usually focus on 
the short-run transactions.  

7 D1-D5 represent 2–4 weeks, 4–8 weeks, 8–16 weeks, 16–32 weeks and 
32–64 weeks respectively.  

8 In this subsection, we leave out the DCC model for brevity. See Engle (2002) 
for a textbook treatment.  

9 See e.g. Mo et al. (2018), Nie et al. (2018), Akkoc and Civcir (2019), Chen 
et al. (2020).  
10 We assume the investors aim to hedge risks of the energy commodity by the 

inclusion of nonenergy commodity. 
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ωen, t =
hn,t − hen,t

hn,t − 2hen,t + he,t
, with ωen,t = {

0, if ωen, t < 0
ωen,t, if 0 < ωen,t < 1
1, if ωen,t > 1

, (2)  

where hn,t is the conditional variance of one type of nonenergy com-
modity in the GJR model, he,t is the conditional variance of energy 
commodity in China, and hen,t is the conditional variance between en-

ergy and nonenergy commodity markets. Accordingly, the optimal 
weight of energy commodity is 1-ωen,t . 

We further follow Kroner and Sultan (1993) to yield the hedge ratio 
βen to minimize the risks in the designed portfolios, and the method is 
expressed in equation (3) 11: 

βen,t = hen, t
/

he,t. (3) 

To examine the effectiveness of the portfolio management, the 
hedging effectiveness (HE) index is introduced in this paper as in Mo 
et al. (2019), which is identified below12: 

HE = 1 −
Varp

Var0
,

where Varp is the variance of the optimal portfolios defined in equations 
(2) and (3) and Var0 is the variances of benchmark portfolio with the 
energy commodity only. 

4. Data analysis 

A variety of commodity markets data are employed in this paper to 
detect the time and frequency connectedness and hedging performance 
between energy and nonenergy commodity markets in China. Following 
Jiang et al. (2019a) and Meng et al. (2020), we select the most 

Table 1 
Commodity index in China and detailed components.  

Commodity index Components Symbol 

Energy Index Fuel, Coal Crude, Oil, LPG, Low-Sulfur Fuel ENFI 
Nonmetal Building 

Materials Index 
Fiberboard, Plywood, Glass, PVC NMBM 

Noble Metals Index Gold, Silver NMFI 
Oil Fat Index Soybean Type I & II, Soybean Meal, Soybean 

Oil, Rapeseed, Palm Oil 
OOFI 

Soft Commodities 
Index 

Cotton, White Sugar, Cotton Yarn SOFT 

Non-ferrous Metals 
Index 

Copper, Aluminum, Zinc, Nickel, Tin, 
International Copper 

NFFI 

Coal Steel Iron Index Coal, Iron Ore, Rebar, Hot Coil, Wire Rod, 
Ferrosilicon, Manganese Silicon, Stainless Steel 

JJRI 

Chemical Index Rubber, Polypropylene, PTA, Methanol Pulp 
etc. 

CIFI 

Grain Index Maize, Rice, Japonica etc. CRFI 
Agricultural Products 

Index 
Eggs, Cornstarch, Apples, Pigs, Red dates APFI  

Table 2 
Summary statistics.   

Mean Max Min S. D. Skew Kurt J-B ADF 

ENFI 0.0120 4.5191 − 7.7272 0.7458 − 1.0047 16.0669 7945.2400*** − 32.3786*** 
NMBM 0.0288 3.0831 − 2.4923 0.5795 0.5636 6.8733 739.7619*** − 35.5238*** 
NMFI 0.0116 2.4162 − 2.5353 0.4529 − 0.4039 8.2911 1302.3030*** − 31.7149*** 
OOFI 0.0070 2.2176 − 2.1689 0.4130 − 0.0141 5.9742 402.1635*** − 33.0293*** 
SOFI − 0.0048 1.4262 − 2.1863 0.3903 − 0.3981 5.9438 422.7539*** − 33.9447*** 
NFFI 0.0125 1.5933 − 2.3480 0.4316 − 0.3523 5.5331 314.2583*** − 33.9655*** 
JJRI 0.0231 2.7545 − 3.2967 0.7522 − 0.1234 4.2908 78.5077*** − 33.5862*** 
CIFI − 0.0033 2.3820 − 3.1035 0.5484 − 0.3515 5.5273 312.8057*** − 33.0327*** 
CRFI 0.0207 1.4089 − 1.2675 0.2842 0.0362 5.5003 284.4155*** − 33.2048*** 
APFI 0.0039 2.4443 − 2.5632 0.5555 0.3063 5.7642 364.4091*** − 32.5255***  

Fig. 1. Trend charts between energy and nonenergy commodity markets.  

11 The hedge ratio means that the investors should take a long position of one 
unit in the energy commodity hedged by a short position of βen units in 
nonenergy commodity.  
12 The hedging effectiveness is defined to compare the variance between the 

benchmark portfolio, which only includes the energy commodity, and the 
optimal portfolio outlined in equations (2) and (3). 
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representative and comprehensive commodities, i.e., Energy Index 
(ENFI), Nonmetal Building Materials Index (NMBM), Noble Metals 
Index (NMFI), Oil Fat Index (OOFI), Soft Commodities Index (SOFI), 
Non-ferrous Metals Index (NFFI), Coal Steel Iron Index (JJRI), Chemical 
Index (CIFI), Grain Index (CRFI), and Agricultural Products Index 
(APFI). The specific components of these commodities are elaborated in 
Table 1. In addition, we obtain the daily dataset from January 1st, 2017, 
to June 30th, 2021, in the Wind database, and the length of time is 
determined by data availability.13 Our data is long enough for the 
consideration of the recent extreme events that as the COVID-19 
pandemic. To align with the financial papers (see, e.g., Jiang et al., 
2017; Jiang et al., 2021b), the raw time series is measured in log 
differences. 

Table 2 shows the summary statistics of commodities. The data 
display the standard financial time series features. For example, the 
mean values of these series are minimal (near zero). The standard de-
viation of the energy commodity is quite significant, while the nonen-
ergy commodities have relatively more minor standard deviations. The 
kurtosis is very high for the energy commodity, and skewness’s het-
erogeneous effects appear. Besides, the data do not follow normality 

with the Jarque–Bera (JB) statistics and are stationary significantly with 
the Augmented Dickey-Fuller (ADF) test. 

We plot the time series innovation as in Fig. 1. It is clear that the 
sample data fluctuate enormously, and especially after the COVID-19 
pandemic, the prices of these commodities vary a lot. This is also the 
reason in this paper why we focus on the event study with COVID-19. On 
the flip side, the pairwise linear relationship between energy and 
nonenergy commodities is shown in Fig. 2. It is seen that these com-
modities have a positive linear dependence structure, but the linear 
coeffects are not very strong. For example, the energy commodity and 
nonmetal building materials commodity show a linear relation with a 
Pearson parameter of 0.23, which can provide some preliminary results 
for us to study the portfolio management between energy and nonenergy 
commodity markets. The following section will address the dynamic 
connectedness and portfolio management between energy and nonen-
ergy commodity markets. 

5. Empirical analysis 

5.1. Time-frequency dynamic connectedness 

Table 3 shows static connectedness results between energy and 
nonenergy commodity markets in the short run.14 It is observed that the 
total spillover of this system is 18.79% on average. We further find that 
the nonenergy commodities are the main net contributor to this com-

modity system. To be more specific, CIFI contributes the most to this 
system which is 4.07% on average, followed by JJRI (2.43%), NFFI 
(2.23%), and SOFI (2.14%). CIFI is also the primary recipient in this 
system which is 2.77%, followed by JJRI (2.59%), NFFI (2.51%), NMBM 
(2.14%), and ENFI (2.02%). The non-energy commodities are the main 
contributors and recipients, and it is observed that the energy com-
modity is influenced intensively by the non-energy commodities. We 
show that ENFI receives 31.66% of shocks from itself, 1.6% from NMBM, 
6.96% from CIFI, 3.56% from JJRI, and others. In addition, ENFI con-
tributes 4.06% of spillovers shocks to CIFI, 2.4% to JJRI, 2.37% to NFFI, 
and others. 

On the flip side, we can obtain some interesting results from the net 
spillovers in the short run. It is observed that the SOFI and CIFI are the 
main net transmitters while other commodities are the net receivers, 
including the energy commodity. This result is in line with the results of 
Meng et al. (2020) and Yang et al. (2021), showing that the static 
spillovers of nonenergy commodity sectors are strong. To conclude, we 
find the static evidence that the energy commodity is influenced by the 
spillovers of non-energy commodity markets in the short run. 

Fig. 2. Pairwise linear correlation between energy and nonenergy commod-
ity markets. 

Table 3 
Connectedness between energy and nonenergy commodity markets at the short-term frequency bands.   

ENFI NMBM NMFI OOFI SOFI NFFI JJRI CIFI CRFI APFI FROM 

ENFI 31.66 1.6 0.79 2.3 2.49 3.41 3.56 6.96 0.3 0.53 2.02 
NMBM 1.71 35.54 0.47 1.78 1.72 3.59 4.27 6.59 0.18 0.2 2.14 
NMFI 0.6 0.02 43.88 0.28 0.25 1.28 0.37 0.53 0.2 0.31 0.80 
OOFI 1.64 1.76 1 33.24 4.12 2.09 1.47 4.1 2.59 0.33 1.80 
SOFI 1.79 1.22 0.43 3.64 32.28 3.12 1.36 6.65 1.29 1.31 2.01 
NFFI 2.37 2.72 0.63 1.57 3.22 28.9 5.43 6.74 0.38 0.75 2.51 
JJRI 2.4 3.65 0.17 1.54 1.55 5.84 29.3 6.38 0.29 0.92 2.59 
CIFI 4.09 3.81 0.87 2.58 4.55 5.18 4.76 23.42 0.36 0.72 2.77 
CRFI 0.62 0.48 0.09 3.7 2.4 1.29 0.85 1.57 42 1.2 1.12 
APFI 0.39 0.38 0.05 0.51 1.28 1.14 0.78 1.79 1.37 42.56 1.02 
TO 1.67 1.99 0.77 1.70 2.14 2.23 2.43 4.07 0.91 0.87 Total:18.79 
NET − 0.35 − 0.15 − 0.03 − 0.10 0.13 − 0.27 − 0.16 1.29 − 0.21 − 0.15  

Notes: This table displays the total spillover index of Baruník and Křehlík (2018) at the short-term frequency band 3.14 to 0.79. 

13 Available at: https://www.wind.com.cn/en/edb.html. 

14 In this paper, we follow Li and Meng (2022) and Mo et al. (2022) to denote 
the short-run periods as 2–4 weeks, whereas the long-term horizon corresponds 
to the periods 4–32 weeks. 
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Table 4 
Connectedness between energy and nonenergy commodity markets at the long-term frequency bands.   

ENFI NMBM NMFI OOFI SOFI NFFI JJRI CIFI CRFI APFI FROM 

ENFI 25.28 1.26 0.3 1.53 1.23 1.75 2.23 4.04 0.25 0.29 1.46 
NMBM 1.15 22.42 0.02 1.04 0.89 2.17 3.34 3.9 0.13 0.12 1.38 
NMFI 0.75 0.28 36.73 1.35 0.31 1.15 0.2 0.8 0.22 0.23 0.79 
OOFI 1.73 1.07 0.2 25.76 2.32 1.16 0.97 2.43 2.68 0.27 1.19 
SOFI 1.54 1.14 0.2 2.32 23.3 2.57 1.34 3.99 1.42 0.7 1.51 
NFFI 1.84 2.06 0.89 1.07 2.05 20.55 4.16 4.82 0.44 0.61 1.47 
JJRI 2.45 3.04 0.15 0.72 1.04 3.91 21.42 5.01 0.32 0.59 1.61 
CIFI 3.51 3.49 0.14 1.96 3.36 4.32 4.39 17.85 0.37 0.6 2.21 
CRFI 0.08 0.04 0.19 2.74 0.96 0.11 0.16 0.21 31.9 1.21 0.77 
APFI 0.61 0.06 0.15 0.31 1.17 0.76 0.97 0.8 1.27 34.09 0.86 
TO 1.38 1.18 0.51 1.14 1.42 1.59 2.02 2.69 0.71 0.60 Total:13.24 
NET − 0.08 − 0.20 − 0.28 − 0.05 − 0.09 0.13 0.41 0.48 − 0.05 − 0.26  

Notes: This table shows the spillover index at the long-term frequency band 0.79 to 0.1. 

Fig. 3. Dynamic frequency total spillovers in commodity markets. Notes: The blue-colored area indicates the total spillover at the short-term investment period of up 
to 4 weeks. The red-colored area reflects the spillover at the long-term horizon of 4–32 weeks. 

Fig. 4. Dynamic net spillover. See notes in Fig. 3.  
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Table 4 shows the static connectedness results between energy and 
nonenergy commodity markets in the long run. The results are similar to 
those in the short run. First, the nonenergy commodities are still the 
main contributors and recipients in this system. For example, CIFI 
contributes 2.69% of spillovers to this connectedness system, followed 
by JJRI (2.02%), NFFI (1.59%), etc. CIFI is also the most prominent 
recipient with 2.21% of shocks in this system, followed by JJRI (1.61%), 
etc. Second, it is found that NFFI and JJRI are the net transmitters and 
other commodities are the net receivers. There are some different results 
from those in the short run. First, the total spillovers in this system are 
lower relative to the case in the short run, which is 13.24%. This result is 
in line with Li and Meng (2022). In addition, the long-run net spillovers 
are usually smaller than those in the short run. To put it differently, in 

the long run, the static spillovers are more minor, and the nonenergy 
commodities less influence the energy commodity. Finally, we find the 
role can alter from the short run to the long run, as in Chen et al. 
(2021b), who show the financial industry’s role can be different. For 
example, in the short run, the role of SOFI is a net transmitter, while it 
becomes a net receiver in the long run. The role of financial markets can 
be changed in different timer horizons, as in Li and Meng et al. (2021). 

The static results can provide us with a standard picture of the 
connectedness. Going one step further, we revisit the dynamics using 
time-frequency plots. Fig. 3 offers the total connectedness in these 
commodity markets. It is straightforward that the short-term connect-
edness dominates the long-term case, which is in line with Mandacı et al. 
(2020) and Saeed et al. (2021). However, the fluctuation feature is 
similar in both the short and long run. In particular, the role of 
COVID-19 is evident in this figure. It can be seen that after the COVID, 
the total spillovers increase a great deal. Similar features share in Lin 
and Su (2021) and Jiang and Chen (2022). This explains why this paper 
focuses on studying the effects of COVID as in Li and Meng et al. (2021). 

Fig. 4 shows the dynamic net connectedness at different time spans. 
It is observed that the spillovers pattern varies with the time-frequency 
domain. For example, the energy commodity (ENFI) shows a net 
receiver role in the short and long run before the COVID-19 pandemic, 
but after it, the role of the net transmitter can be seen in the long run 
with ease. Similar results can be observed in the nonenergy commod-
ities. This result can echo the recent empirical evidence in the financial 
markets to prove the varying role of transmitter/receiver as in Akyil-
dirim et al. (2022), Farid et al. (2022), Umar et al. (2022). In addition, 
we find that the net spillovers wave sharply during the period. 

Fig. 5 plots the net pairwise spillover in the short-run (panel a) and 
long-run (panel b). At the short-term investment horizons, the specific 
role of this commodity is evident in this figure. For example, CIFI is the 
center of the system, and it receives spillovers shocks from other com-
modities. OOFI contributes the most to the CRFI and CIFI. In the long 
run, CIFI and JJRI receive the main spillovers shocks in this system. 

Interestingly, ENFI contributes the most to CIFI. The primary risk 
source of ENFI is NMFI. In this way, this figure can give us a complete 
picture of the net pairwise relationship. 

To better evaluate the role of COVID-19 on the dynamic net spill-
overs, we divide the full sample into two different samples to compare 
the net pairwise spillover during COVID-19 at different horizons shown 
in Fig. 6. In the short run, the results are similar in the short and long 
run. For example, CIFI is the most recipient, and the primary sources of 
risk are NMBM, JJRI, and ENFI. However, after the COVID-19 pandemic, 
the role of the receiver becomes evident in NFFI. 

In the long run, before COVID, JJRI is the main contributor to APFI 
and ENFI is the main risk source of CIFI. CIFI and APFI are the most 
recipients. Similarly, in the long term, CIFI and OOFI are also the most 
recipients, and the main risk sources are NMFI and NMBM. ENFI con-
tributes the most to CIFI, and the main risk source is NMFI. 

5.2. Portfolio management 

Following Jiang et al. (2019a) and Mensi et al. (2021), the 
wavelet-DCC model is used to construct portfolio specifications for in-
vestors. This section aims to hedge the energy commodity risks by 
including the nonenergy commodity and provide optimal portfolios’ 
weights and hedge ratios. And then, the hedging effectiveness (HE) 
index is employed to evaluate the hedging performance. It is seen that 
the COVID-19 pandemic can increase the total spillovers and make the 
net dynamic connectedness wave intensively in the previous analysis. 
Finally, we divide the total sample into two subsamples to check the role 
of COVID-19 on the hedging performance.15 Tables 5 and 6 show the 

Fig. 5. Net pairwise spillover at different frequency bands. Notes: A node’s red 
(green) color indicates its most significant net transmitter (receiver) of spill-
over, respectively. The edge colors rank the strength of the pairwise directional 
spillover from red (strongest) to purple, pink, blue, light blue, and green 
(weakest). The edge arrow thickness also indicates the strength of the net 
pairwise spillover. 

15 The COVID-19 pandemic time is determined by the outbreak point as in Li 
and Meng (2022), which is the first week of February 2020. 
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main results of our portfolio management. 
Table 5 shows the optimal portfolios’ weights, hedge ratios, and 

hedging effectiveness between energy and nonenergy commodity mar-
kets at the short-term frequency bands. This table has some main take-
aways: first, the optimal weights for different nonenergy commodities 

are pretty different. For example, the pre-COVID weight for NMBM is 
relatively high (0.6194), while the weight for JJRI is meager. In this 
case, we need to put 0.6194 units of assets in the NMBM and 0.3805 
units in the energy commodity market. Second, we find that most pairs 
have a positive hedging ratio. That means we should take a short 

Fig. 6. Net pairwise spillover during COVID-19 at different investment horizons. Notes: See Fig. 5.  

Table 5 
Optimal portfolios’ weights, hedge ratios, and hedging effectiveness between energy and nonenergy commodity markets at the short-term frequency bands.   

Pre COVID-19 Post COVID-19 Full Sample 

Wen,t Ben,t HE (%) Wen,t Ben,t HE (%) Wen,t Ben,t HE (%) 

NMBM 0.6194 0.2620 50.79% 0.6206 0.3331 47.16% 0.6198 0.2844 49.09% 
NMFI 0.7670 0.3681 42.11% 0.5691 0.0969 53.12% 0.7046 0.2826 50.64% 
OOFI 0.7133 0.2895 34.68% 0.7267 0.6180 33.10% 0.7176 0.3931 33.77% 
SOFI 0.7211 0.2554 43.68% 0.8082 0.3419 18.39% 0.7486 0.2827 34.06% 
NFFI 0.6673 0.3450 35.02% 0.7703 0.5648 38.33% 0.6997 0.4143 36.30% 
JJRI 0.3728 0.2045 66.31% 0.5964 0.3680 42.91% 0.4433 0.2560 59.65% 
CIFI 0.5680 0.3304 48.91% 0.7301 0.7830 21.03% 0.6191 0.4731 39.02% 
CRFI 0.8151 0.2080 42.48% 0.8192 − 0.3342 42.08% 0.8164 0.0371 42.31% 
APFI 0.5545 − 0.0266 69.79% 0.7478 0.4457 30.57% 0.6155 0.1223 59.67% 

Note: see note in Table 3. 

Table 6 
Optimal portfolios’ weights, hedge ratios, and hedging effectiveness between energy and nonenergy commodity markets at the long-term frequency bands.   

Pre COVID-19 Post COVID-19 Full Sample 

Wen,t Ben,t HE (%) Wen,t Ben,t HE (%) Wen,t Ben,t HE (%) 

NMBM 0.6118 0.2852 40.99% 0.6254 0.2715 37.49% 0.6161 0.2809 39.17% 
NMFI 0.7980 0.1028 40.34% 0.6495 0.2168 23.40% 0.7512 0.1387 29.65% 
OOFI 0.7635 0.3574 27.03% 0.7682 0.4794 10.47% 0.7650 0.3959 18.10% 
SOFI 0.7939 0.4247 31.65% 0.8082 0.5577 4.60% 0.7984 0.4666 18.71% 
NFFI 0.7450 0.4198 24.10% 0.7760 0.5653 12.35% 0.7548 0.4657 18.54% 
JJRI 0.3928 0.2479 57.87% 0.5356 0.2841 31.94% 0.4378 0.2593 49.59% 
CIFI 0.6258 0.4413 31.02% 0.7485 0.6537 5.58% 0.6645 0.5083 21.19% 
CRFI 0.8518 0.2100 19.83% 0.8619 0.3593 15.00% 0.8550 0.2571 17.62% 
APFI 0.5757 0.1553 50.68% 0.6874 0.1688 28.74% 0.6109 0.1596 43.97% 

Note: see note in Table 4. 
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position in the nonenergy commodities but a long position in the energy 
commodity. For example, the pre COVID hedging ratio for NMBM is 
0.2620, indicating we should take 0.2620 units long part in the energy 
commodity and 0.7380 units short position in the NMBM. Third, one can 
see that the HE index is positive in all cases, meaning that the portfolios 
are efficient in reducing the variance (risks), and this result is in line 
with Jiang et al. (2019a) and Mo et al. (2022). For example, the HE 
index for NMBM is 50.79%, which means the portfolios can decrease 
50.79% of the total variance of the single energy commodity variance. 

Finally, the COVID-19 can work on the hedging performance. On the 
one hand, after the COVID-19, the hedging performance measured by 
the HE index is worse relative to the case pre-COVID. For example, we 
see that the HE index for OOFI is 34.68% before COVID-19, but it is 
lower to 33.10% after COVID. This result is in line with Li and Meng 
(2022), who also show that the COVID-19 pandemic can change the 
hedging effectiveness in the energy stock markets. On the other hand, 
COVID can change the hedging ratio. For example, pre-COVID, the 
hedging ratio is negative for APFI, but it turns positive after COVID. A 
similar case can be found in CRFI. 

Table 6 shows the optimal portfolios’ weights, hedge ratios, and 
hedging effectiveness between energy and nonenergy commodity mar-
kets at the long-term frequency bands. The main results are very similar 
to the case in the short run. First, the weight for the nonenergy com-
modities is positive, implying that we need to have a portion of 
nonenergy commodities in the portfolio construction. For example, the 
weight for NMBM pre-COVID is 0.6118, and which means that we need 
to include 0.6118 units of NMBM in our portfolio. Second, it is revealed 
that the hedging ration β is positive in most cases which means we need 
to have a long position in the energy commodity. For example, the pre 
COVID hedging ratio is 0.2852 for NMBM. We should hold a long po-
sition in the energy commodity but 0.2852 units short position in 
NMBM. Third, the HE index is always positive, and it shows the portfolio 
is efficient, as in Meng et al. (2020). Fourth, the COVID-19 pandemic can 
change the hedging effectiveness, but it cannot reverse the ratio. 

There are some interesting results when comparing the short and 
long run cases. The COVID pandemic has a different role in the hedging 
ratio. Even though COVID can reduce the hedging effectiveness in the 
short and long run, the hedging ratio is always positive, and COVID 
cannot reverse it. This result can complement the main development in 
Li and Meng (2022), where the hedging effectiveness is investigated 
with COVID. We further find that the HE index is smaller relative to the 
short-run portfolios in the long run. For example, the HE index for 
NMBM in the total sample is 49.09% in the short run, but it reduces to 
39.17% in the long run. 

6. Conclusions 

This paper revisits the dynamic connectedness and portfolio man-
agement between China’s energy and nonenergy commodities. To have 
a better evaluation, we address this question from the time-frequency 
domain, and daily data spanning from January 1st, 2017 to June 30th, 
2021 are employed. Since the COVID-19 pandemic has caused extensive 
impacts on the financial markets, as in Bouri et al. (2021), we further 
document the effects of COVID on the dynamic spillovers. 

We find the static evidence that the energy commodity is influenced 
by the spillovers of non-energy commodity markets in the short run. The 
static spillovers are more minor in the long run, and the energy com-
modity is less influenced by the nonenergy commodities, implying that 
the short-term connectedness dominates the long-term case. COVID-19 
can impact the dynamic spillovers: first, the total spillovers increase a 
great deal; second, it can be observed that the spillovers pattern varies 
with the time-frequency domain during COVID-19. To be more specific, 
the energy commodity (ENFI) shows a net receiver role in the short and 
long run before the COVID-19 pandemic, but after it, the role of the net 
transmitter can be seen in the long run with ease. In addition, chemical 
commodities and soft commodities are the primary transmitters in this 

system in the short run, while chemical commodities and coal steel iron 
commodities are the main long-run primary transmitters. The portfolio 
results indicate that the portfolio between energy and non-energy 
commodities is efficient, as Meng et al. (2020). Even though COVID 
can reduce the hedging effectiveness in the short and long run, the 
hedging ratio is always positive, and COVID cannot reverse it in the long 
run. 

Our empirical results highlight implications for both mineral poli-
cymakers and investors. From the policymakers’ perspective, it is clear 
that the spillover transamination is dynamic and different from different 
time horizons. A wise mineral policy should be designed to consider all 
these situations to try to calm down the strong fluctuations of the 
spillovers to keep economic stability. On the other hand, since the 
commodities are necessary primary inputs for business and production, 
the product price and goods price may be sensitive to the wave of 
commodities prices. Policymakers need to consider the dynamic nexus 
between commodities to make suitable policies to reduce the price 
fluctuation. The comprehensive portfolio results can provide ample in-
formation for investors who target the commodities markets in China. In 
addition, COVID-19 can impact the relationship between energy and 
non-energy commodities through the time-frequency perspective, and it 
can also increase the total connectedness. Policymakers should make a 
note of this relationship. The comprehensive portfolio results can pro-
vide ample information for investors who target the commodities mar-
kets in China. First, it is beneficial for investors to construct portfolios by 
including energy and nonenergy commodities. Second, the results vary 
with the time-frequency domain. Investors need to adjust the portfolio 
design accordingly based on the dynamic connectedness results to 
reduce risks. Third, since the COVID-19 pandemic can influence the 
hedging performance, it is suggested that investors should have a 
detailed view of this type of extreme external event. In this paper, we 
target the Chinese commodities markets to examine the relationship 
between energy and nonenergy commodity markets. The potential 
future avenue is that we can try to incorporate the primary global 
commodities and regional commodities into our framework to show 
more complete results. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgment 

This work was financially supported by the foundation of Hubei 
University of Economics (No. 19XY02). 

References 

Akkoc, U., Civcir, I., 2019. Dynamic linkages between strategic commodities and stock 
market in Turkey: evidence from SVAR-DCC-GARCH model. Resour. Pol. 62, 
231–239. 

Ahmad, W., Rais, S., 2018. Time-varying spillover and the portfolio diversification 
implications of clean energy equity with commodities and financial assets. Emerg. 
Mark. Finance Trade 54 (8), 1837–1855. 

Akyildirim, E., Cepni, O., Molnár, P., Uddin, G.S., 2022. Connectedness of energy 
markets around the world during the COVID-19 pandemic. Energy Econ. 109, 
105900. 

Albulescu, C.T., 2021. COVID-19 and the United States financial markets’ volatility. 
Finance Res. Lett. 38, 101699. 

Antonakakis, N., Gabauer, D., 2017. Refined Measures of Dynamic Connectedness Based 
on TVP-VAR. 

Antonakakis, N., Breitenlechner, M., Scharler, J., 2015. Business cycle and financial cycle 
spillovers in the G7 countries. Q. Rev. Econ. Finance 58, 154–162. 

H. Chen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0301-4207(22)00319-1/sref1
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref1
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref1
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref2
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref2
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref2
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref3
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref3
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref3
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref4
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref4
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref5
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref5
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref6
http://refhub.elsevier.com/S0301-4207(22)00319-1/sref6


Resources Policy 78 (2022) 102874

10

Antonakakis, N., Chatziantoniou, I., Gabauer, D., 2020. Refined measures of dynamic 
connectedness based on time-varying parameter vector autoregressions. J. Risk 
Financ. Manag. 13 (4), 84. 

Antonakakis, N., Gabauer, D., Gupta, R., Plakandaras, V., 2018. Dynamic connectedness 
of uncertainty across developed economies: a time-varying approach. Econ. Lett. 
166, 63–75. 

Asl, M.G., Canarella, G., Miller, S.M., 2021. Dynamic asymmetric optimal portfolio 
allocation between energy stocks and energy commodities: evidence from clean 
energy and oil and gas companies. Resour. Pol. 71, 101982. 

Bannigidadmath, D., Narayan, P.K., 2022. Economic importance of correlations for 
energy and other commodities. Energy Econ. 107, 105854. 

Barbaglia, L., Croux, C., Wilms, I., 2020. Volatility spillovers in commodity markets: a 
large t-vector autoregressive approach. Energy Econ. 85, 104555. 
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