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Abstract: Metabolic syndrome (MetS) is a disorder characterized by a group of factors that can
increase the risk of chronic diseases, including cardiovascular diseases and type 2 diabetes mellitus
(T2D). Metabolomics has provided new insight into disease diagnosis and biomarker identification.
This cross-sectional investigation used an untargeted metabolomics-based technique to uncover
metabolomic alterations and their relationship to pathways in normoglycemic and prediabetic MetS
participants to improve disease diagnosis. Plasma samples were collected from drug-naive prediabetic
MetS patients (n = 26), normoglycemic MetS patients (n = 30), and healthy (normoglycemic lean)
subjects (n = 30) who met the inclusion criteria for the study. The plasma samples were analyzed using
highly sensitive ultra-high-performance liquid chromatography electrospray ionization quadrupole
time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). One-way ANOVA analysis revealed that
59 metabolites differed significantly among the three groups (p < 0.05). Glutamine, 5-hydroxy-L-
tryptophan, L-sorbose, and hippurate were highly associated with MetS. However, 9-methyluric
acid, sphinganine, and threonic acid were highly associated with prediabetes/MetS. Metabolic
pathway analysis showed that arginine biosynthesis and glutathione metabolism were associated
with MetS/prediabetes, while phenylalanine, D-glutamine and D-glutamate, and lysine degradation
were highly impacted in MetS. The current study sheds light on the potential diagnostic value of
some metabolites in metabolic syndrome and the role of their alteration on some of the metabolic
pathways. More studies are needed in larger cohorts in order to verify the implication of the above
metabolites on MetS and their diagnostic value.

Keywords: metabolic syndrome; untargeted metabolomics; UHPLC-ESI-QTOF-MS; metabolites;
metabolic pathways; MetaboAnalyst; metabolic profiling

1. Introduction

Metabolic syndrome (MetS) is a disorder characterized by a group of factors that can
increase the risk of chronic diseases, including cardiovascular (CV) disease and type 2
diabetes mellitus (T2D). MetS factors include abdominal obesity, dyslipidemia, increased
blood pressure, and hyperglycemia [1]. MetS can be described as syndrome X, insulin
resistance (IR) syndrome, or obesity dyslipidemia syndrome. The prevalence of MetS is
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positively associated with age and abdominal obesity [2]. Although excess visceral fat is
concerning, abdominal subcutaneous adipose tissue and total body fat can also contribute
to MetS complications, according to the national institute of health (NIH). Abdominal
obesity is defined as a waist circumference of more than 88 cm in women and 102 cm in
men. Furthermore, obese patients with a genetic predisposition, a sedentary lifestyle, or a
disproportionate body fat distribution are more prone to developing T2D or CV diseases.
In addition, these conditions are correlated with IR, which affects glucose and fatty acid
metabolism [3].

There are several definitions for MetS, including those of the National Cholesterol
Education Program Adult Treatment Panel III (NCEP ATP III), World Health Organization
(WHO), International Diabetes Federation (IDF), European Group for the Study of IR (EGIR),
and American Association of Clinical Endocrinologists (AACE) [4]. However, based on IDF,
which we applied in this study, the specific diagnosis of MetS includes at least two of the
following: fasting glucose ≥ 100 mg/dL (or receiving drug therapy for hyperglycemia), high-
density lipoprotein (HDL) cholesterol <40 and <50 mg/dL for men and women, respectively
(or receiving drug therapy for reduced HDL-C), triglycerides ≥ 150 mg/dL (or receiving
drug therapy for hypertriglyceridemia), waist circumference ≥ 88 cm or 102 cm for females
and males, respectively, blood pressure ≥ 130/85 mmHg (or receiving drug therapy for
hypertension [5].

T2D is a multifactorial, multicomponent metabolic disease. It is characterized primar-
ily by the progressive loss of pancreatic β-cells and insulin resistance [6]. Other diabetes
types include T1D (autoimmune β-cell destruction), gestational diabetes mellitus, mono-
genic diabetes syndromes, or secondary diabetes associated with other diseases or due to
drug- or chemical induction (such as with glucocorticoid use) [7]. Prediabetes describes
the phase when blood sugar levels are higher than normal but not yet high enough to be
diagnosed as diabetes. Based on the American Diabetes Association (ADA) guidelines, the
patient is considered prediabetic if the glycosylated hemoglobin (HbA1C) level is 5.7–6.4%
or fasting blood glucose (FBG) is 100–125 mg/dL. However, if the HbA1C level is ≥6.5% or
FBG is ≥126 mg/dL, the patient is considered diabetic [8].

In recent years, omics technologies (metabolomics, proteomics, transcriptomics, and
genomics) have shown quick advancement as a method of choice for early disease diagno-
sis [9]. Metabolites are small molecules that represent an organism or a cell metabolome
and are linked to the functions of the cell via biomarkers [10]. Nowadays, advances in
biomarker discovery are based on the highly developed technology related to liquid chro-
matography coupled with mass spectrometry (LC-MS/MS) used to detect and characterize
biomolecules in complex matrices at a high level of sensitivity and selectivity. Furthermore,
ultra-high-performance liquid chromatography electrospray ionization quadrupole time-
of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) is a highly sensitive, accurate, and
robust analytical technology platform with high profiling identifications of small molecules
in complexes [11]; thus, it was utilized in the current study for the biomarker analysis.

Several targeted and untargeted studies have identified particular metabolites for
MetS and T2D. For instance, Zhong et al. observed several metabolite degradations asso-
ciated with MetS [12]. In addition, an untargeted analysis of samples obtained from 228
participants with MetS showed significant alterations in metabolites [13]. On the other
hand, during an eight-year follow-up period of a 1939 nondiabetic Korean cohort, 282 cases
of incident T2D were identified, in which 22 metabolites were significantly associated with
T2D risk [14].

This study aims to identify prediabetic biomarkers among MetS patients utilizing
UHPLC-ESI-QTOF-MS in a Jordanian cohort. Our study sheds light on the biomarkers
of the early diagnosis of prediabetes associated with MetS and their relation to metabolic
pathways to enhance our understanding of the difference between normoglycemic MetS
and prediabetic MetS.
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2. Results
2.1. Participant and Blood Sample Characteristics

All study participants were Jordanians, with 46 females (53.5%) and 40 males (46.5%).
The average age was 48.75 ± 12.87, with a statistically significant difference between
the MetS groups and the control group (p < 0.001) (Table 1A). The prediabetic MetS group
presented significantly higher values of HbA1c (p2 and p3 < 0.001) than both normoglycemic
MetS and control groups. The two MetS groups showed significantly higher values of diastolic
blood pressure (DBP) (p1 = 0.002, p2 < 0.001), systolic blood pressure (SBP) (p1 and p2 < 0.001),
triglycerides (TG) (p1 and p2 < 0.001), and lower values of HDL-C (p1 and p2 < 0.001) than the
control group did. The prediabetic MetS group showed significantly higher values of DBP
(p3 = 0.019) and TG (p3 = 0.008) than the normoglycemic MetS group did. The prediabetic
MetS group had significantly higher low-density lipoprotein cholesterol LDL-C (p2 = 0.028)
than the control group did. In both MetS groups, waist circumference (WC) and body
mass index (BMI) were significantly higher than in the control group. Both MetS groups
had significantly higher values of MetS-surrogate IR (MetS-IR), triglyceride glucose (TyG)
Index, TyG-BMI, and TyG-WC (p1 and p2 < 0.001) than the control group did (Table 1B).

Table 1. Patients’ demographic (A) and clinical characteristics (B).

(A) Patients’ Demographics

Total Sample
Mean ± SD (n = 86)

Controls
Group Mean ± SD

(n = 30)

Normoglycemic (MetS)
Mean ± SD (n = 30)

Prediabetic MetS
Mean ± SD (n =

26)
p-Value

Female, n (%) 46 (53.5%) 16 (53.3%) 19 (63.3%) 11 (42.3%) 0.113
Age (years) 48.75 ± 12.87 37.83 ± 11.1 54.13 ± 10.72 53.73 ± 9.55 <0.001

(B) Patients’ clinical characteristics

Control Group Mean
± SD (n = 30)

Normoglycemic
MetS

Mean ± SD (n = 30)

Prediabetic MetS
Mean ± SD (n = 26) p1-Value p2-Value p3-Value

BMI (kg/m2) 22.91 ± 2 32.74 ± 4.3 32.87 ± 3.8 <0.001 <0.001 1
SBP

(mmHg) 111.23 ± 9.05 132.20 ± 11.61 138.17 ± 11.55 <0.001 <0.001 0.106

DBP (mmHg) 73.77 ± 6.82 81.43 ± 9.22 87.50 ± 8.93 0.002 <0.001 0.019
HbA1C% 5.13 ± 0.3 5.43 ± 0.243 6.65 ± 1.32 0.471 <0.001 <0.001

FPG (mg/dL) 88.18 ± 8.68 101.07 ± 15.95 124.31 ± 47.38 0.275 <0.001 0.009
TG (mg/dL) 76.33 ± 23.61 168.74 ± 47.14 221.84 ± 102.7 <0.001 <0.001 0.008

LDL-C (mg/dL) 117.1 ± 36.57 129.7 ± 36.57 141.03 ± 43.12 0.493 0.028 0.632
HDL-C (mg/dL) 58.4 ± 10.21 45.87 ± 8.68 45.40 ± 13.03 <0.001 <0.001 1

LDL-C/HDL C ratio 2.06 ± 0.53 2.86 ± 0.73 3.28 ± 1.15 <0.001 0.01 0.188
WC (cm) 77.37 ± 7.74 111.03 ± 10.5 115.2 ± 10.26 <0.001 <0.001 0.287

Surrogate insulin resistance (sIR) indices

MetS-IR 13.08 ± 1.67 22.68 ± 3.018 24.55 ± 3.85 <0.001 <0.001 0.06
TyG Index 8.06 ± 0.39 9.0 ± 0.24 9.38 ± 0.62 <0.001 <0.001 0.005
TyG-BMI 185.14 ± 21.01 294.66 ± 37.93 308.38 ± 39.81 <0.001 <0.001 0.365
TyG-WC 625.3 ± 82.47 999.07 ± 87.59 1081.6 ± 127.91 <0.001 <0.001 0.007

MetS: metabolic syndrome; SD: standard deviation. Comparisons of means and p-values were obtained by the
ANOVA test. Pairwise post hoc comparisons were done through Bonferroni. p1: MetS/normoglycemic group
versus control; p2: MetS/preDM group versus control; p3: MetS/preDM group versus normoglycemic MetS group;
BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HbA1C%: percent glycosylated
hemoglobin; FPG: fasting plasma glucose; TG: triglyceride; LDL-C: low-density lipoprotein cholesterol; HDL-
C: high-density lipoprotein cholesterol; LDL-C/HDL-C: low-density lipoprotein cholesterol to high-density
lipoprotein cholesterol ratio; WC: waist circumference; TyG Index: triglyceride glucose (TG) index, TyG-BMI: TyG
index-to-BMI ratio; TyG-WC: TyG index-to-WC ratio, MetS-IR: Metabolic Score for Insulin Resistance.

2.2. Metabolic Changes

A total of 99 metabolites were found, among which 59 were statistically significant
(p < 0.05) in the three examined groups according to the ANOVA test. The sparse partial
least squares-discriminant analysis (sPLS-DA) showed minimal overlapping, indicating a
difference between the three groups (Figure 1).
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Figure 1. The sparse partial least squares-discriminant analysis (sPLS-Da) for all groups; group one:
control; group two: normoglycemic MetS; group three: prediabetic MetS.

MetaboAnalyst 5.0 software was used to calculate the fold change between every
two groups. The direction of comparison was as follows: normoglycemic MetS/control;
prediabetic MetS/control; prediabetic MetS/normoglycemic MetS. Among the 99 metabo-
lites detected, 35 differed significantly when comparing the control group with normo-
glycemic MetS (22 upregulated vs. 13 downregulated) (Table 2). Specifically, the four
most upregulated metabolites in the normoglycemic MetS group were hippurate (hippuric
acid), L-sorbose, homoveratric acid, and 5-hydroxy-L-tryptophan (Figure 2). In contrast,
3-methylxanthine, 3,4,5 trimethoxy cinnamic acid, 9-methyluric acid, and acetic acid were
highly downregulated in the normoglycemic MetS group compared to those in the control
group (Figure 2).

Table 2. Statically significant metabolites among the normoglycemic MetS and the controls.

t.Stat p.Value FDR Fold Change

Hippuric acid −5.0653 4.29 × 10−6 2.36 × 10−5 144.62
L-Sorbose −7.0091 2.61 × 10−9 3.23 × 10−8 80.759

Homoveratric acid −10.342 2.30 × 10−15 2.28 × 10−13 5.6759
5-Hydroxy-L-tryptophan −9.366 1.10 × 10−13 5.42 × 10−12 5.0849

1,3-Dimethyluric acid −6.4478 1.21 × 10−8 1.33 × 10−7 4.3219
Alpha-Tocopherol −5.0201 3.74 × 10−6 2.18 × 10−5 3.748
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Table 2. Cont.

t.Stat p.Value FDR Fold Change

Indolelactic acid −8.028 1.86 × 10−11 4.61 × 10−10 3.547
L-Glutamine −4.5216 2.79 × 10−5 0.00013146 3.4823

L-Aspartyl-L-phenylalanine −4.5417 1.69 × 10−5 8.78 × 10−5 3.1962
L-Threonine −2.6831 0.0091206 0.027362 1.8144

Glycerophosphocholine −5.2978 1.30 × 10−6 9.19 × 10−6 1.6951
Medroxyprogesterone −3.4628 0.00076961 0.0030477 1.5083

Nonadecanoic acid −4.1575 7.15 × 10−5 0.00030394 1.4801
Indole-3-carbinol −2.4999 0.013962 0.040654 1.4384

3-Hexenedioic acid −2.681 0.0083979 0.025981 1.3861
2,4-Diaminobutyric acid −3.2445 0.001658 0.0060793 1.3345

All-trans-retinoic acid −4.2232 6.02 × 10−5 0.00027072 1.3167
3-Hydroxymethylglutaric acid −3.2301 0.0016254 0.0060793 1.2938

Elaidic acid −5.0285 1.79 × 10−6 1.10 × 10−5 1.2811
Phenylacetaldehyde −4.1249 7.37 × 10−5 0.00030394 1.2643

2-Furoylglycine −3.0855 0.002555 0.0090336 1.1606
L-Glutamic acid −2.4676 0.015037 0.042534 1.1302

Pyroglutamic acid 5.0629 1.71 × 10−6 1.10 × 10−5 0.77785
Saccharopine 2.7334 0.0072891 0.023278 0.76389
Androsterone 2.9115 0.0045829 0.015124 0.75177
Linoleic acid 4.5263 1.77 × 10−5 8.78 × 10−5 0.749

4-Aminohippuric acid 5.4352 3.43 × 10−7 2.83 × 10−6 0.55491
Glycyl-L-leucine 6.6067 1.28 × 10−9 2.11 × 10−8 0.54098

Urea 8.2841 9.31 × 10−12 3.07 × 10−10 0.52527
Nutriacholic acid 6.4667 1.34 × 10−8 1.33 × 10−7 0.4331

3-Indolepropionic acid 3.0702 0.0030686 0.010476 0.30739
Acetic acid 5.8209 1.40 × 10−7 1.26 × 10−6 0.2955

9-Methyluric acid 6.6234 2.53 × 10−9 3.23 × 10−8 0.2591
3,4,5-Trimethoxycinnamic acid 5.4243 7.53 × 10−7 5.73 × 10−6 0.20262

3-Methylxanthine 7.1403 6.53 × 10−10 1.29 × 10−8 0.11684

FDR: false discovery rate.
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Figure 2. Volcano plot of the control group and the normoglycemic metabolic syndrome (MetS) group.

T-test analysis identified 57 significantly different metabolites between the control and
prediabetic MetS groups (39 upregulated vs. 18 downregulated) (Table 3). Specifically, hip-
purate, L-sorbose, 5-hydroxy L-tryptophan, and homoveratric acid were highly upregulated
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in the prediabetic MetS group compared to those in the control group
(Figure 3). In contrast, 3-methylxanthine, 9-methyluric, 3,4,5- trimethoxycinnamic acid,
and 3-indolepropionic acid were highly downregulated in the prediabetic MetS group
compared to those in the control group (Figure 3).

Table 3. Statically significant metabolites among the prediabetic MetS group and the controls.

t.Stat p.Value FDR Fold Change

Hippuric acid −4.997 7.23 × 10−6 3.41 × 10−5 168.99
L-Sorbose −6.5991 2.34 × 10−8 1.54 × 10−7 112.29

5-Hydroxy-L-tryptophan −14.973 3.26 × 10−21 3.23 × 10−19 7.8145
Homoveratric acid −13.381 3.46 × 10−19 1.14 × 10−17 6.7333

Indolelactic acid −8.0659 8.53 × 10−11 9.39 × 10−10 5.7961
1,3-Dimethyluric acid −7.1566 1.76 × 10−9 1.58 × 10−8 5.7356

L-Aspartyl-L-phenylalanine −6.2668 2.84 × 10−8 1.76 × 10−7 4.8287
L-Glutamine −7.0562 3.24 × 10−9 2.47 × 10−8 4.7812

Alpha-Tocopherol −4.1864 9.14 × 10−5 0.00037703 3.2137
Indole-3-carbinol −4.082 0.00010219 0.00038912 1.8178

Glycerophosphocholine −11.298 2.17 × 10−19 1.07 × 10−17 1.7227
Nonadecanoic acid −3.5226 0.00079411 0.002536 1.5918
3-Hexenedioic acid −2.9064 0.0047055 0.010587 1.5583

Medroxyprogesterone −3.3856 0.0010441 0.0031729 1.5147
Heptadecanoic acid −3.8583 0.00025945 0.00095133 1.4928

Trimethylamine −8.3473 2.96 × 10−13 4.19 × 10−12 1.4759
Quinaldic acid −3.17 0.0024236 0.0063142 1.4694

3-Hydroxymethylglutaric acid −2.8211 0.0063286 0.013923 1.4489
L-Norleucine −2.6868 0.0085954 0.017728 1.355

L-Glutamic acid −5.3425 5.02 × 10−7 2.62 × 10−6 1.2829
2-Furoylglycine −4.6727 8.55 × 10−6 3.85 × 10−5 1.2707

Elaidic acid −4.7976 5.15 × 10−6 2.55 × 10−5 1.2702
Benzoic acid −3.2383 0.001675 0.0047047 1.2563
o-Tyrosine −2.9137 0.0045066 0.010587 1.2511

m-Coumaric acid −3.0439 0.0029627 0.0075208 1.2423
Pantothenic acid −3.3059 0.0013618 0.0039652 1.238

2,4-Diaminobutyric acid −3.1673 0.0020146 0.0053904 1.2297
L-Proline −2.7595 0.0070984 0.014952 1.2077

Allantoic acid −3.2264 0.0017108 0.0047047 1.2058
Pipecolic acid −2.3124 0.022748 0.041705 1.2013
L-Carnitine −2.4289 0.017903 0.034085 1.1728
Creatinine −3.0407 0.0031613 0.0076335 1.1642

m-Aminobenzoic acid −2.5326 0.012834 0.025931 1.1603
Indole −2.894 0.0046922 0.010587 1.1492

L-Histidine −2.3403 0.021428 0.040027 1.1351
3-Methylindole −3.587 0.00051176 0.0016888 1.1249
Cinnamic acid −2.4588 0.015506 0.030701 1.1234

Phenylacetic acid −2.756 0.006908 0.014867 1.0948
L-Tryptophan −2.2723 0.025179 0.044513 1.0784

Benzamide 3.0269 0.0030779 0.0076178 0.89678
5-Hydroxylysine 2.3014 0.023624 0.042523 0.84997

Pregnenolone sulfate 2.4517 0.015934 0.030931 0.79827
Sphingosine 2.2348 0.027463 0.047699 0.79163

Androsterone 3.384 0.0010576 0.0031729 0.70978
Saccharopine 3.7427 0.00029123 0.0010297 0.65817

Nutriacholic acid 4.4071 3.36 × 10−5 0.00014474 0.59816
Thyroxine 4.0722 9.57 × 10−5 0.00037908 0.59602

4-Aminohippuric acid 6.6679 2.82 × 10−9 2.33 × 10−8 0.51509
Glycyl-L-leucine 6.9782 2.37 × 10−10 2.34 × 10−9 0.49622

Vitamin D3 5.7192 1.93 × 10−7 1.06 × 10−6 0.47169
Urea 10.172 5.50 × 10−15 1.09 × 10−13 0.41933

Sphinganine 10.711 1.67 × 10−18 4.12 × 10−17 0.31225
Acetic acid 6.5618 1.11 × 10−8 7.85 × 10−8 0.2382

3-Indolepropionic acid 3.6696 0.00049507 0.0016888 0.18522
3,4,5-Trimethoxycinnamic acid 6.3521 3.30 × 10−8 1.92 × 10−7 0.1117

9-Methyluric acid 9.4247 1.56 × 10−13 2.58 × 10−12 0.059596
3-Methylxanthine 8.2614 1.96 × 10−11 2.42 × 10−10 0.026165
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The t-test identified 18 metabolites as significantly different between the normoglycemic
MetS and prediabetic MetS groups (upregulated 8 vs. 10 downregulated) (Table 4). Specif-
ically, threonic acid, indolelactic acid, trimethylamine, and 5-hydroxy L-tryptophan were
highly upregulated in the prediabetic MetS group compared to those in the normoglycemic
MetS group (Figure 4). In contrast, 9-methyluric acid, sphinganine, vitamin D3, and de-
oxycholic acid glycine conjugate were highly downregulated in the prediabetic MetS group
compared to those in the normoglycemic MetS, as indicated in the volcano plot (Figure 4).

Table 4. Statically significant metabolites among the prediabetic MetS and the normoglycemic MetS
groups.

t.Stat p.Value FDR Fold Change

Threonic acid 2.7699 0.0075509 0.043973 1.9592
Indolelactic acid 3.393 0.0010926 0.0090136 1.6339
Trimethylamine 10.182 1.53 × 10−17 7.55 × 10−16 1.5493

5-Hydroxy-L-tryptophan 4.4509 2.08 × 10−5 0.00041226 1.5388
Quinaldic acid 2.8608 0.0055763 0.036804 1.434

Nutriacholic acid 4.105 8.81 × 10−5 0.001246 1.3812
Pyroglutamic acid 4.1094 7.98 × 10−5 0.001246 1.2941
L-Glutamic acid 2.9216 0.0042316 0.029923 1.1351

Phenylacetaldehyde −2.9494 0.0038999 0.029699 0.82477
Urea −6.2806 6.91 × 10−9 2.28 × 10−7 0.79831

L-Acetylcarnitine −2.7699 0.0067091 0.041513 0.79586
5-Hydroxylysine −3.6543 0.00040633 0.0040226 0.7697

Pregnenolone sulfate −2.7043 0.0080906 0.044498 0.70729
2-Phenylbutyric acid −3.9444 0.00014566 0.0018025 0.67892

Deoxycholic acid glycine conjugate −3.5347 0.00060533 0.005448 0.54356
Vitamin D3 −5.7136 1.36 × 10−7 3.36 × 10−6 0.54128

Sphinganine −12.621 7.37 × 10−23 7.29 × 10−21 0.27442
9-Methyluric acid −3.7467 0.00037414 0.0040226 0.2172
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2.3. Functional Analysis Pathway Changes

The pathway analysis’ modules on the MetaboAnalyst 5.0 (http://www.metaboanalyst.
ca/, accessed on 20 April 2022) were performed by importing the set of significantly dys-
regulated metabolites matching the human metabolome database (HMDB), PubChem,
and KEGG database for every two groups and then categorizing the metabolites based
on the KEGG database. The first pathway analysis module was created for the sig-
nificantly dysregulated metabolites among the control group and the normoglycemic
MetS. Arginine biosynthesis (p-value = 0.003), D-glutamine and D-glutamate metabolism
(p-value = 0.003), phenylalanine metabolism (p-value = 0.026), aminoacyl-tRNA biosynthe-
sis (p-value = 0.032), and glyoxylate and dicarboxylate metabolism (p-value = 0.01) were
significantly identified as the metabolic pathways in which altered metabolites between
the groups were implicated in the normoglycemic MetS group compared to those in the
control group (Figure 5A). The second module for the pathway analysis was constructed
on the significantly dysregulated metabolites of the control group with the prediabetic
MetS group. The latter group showed that arginine biosynthesis (p-value = 0.005), the
D-glutamine and D-glutamate metabolism (p-value = 0.009), phenylalanine metabolism
(p-value = 0.026), aminoacyl-tRNA biosynthesis (p-value = 0.007), glyoxylate and dicar-
boxylate metabolism (p-value = 0.05), nitrogen metabolism (p-value = 0.009), and lysine
degradation (p-value = 0.026) were significantly identified as the metabolic pathways in
which altered metabolites between the groups were implicated in the prediabetic MetS
group compared to those in the control group (Figure 5B). Finally, the third module was
designed for the normoglycemic MetS group and the prediabetic MetS group. Arginine
biosynthesis (p-value = 0.006) and glutathione metabolism (p-value = 0.025) were signifi-
cantly altered in the prediabetic MetS group compared to those in the normoglycemic MetS
group (Figure 5C). A random sample from each of the three groups of the UHPLC-QTOF-
MS base peaks chromatograms is shown in (Figure 6A–C).

http://www.metaboanalyst.ca/
http://www.metaboanalyst.ca/
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Figure 6. Positive ion base peak intensity chromatograms obtained from the analysis of (A) the
control group, (B) the prediabetic MetS group, and (C) the normoglycemic MetS group.

3. Discussion

We performed a cross-sectional study that compared MetS patients with prediabetes
vs. normoglycemic MetS patients and controls using untargeted LC-MS/MS. A total of
57 metabolites were significantly associated with prediabetes in MetS patients in relation
to the control group. MetS is insulin-resistance-related, which, in turn, is associated with
renal diseases. Therefore, the metabolites considered as biomarkers of renal illnesses can
be utilized to diagnose MetS [15]. Notably, hippurate has been reported as a uremic toxin
associated with disease progression in patients with chronic kidney disease [16]. Our
results showed that hippurate was highly upregulated in normoglycemic MetS (144.6-fold)
and prediabetic MetS patients (169-fold) compared to that in the control, emphasizing
the likelihood of its association with MetS. Furthermore, this finding agrees with another
metabolomic study that also revealed that hippurate is a potential biomarker in prediabetic
and diabetic models [17].

Carbohydrates, including fructose and glucose, are associated with MetS [18]. A meta-
analysis of 18 studies found an increased risk of MetS with carbohydrate consumption [19].
Fructose is retained within the small intestine and metabolized within the liver, where it
invigorates fructolysis, glycolysis, lipogenesis, and glucose generation, leading to MetS [20].
Interestingly, in contrast to the previous findings, we found that L-sorbose was the one to
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be highly associated with MetS when comparing the normoglycemic MetS group (80.8-fold)
and the prediabetic MetS group (112.3-fold) vs. the control group. The mass spectra and
chemical structure of L-sorbose are shown in (Supplementary Figure S2A).

The metabolite 9-methyluric acid was highly downregulated in the prediabetic MetS
group vs. the control group (0.06-fold) and vs. the normoglycemic MetS group (0.26-fold).
As 9-methyluric acid is a methyl derivative of the antioxidant (uric acid), its low level
can result in oxidative stress and endothelial dysfunction, which leads to diabetes [21,22].
Our results indicate the likelihood of 9-methyluric acid being a potential biomarker for
T2D, specifically in MetS/prediabetic patients, especially since 7-methyluric acid (which is
another methyl derivative of uric acid) has been reported as a potential biomarker in type 2
diabetes [23].

Threonic acid was upregulated in the prediabetic MetS group compared to that in the
normoglycemic MetS group (1.96-fold), indicating threonic acid as a possible biomarker
for prediabetes. Threonic acid is the main breakdown product of ascorbic acid, and it has
been reported before in a metabolomic profile study to be a potential biomarker in diabetic
retinopathy [24], suggesting that threonic acid could be a potential biomarker for T2D,
specifically in MetS/prediabetes patients as per our data.

A previous study observed higher levels of 5-hydroxy L-tryptophan, 5-hydroxyin
doleacetic acid, kynurenic acid, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid in T2D
patients [25]. This is in agreement with our results which showed an increase in 5-hydroxy
L-tryptophan among the prediabetic MetS group compared to that in the control (7.8-fold)
and compared to that in the normoglycemic MetS group (1.5-fold). The mass spectra and
chemical structure of 5-hydroxy L-tryptophan are shown in (Supplementary Figure S2B).

Sphinganine was downregulated in the prediabetic MetS group compared to the
control group (0.3-fold) and compared to the normoglycemic MetS group (0.27-fold). Sph-
inganine inhibits LDL-induced cholesterol esterification, causing unesterified cholesterol
to concentrate in perinuclear vesicles and blocking post-lysosomal cholesterol transport.
Endogenous sphinganine has been postulated as a possible cholesterol transport inhibitor
in Niemann–Pick Type C (NPC) illness [26,27]. High cholesterol-to-HDL-cholesterol
(HDL-C) ratio can indicate T2D, as elevated cholesterol levels impair glucose tolerance [28].
The downregulation of sphinganine was in agreement with a previous metabolomic study
that reported that sphinganine was downregulated in diabetic patients compared to that
in normal patients [29]. Taken together, sphinganine could be a potential biomarker for
prediabetic patients, particularly those with MetS. The utilized instrument can analyze
a wide range of metabolites with high resolution and accuracy. Our research utilized
UHPLC-ESI-QTOF-MS to identify plasma biomarkers that characterize the association be-
tween MetS and prediabetes. The untargeted approach was highly effective in identifying
biomarkers of phenotype studies. However, the relatively small number of patients may be
considered a limitation in probing associations and the age and the BMI, which were not
matched among the groups. A future targeted study related to our findings can be done to
validate the obtained results.

3.1. The Arginine Biosynthesis Pathway

The arginine pathway was significantly perturbed when comparing each normoglycemic
MetS group and prediabetic MetS group with the control (Figure 5A–C). Additionally, it was
impacted in the prediabetic MetS group vs. the normoglycemic MetS group. Arginine plays
a vital role in several biological processes, and it has been related to diabetes pathogenesis,
where arginine biosynthesis has been found to affect glucose homeostasis, lipolysis, hormone
levels, insulin resistance, and fetal programming in the early stages. The L-arginine–nitric
oxide pathway, which can activate cell signal proteins, is a plausible signaling mechanism for
the positive effects of L-arginine [30]. In humans, arginine plays an indispensable role as a
necessary substrate in the urea cycle, which involves using arginine to transport nitrogenous
wastes. However, the decrease in arginine availability for the liver slows down ureagen-
esis [31], which can explain the downregulation of urea in our results. Furthermore, the
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enrichment analysis performed between the normoglycemic MetS vs. control, prediabetic
MetS vs. normoglycemic MetS, and prediabetic MetS vs. control groups showed that the
urea metabolite was significantly impacted (Supplementary Figure S1A–C).

3.2. The D-Glutamine and D-Glutamate Metabolism Pathway

D-glutamine and D-glutamate metabolism was significantly impacted when com-
paring each prediabetic MetS and normoglycemic MetS group with the control group
(Figure 5A,B). Previous studies have shown glutamine and aromatic amino acids to be
higher in T2D patients [32]. Our results validate these findings, with glutamine (4.8-fold),
tryptophan (1.1-fold), and tyrosine (1.3-fold) levels being significantly higher in the pre-
diabetic MetS group than in the control group (p < 0.05). In addition, glutamine was
shown to be upregulated in the normoglycemic MetS group relative to that in the control
group (3.5-fold), emphasizing its association with MetS (Table 2). Li Y et al. reported
several pathways to be associated with MetS; however, in accordance with our results,
D-glutamine and D-glutamate metabolism was impacted [33]. In our results, D-glutamine
and D-glutamate metabolism was highly affected by L-glutamine and L-glutamate
(L-glutamic acid) metabolites, which tended to be upregulated as reported above. Addi-
tionally, the hyperinsulinism/hyperammonemia syndrome could develop due to increased
glutamate dehydrogenase activity [34]. The evidence mentioned above emphasizes the
likelihood of the association between MetS and D-glutamine and D-glutamate metabolism.

3.3. The Phenylalanine Metabolism Pathway

Phenylalanine metabolism was impacted when comparing the normoglycemic MetS
group with the control group (Figure 5A). Li Y et al. also observed phenylalanine metabolism
to be associated with MetS [33]. Our data showed that phenylalanine metabolism was
altered due to phenylacetaldehyde and hippurate both being upregulated in the normo-
glycemic MetS group (1.26-fold and 144.6-fold, respectively). Additionally, Adams and fel-
lows reported phenylalanine and tyrosine metabolism alteration in obese, insulin-resistant,
and T2DM patients [35]. A previous study found cysteine, phenylalanine, and tyrosine
to have a significantly higher level of nitrotyrosine, which was used to assess oxidative
stress among T2DM patients [36]. In addition, aromatic amino acids (phenylalanine and
tyrosine) have been associated in other studies with insulin resistance and an increased
risk of developing diabetes [32,37]. Interestingly, we observed a phenylalanine metabolism
alteration to be associated with MetS. Phenylalanine hydroxylase (PAH) is an enzyme
expressed in the liver and kidney responsible for phenylalanine metabolism [38]. The
occurrence of such metabolic disease help in explaining the pathway’s impact to MetS, as
noted in our data.

3.4. The Lysine Degradation Pathway

Lysine degradation was altered when comparing the prediabetic MetS group with the
control group (Figure 5B). In T2DM patients, lysine treatment was found to have a thera-
peutic effect in reducing the formation of glycated lysozyme [39,40]. Protein glycation is a
well-known process linked to long-term hyperglycemia, which has been linked to various
pathophysiological diseases, including cancer, inflammation, metabolic dysfunctions, and
aging [41]. According to our data, the pathway was impacted mainly by downregulated
(0.66-fold and 0.85-fold, respectively) saccharporine and L-hydroxylysine, and L-pipecolic
acid, which was upregulated in the prediabetic MetS group (1.2-fold).

3.5. The Glutathione Metabolism Pathway

Glutathione metabolism was perturbed when comparing the prediabetic MetS group
with the normoglycemic MetS group (Figure 5C; Supplementary Figure S1A,B). Glutathione
(γ-glutamyl-cysteinyl glycine) is a major intracellular antioxidant that reduces oxidative
stress. There has been evidence that erythrocyte glutathione (GSH) concentrations are
decreased in patients with T2D [42]. A study on patients with T2D showed similar concen-
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trations of total erythrocyte glutathione levels compared to those in nondiabetic controls,
but reduced GSH. Higher levels of oxidized glutathione (GSSG) indicate increased up-
take [43], by which impaired glutathione metabolism can lead to hyperglycemia. Oxidative
stress is significantly increased in microvascular complications, but it is unclear whether
patients with complications have more glutathione metabolic disorders than patients with
uncomplicated diabetes do [42]. In our study, glutathione metabolism was mainly im-
pacted by L-glutamate and pyroglutamic acid, both upregulated (1.14-fold and 1.3-fold,
respectively) in the prediabetic MetS group.

3.6. Aminoacyl tRNA Biosynthesis

Aminoacyl tRNA biosynthesis was perturbed when comparing the two MetS groups to
the control group. As a part of protein synthesis, aminoacyl-tRNA synthetases pair tRNAs
with amino acids for mRNAs decoding per the genetic code [44]. Synthetases also appear
to be important in many other cellular processes, with profound implications in health and
diseases, including metabolic and autoimmune disorders [45]. In concordance with our
results, Zhang et al. observed aminoacyl-tRNA biosynthesis pathway perturbation among
MetS patients [46]. Furthermore, and in agreement with our findings, aminoacyl-tRNA
biosynthesis was also found to be altered in a metabolomic profiling analysis in predia-
betics [47]. Taken together, our results and previous findings emphasize the association of
aminoacyl tRNA with MetS.

3.7. Glyoxylate and Dicarboxylate Metabolism

In the current study, glyoxylate and dicarboxylate metabolism was also altered in the
two MetS groups compared to that in the control group. This finding agrees with a recently
published study using metabolic profiling analysis in prediabetes, where they observed
glyoxylate and dicarboxylate metabolism to be among the significantly perturbed metabolic
pathways [47]. A review of cardiometabolic diseases, including MetS, reported several
pathways to be altered, of which glyoxylate and dicarboxylate metabolism and aminoacyl-
tRNA biosynthesis were highly significant [48]. Further, altered metabolism of glyoxylate
and dicarboxylate has been linked to mitochondrial dysfunction, which negatively affects
the ability to detoxify reactive oxygen species (ROS) in elderly females [49]. The increase
in ROS causes cellular damage and further leads to oxidative stress [50], which is often
associated with MetS [51]. In our results, glyoxylate and dicarboxylate metabolism were
highly affected by L-glutamine, L-glutamate, and threonine metabolites, which tended to
be upregulated as mentioned above and thus may be linked to MetS occurrence.

3.8. Nitrogen Metabolism

Our results showed that nitrogen metabolism was also impacted in the two MetS
groups compared to that in the control group. This finding also agrees with a recent
study done by Li et al., as they found that nitrogen metabolism was altered in the simple
diabetic group compared to that in those with impaired fasting glucose, which represent
a prediabetic group [52]. This also agrees with another study reporting that the nitrogen
metabolism pathway and its components are potential effectors of the earliest stages of
type 2 diabetes pathophysiology [53].

4. Materials and Methods
4.1. Population and Study Design

The patients’ samples were collected from Jordan University Hospital, and the meta
bolomics study was conducted at the Sharjah Institute of Medical Research (SIMR). The
samples were divided into three groups: control group (30), normoglycemic MetS patients
(30), and prediabetic MetS patients (26).

The inclusion criteria for all the groups were age between 18 and 75 years old
and agreement to participate in the study. The inclusion criteria of the control group
were normal weight (body mass index (BMI) < 25 kg/m2) and normal plasma glucose



Metabolites 2022, 12, 508 14 of 19

(HbA1C < 5.7%). For the normoglycemic MetS group, the inclusion criteria were normal
plasma glucose (HbA1C < 5.7%, FPG < 100 mg/dL) with ≥2 MetS components according
to the IDF [4] and being overweight (BMI > 25 kg/m2) or obese (BMI > 30 kg/m2). For
the prediabetic MetS group, the inclusion criteria were ≥2 MetS components according to
the IDF [4] with newly diagnosed prediabetes according to the ADA guidelines [8] and
being anti-hyperglycemic drug-naive and either overweight or obese. All included patients
fasted for 10–12 h before sample collection. In addition, the lipid profile, FBG, and HbA1C
were tested.

The exclusion criteria were: (1) nonfasting candidates; (2) pregnant or breastfeeding
females; (3) participants who received any prior anti-diabetic agent either for diabetes itself
or for any other condition associated with hyperglycemia (sulfonylureas, meglitinides,
biguanides, thiazolidinediones, alpha-glucosidase inhibitors), antihyperlipidemic agent
(hydroxymethylglutaryl-CoA reductase inhibitors, fibric acids derivatives, bile acid-binding
resins, nicotinamides, cholesterol absorption inhibitors), or antihypertensives including
diuretics, calcium channel blockers (CCB), angiotensin-converting enzyme (ACE) inhibitors,
adrenergic receptor antagonists, renin inhibitors, vasodilators, or angiotensin II receptor
blockers (ARBs); (4) clinical evidence of autoimmune or life-threatening disease (alco-
hol/drug abuse/recently diagnosed untreated endocrine disorder); (5) individuals with
known autoimmune diseases such as inflammatory bowel disease or obesity secondary to
endocrine derangement other than DM.

The selected participants were randomly approached in the patients’ waiting area
or the triage station in outpatient family medicine clinics. Those who were evident to
meet the inclusion criteria were asked to participate in the study, and upon their approval,
informed consent was given. The study commenced after approval from the Research
Ethics Committee of Jordan University Hospital. The study was conducted according to
the guidelines of the Declaration of Helsinki, and the volunteers have been informed in
detail about the study before signing the consent forms.

4.2. Collection of Samples

A total of 86 individuals were recruited in the study. Plasma samples were collected
from 30 healthy patients, 30 normoglycemic MetS patients, and 26 prediabetic MetS pa-
tients. Plasma was obtained after collecting samples into heparinized tubes followed by
centrifugation for 5 min (14,000 rpm). Plasma samples were subsequently stored at −80 ◦C
and shipped to the Research Institute University of Sharjah for further analysis.

4.3. Preparation of the Samples for Metabolomics Extraction

Samples were divided into Eppendorf of 100 µL each, 300 µL of methanol (Wunstorfer
Strasse, Seelze, Germany) was added, followed by vortex and incubation at −20 ◦C for 2 h.
Next, the samples were vortexed and then centrifuged at 14,000 rpm for 15 min. Then, the
supernatant was evaporated using Speed vacuum evaporation at 35–40 ◦C. Next, a quality
control (QC) sample was prepared by pooling the same volume of each sample to evaluate
the reproducibility of the analysis. The extract samples were then resuspended with
250 µL of 0.1% formic acid in Deionized Water-LC-MS CHROMASOLV from Honeywell
(Wunstorfer Strasse, Seelze, Germany). Then, the supernatant was filtered using a 0.45 µm
pore size hydrophilic nylon syringe filter for LC-MS/MS analysis using 100 µL of the
prepared sample collected in an insert within LC glass vials.

4.4. Ultra-High-Performance Liquid Chromatography Coupled to Electrospray Ionization and
Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-ESI-QTOF-MS)

An ultra-high-performance liquid chromatography system (UHPLC) (Bruker Daltonik
GmbH, Bremen, Germany) coupled to a quadrupole time-of-flight mass spectrometer
(QTOF) was utilized to perform the LC-MS/MS analysis. The system was equipped with
an electrospray ionization (ESI) source, a solvent delivery systems pump (HPG 1300),
an autosampler, and a thermostat column compartment. Windows 10 Enterprise 2016
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LTSB was used as the computer operating system. The data management software was
Bruker Compass HyStar 5.0 SR1 Patch1 (5.0.37.1), Compass 4.1 for otofSeries, otof Control
Version 6.2.

Mobile phases A (water with 0.1% formic acid) and B (acetonitrile with 0.1% formic
acid) were employed. The gradient program was: 0–2 min, 99% A: 1% B; 2–17 min, 99–1%
A: 1–99% B; 17–20 min, 99% B: 1% A. The flow rate was fixed at 0.25 mL/min. Subsequently,
20–20.1 min 99% B to 99% A; 20.1–28.5 min, 99% A: 1% B at 0.35 mL/min flow rate;
28.5–30 min; 99% A: 1% B at 0.25 mL/min. A 10 µL aliquot of the sample was in-
jected, and the separation was performed on a Hamilton® Intensity Solo 2 C18 column
(100 mm × 2.1 mm × 1.8 µm) at a column oven temperature set at 35 ◦C.

The ESI source conditions for every injection were as follows: the drying gas flow rate
was 10.0 L/min at a temp of 220 ◦C; the capillary voltage was set at 4500 V; a nebulizer
pressure of 2.2 bar. For MS2 acquisition, the collision energy stepping fluctuated between
100 and 250% set at 20 eV and an End Plate offset of 500 V [54]. Sodium formate was used
as a calibrant for the external calibration step.

The acquisition involved two segments; auto MS scan, which ranged from 0 to
0.3 min for the calibrant sodium formate, and auto MS/MS, which included fragmen-
tation and ranged from 0.3 to 30 min. The acquisition in both segments was performed
using the positive mode at 12 Hz. The automatic in-run mass scan range was from 20 to
1300 m/z, the width of the precursor ion was ±0.5, the number of precursors was 3, the
cycle time was 0.5 s, and the threshold was 400 cts. Active exclusion was excluded after 3
spectra and released after 0.2 min.

4.5. Data Processing and Analysis

The data was processed using MetaboScape® 4.0 software (Bruker Daltonics, Billerica,
MA, USA) [55]. Bucketing parameters of the processed data in T-ReX 2D/3D workflow
were as follows: intensity threshold of 1000; peak length of 7 spectra; utilizing peak area
for quantifying the feature. The calibration for mass spectra was done in 0–0.3 min with
features ranging in at least 30 to 172 samples. However, the auto MS/MS scan was done
using the average method. The scan parameters were at a retention time range of 0.3
to 25 min and a mass range of 50 to 1000 m/z. Each sample was analyzed in duplicate
by LC-QTOF, which generated a data set of 15,000 features across 86 samples of the three
examined groups. Identification of metabolites was based on mapping the MS/MS spectra
and retention time in the HMBD 4.0, an annotated resource designed to satisfy the needs
of the metabolomics community [56]. The compounds with MS/MS were identified using
library matching through the annotation process. Then, the selected metabolites were filtered
by choosing the set with a higher annotation quality score (AQ score) representing the best
retention time values, MS/MS score, m/z values, mSigma, and analyte list spectral library. A
total of 99 distinct metabolites were selected after filtration (Supplementary Table S1). The
chemical structures of the distinct metabolites are shown in (Supplementary Table S2). The
quantification of the data matrix was based on the peak intensity of each metabolite. The
metabolite datasets included only the significant compounds registered in the HMDB 4.0
with p < 0.05

The metabolite datasets were exported as a CSV file and imported into MetaboAnalyst
5.0 software (Mcgill University, Montreal, QC, Canada), a comprehensive platform for
metabolomics data analysis [57]. The sPLS-DA was performed using MetaboAnalyst to
select the most discriminative features in the examined group to aid in classifying the
samples [56]. The false discovery rate (FDR) method was utilized to correct multiple
hypothesis testing and reduce the rate of false positives.

4.6. Metabolic Pathway and Statistical Analysis

The enrichment metabolite sets and pathway analysis were processed using Metabo-
Analyst 5.0 [57]. For statistical analysis, univariate statistical tests: analysis of variance
(ANOVA) for all three groups (control, normoglycemic MetS, and prediabetic MetS), and
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unpaired t-tests for every two groups (control and normoglycemic MetS; control and predi-
abetic MetS; normoglycemic MetS and prediabetic MetS) were employed using MetaboAn-
alyst 5.0. A p-value of <0.05 was considered statistically significant.

5. Conclusions

Our study demonstrated the metabolites and metabolic pathways in MetS patients
with and without prediabetes among a Jordanian cohort. Glutamine, 5-hydroxy-L-tryp
tophan, L-sorbose, and hippurate were highly altered with MetS (both normoglycemic
and prediabetic; n = 56). However, 9-methyluric acid, sphinganine, and threonic acid
were highly associated with prediabetes, which might be particularly associated with
MetS. In addition, arginine biosynthesis and glutathione metabolism were associated
with MetS/prediabetes, while D-glutamine and D-glutamate, phenylalanine metabolism,
aminoacyl tRNA biosynthesis, glyoxylate and dicarboxylate metabolism, and nitrogen
metabolism were highly impacted in MetS. More studies are needed in larger cohorts in
order to verify the implication of these metabolites on MetS and their diagnostic value.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060508/s1, Figure S1: (A) Enrichment Analysis of
Controls and Normoglycemic MetS (B) Enrichment Analysis of Normoglycemic MetS and Prediabetic
MetS (C) Enrichment Analysis of Controls and Prediabetic MetS; Figure S2: Mass spectra for L-sorbose
(A) and 5-Hydroxy-L-tryptophan (B); Table S1: Retention time and MS/MS, Table S2: Chemical
structures of metabolites.
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