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Background: Artificial intelligence (AI) in medicine has shown 
significant promise, particularly in neuroimaging. AI increases ef-
ficiency and reduces errors, making it a valuable resource for 
physicians. With the increasing amount of data processing and 
image interpretation required, the ability to use AI to augment 
and aid the radiologist could improve the quality of patient care.
Observations: AI can predict patient wait times, which may 
allow more efficient patient scheduling. Additionally, AI can save 
time for repeat magnetic resonance neuroimaging and reduce 
the time spent during imaging. AI has the ability to read com-
puted tomography, magnetic resonance imaging, and positron 

emission tomography with reduced or without contrast without 
significant loss in sensitivity for detecting lesions. Neuroimag-
ing does raise important ethical considerations and is subject 
to bias. It is vital that users understand the practical and ethical 
considerations of the technology.
Conclusions: The demonstrated applications of AI in neuroim-
aging are numerous and varied, and it is reasonable to assume 
that its implementation will increase as the technology matures. 
AI’s use for detecting neurologic conditions holds promise in 
combatting ever increasing imaging volumes and providing 
timely diagnoses. 
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A rtificial intelligence (AI) in medicine has 
shown significant promise, particularly in 
neuroimaging. AI refers to computer sys-

tems designed to perform tasks that normally 
require human intelligence.1 Machine learning 
(ML), a field in which computers learn from 
data without being specifically programmed, 
is the AI subset responsible for its success in 
matching or even surpassing humans in certain 
tasks.2 

Supervised learning, a subset of ML, uses 
an algorithm with annotated data from which to 
learn.3 The program will use the characteristics of 
a training data set to predict a specific outcome 
or target when exposed to a sample data set of 
the same type. Unsupervised learning finds nat-
urally occurring patterns or groupings within the 
data.4 With deep learning (DL) algorithms, com-
puters learn the features that optimally repre-
sent the data for the problem at hand.5 Both ML 
and DL are meant to emulate neural networks in 
the brain, giving rise to artificial neural networks 
composed of nodes structured within input, hid-
den, and output layers. 

The DL neural network differs from a conven-
tional one by having many hidden layers instead 
of just 1 layer that extracts patterns within the 
data.6 Convolutional neural networks (CNNs) are 
the most prevalent DL architecture used in med-
ical imaging. CNN’s hidden layers apply convo-
lution and pooling operations to break down an 
image into features containing the most valuable 
information. The connecting layer applies high-
level reasoning before the output layer provides 
predictions for the image. This framework has 

applications within radiology, such as predict-
ing a lesion category or condition from an image, 
determining whether a specific pixel belongs to 
background or a target class, and predicting the 
location of lesions.1

AI promises to increase efficiency and re-
duces errors. With increased data processing 
and image interpretation, AI technology may help 
radiologists improve the quality of patient care.6 
This article discusses the current applications 
and future integration of AI in neuroradiology.

NEUROIMAGING APPLICATIONS 
AI can improve the quality of neuroimaging and 
reduce the clinical and systemic loads of other 
imaging modalities. AI can predict patient wait 
times for computed tomography (CT), magnetic 
resonance imaging (MRI), ultrasound, and X-ray 
imaging.7 A ML-based AI has detected the vari-
ables that most affected patient wait times, 
including proximity to federal holidays and se-
verity of the patient’s condition, and calculated 
how long patients would be delayed after their 
scheduled appointment time. This AI modal-
ity could allow more efficient patient schedul-
ing and reveal areas of patient processing that 
could be changed, potentially improving patient 
satisfaction and outcomes for time-sensitive 
neurologic conditions. 

AI can save patient and health care practi-
tioner time for repeat MRIs. An estimated 20% 
of MRI scans require a repeat series—a mas-
sive loss of time and funds for both patients and 
the health care system.8 A DL approach can de-
termine whether an MRI is usable clinically or  
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unclear enough to require repetition.9 This ini-
tial screening measure can prevent patients from 
making return visits and neuroradiologists from 
reading inconclusive images. AI offers the op-
portunity to reduce time and costs incurred by 
optimizing the health care process before imag-
ing is obtained.

Speeding Up Neuroimaging
AI can reduce the time spent performing im-
aging. Because MRIs consume time and re-
sources, compressed sensing (CS) is commonly 
used. CS preferentially maintains in-plane res-
olution at the expense of through-plane reso-
lution to produce a scan with a single, usable 
viewpoint that preserves signal-to-noise ratio 
(SNR). CS, however, limits interpretation to sin-
gle directions and can create aliasing artifacts. 
An AI algorithm known as synthetic multi-ori-
entation resolution enhancement works in real 
time to reduce aliasing and improve resolution 
in these compressed scans.10 This AI improved 
resolution of white matter lesions in patients 
with multiple sclerosis (MS) on FLAIR (fluid-at-
tenuated inversion recovery) images, and per-
mitted multiview reconstruction from these 
limited scans.

Tasks of reconstructing and anti-aliasing 
come with high computational costs that vary 
inversely with the extent of scanning compres-
sion, potentially negating the time and resource 
savings of CS. DL AI modalities have been de-
veloped to reduce operational loads and further 
improve image resolution in several directions 
from CS. One such deep residual learning AI 
was trained with compressed MRIs and used 
the framelet method to create a CNN that could 
rapidly remove global and deeply coherent 
aliasing artifacts.11 This system, compared with 
synthetic multi-orientation resolution enhance-
ment, uses a pretrained, pretested AI that does 
not require additional time during scanning for 
computational analysis, thereby multiplying the 
time benefit of CS while retaining the bene-
fits of multidirectional reconstruction and in-
creased resolution. This methodology suffers 
from inherent degradation of perceptual image 
quality in its reconstructions because of the L2 
loss function the CNN uses to reduce mean 
squared error, which causes blurring by aver-
aging all possible outcomes of signal distri-
bution during reconstruction. To combat this, 
researchers have developed another AI to re-
duce reconstruction times that uses a different 

loss function in a generative adversarial net-
work to retain image quality, while offering re-
construction times several hundred times faster 
than current CS-MRI structures.12 So-called 
sparse-coding methods promise further re-
duction in reconstruction times, with the pos-
sibility of processing completed online with a 
lightweight architecture rather than on a local  
system.13 

Neuroimaging of acute cases benefits most 
directly from these technologies because MRIs 
and their high resolution and SNR begin to ap-
proach CT imaging time scales. This could have 
important implications in clinical care, particularly 
for stroke imaging and evaluating spinal cord 
compression. CS-MRI optimization represents 
one of the greatest areas of neuroimaging cost 
savings and neurologic care improvement in the 
modern radiology era.

Reducing Contrast and Radiation Doses 
AI has the ability to read CT, MRI, and posi-
tron emission tomography (PET) with reduced 
or without contrast without significant loss 
in sensitivity for detecting lesions. With MRI, 
gadolinium-based contrast can cause injec-
tion site reactions, allergic reactions, metal 
deposition throughout the body, and nephro-
genic systemic fibrosis in the most severe in-
stances.14 DL has been applied to brain MRIs 
performed with 10% of a full dose of contrast 
without significant degradation of image qual-
ity. Neuroradiologists did not rate the AI-syn-
thesized images for several MRI indications 
lower than their full-dose counterparts.15 Low-
dose contrast imaging, regardless of modal-
ity, generates greater noise with a significantly 
reduced signal. However, with AI applied, re-
searchers found that the software suppressed 
motion and aliasing artifacts and improved 
image quality, perhaps evidence that this low-
dose modality is less vulnerable to the most 
common pitfalls of MRI.

Recently,  low-dose MRI moved into 
the spotlight when Subtle Medical Subtle-
GAD software received a National Institutes 
of Health grant and an expedited pathway 
to phase 2 clinical trials.16 SubtleGAD, a DL 
AI that enables low-dose MRI interpretation, 
might allow contrast MRI for patients with ad-
vanced kidney disease or contrast allergies. 
At some point, contrast with MRI might not be 
necessary because DL AI applied to noncon-
trast MRs for detecting MS lesions was found 
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to be preliminarily effective with 78% lesion 
detection sensitivity.17

PET-MRI combines simultaneous PET and 
MRI and has been used to evaluate neuro-
logic disorders. PET-MRI can detect amyloid 
plaques in Alzheimer disease 10 to 20 years 
before clinical signs of dementia emerge.18 
PET-MRI has sparked DL AI development to de-
crease the dose of the IV radioactive tracer 18F- 
florbetaben used in imaging to reduce radiation 
exposure and imaging costs. This reduction is 
critical if PET-MRI is to become used widely.19-21 

An initial CNN could reconstruct low-dose 
amyloid scans to full-dose resolution, albeit with 
a greater susceptibility to some artifacts and 
motion blurring.22 Similar to the synthetic multi-
orientation resolution enhancement CNN, this 
program showed signal blurring from the L2 
loss function, which was corrected in a later AI 
that used a generative adversarial network to 
minimize perceptual loss.23 This new AI dem-
onstrated greater image resolution, feature pres-
ervation, and radiologist rating over the previous 
AI and was capable of reconstructing low-dose 

PET scans to full-dose resolution without an ac-
companying MRI. Applications of this algorithm 
are far-reaching, potentially allowing neuroim-
aging of brain tumors at more frequent intervals 
with higher resolution and lower total radiation 
exposure.  

AI also has been applied to neurologic CT 
to reduce radiation exposure.24 Because it is 
critical to abide by the principles of ALARA (as 
low as reasonably achievable), the ability of AI 
to reduce radiation exposure holds significant 
promise. A CNN has been used to transform 
low-dose CTs of anthropomorphic models with 
calcium inserts and cardiac patients to normal-
dose CTs, with the goal of improving the SNR.25 
By training a noise-discriminating CNN and a 
noise-generating CNN together in a genera-
tive adversarial network, the AI improved image 
feature preservation during transformation. This 
algorithm has a direct application in imaging 
cerebral vasculature, including calcification that 
can explain lacunar infarcts and tracking sys-
temic atherosclerosis.26 

Another CNN has been applied to remove 
more complex noise patterns from the phe-
nomena of beam hardening and photon star-
vation common in low-dose CT. This algorithm 
extracts the directional components of artifacts 
and compares them to known artifact pat-
terns, allowing for highly specific suppression 
of unwanted signals.27 In June 2019, the US 
Food and Drug Administration (FDA) approved  
ClariPi, a deep CNN program for advanced de-
noising and resolution improvement of low- and 
ultra low-dose CTs.28 Aside from only low-dose 
settings, this AI could reduce artifacts in all CT 
imaging modalities and improve therapeutic 
value of procedures, including cerebral angio-
grams and emergency cranial scans. As the 
average CT radiation dose decreased from  
12 mSv in 2009 to 1.5 mSv in 2014 and con-
tinues to fall, these algorithms will become 
increasingly necessary to retain the high reso-
lution and diagnostic power expected of neuro-
logic CTs.29,30

DOWNSTREAM APPLICATIONS
Downstream applications refer to AI use after a 
radiologic study is acquired, mostly image in-
terpretation. More than 70% of FDA-approved 
AI medical devices are in radiology, and many 
of these relate to image analysis.6,31 Although 
AI is not limited to black-and-white image  
interpretation, it is hypothesized that one of the 

FIGURE Grad-CAM of ICH

Abbreviations: Grad-CAM, gradient-weighted class ac-
tivation mapping; ICH, intracranial hemorrhage.
A convolutional neural net, Grad-CAM can detect and 
classify serious neurologic conditions, such as ICH.
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reasons radiology is inviting to AI is because 
gray-scale images lend themselves to stan-
dardization.3 Moreover, most radiology depart-
ments already use AI-friendly picture archiving 
and communication systems.31,32

AI has been applied to a range of radiologic 
modalities, including MRI, CT, ultrasonography, 
PET, and mammography.32-38 AI also has been 
specifically applied to radiography, including 
the interpretation of tuberculosis, pneumo-
nia, lung lesions, and COVID-19.33,39-45 AI also 
can assist triage, patient screening, providing 
a “second opinion” rapidly, shortening the time 
needed for attaining a diagnosis, monitoring 
disease progression, and predicting progno-
sis.37-39,43,45-47 Downstream applications of AI 
in neuroradiology and neurology include using 
CT to aid in detecting hemorrhage or ischemic 
stroke; using MRI to automatically segment le-
sions, such as tumors or MS lesions; assist-
ing in early diagnosis and predicting prognosis 
in MS; assisting in treating paralysis, includ-
ing from spinal cord injury; determining seizure 
type and localizing area of seizure onset; and 
using cameras, wearable devices, and smart-
phone applications to diagnose and assess 
treatment response in neurodegenerative disor-
ders, such as Parkinson or Alzheimer diseases 
(Figure).37,48-56

Several AI tools have been deployed in the 
clinical setting, particularly triaging intracranial 
hemorrhage and moving these studies to the 
top of the radiologist’s worklist. In 2020 the Cen-
ters for Medicare and Medicaid Services (CMS) 
began reimbursing Viz.ai software’s AI-based Viz 
ContaCT (Viz LVO) with a new International Sta-
tistical Classification of Diseases, Tenth Revision 
procedure code.57

Viz LVO automatically detects large vessel 
occlusions, flags the occlusion on CT angio-
gram, alerts the stroke team (interventional ra-
diologist, neuroradiologist, and neurologist), 
and transmits images through a secure appli-
cation to the stroke team members’ mobile de-
vices—all in less than 6 minutes from study 
acquisition to alarm notification.48 Additional 
software can quantify and measure perfusion 
in affected brain areas.48 This could have im-
plications for quantifying and targeting areas 
of ischemic penumbra that could be salvaged 
after a stroke and then using that information 
to plan targeted treatment and/or intervention. 
Because many trials (DAWN/DEFUSE3) have 
shown benefits in stroke outcome by extending 

the therapeutic window for the endovascular 
thrombectomy, the ability to identify appropri-
ate candidates is essential.58,59 Development 
of AI tools in assessing ischemic penumbra 
with quantitative parameters (mean transit 
time, cerebral blood volume, cerebral blood 
flow, mismatch ratio) using AI has benefited 
image interpretation. Medtronic RAPID soft-
ware can provide quantitative assessment of 
CT perfusion. AI tools could be used to provide 
an automatic ASPECT score, which provides 
a quantitative measure for assessing potential 
ischemic zones and aids in assessing appropri-
ate candidates for thrombectomy. 

Several FDA-approved AI tools help quan-
tify brain structures in neuroradiology, in-
cluding quantitative analysis through MRI 
for analysis of anatomy and PET for analy-
sis of functional uptake, assisting in more 
accurate and more objective detection and 
monitoring of conditions such as atrophy, de-
mentia, trauma, seizure disorders, and MS.48 
The growing number of FDA-approved AI tech-
nologies and the recent CMS-approved reim-
bursement for an AI tool indicate a changing 
landscape that is more accepting of down-
stream applications of AI in neuroradiology. As 
AI continues to integrate into medical regula-
tion and finance, we predict AI will continue to 
play a prominent role in neuroradiology.

PRACTICAL AND ETHICAL 
CONSIDERATIONS
In any discussion of the benefits of AI, it is pru-
dent to address its shortcomings. Chief among 
these is overfitting, which occurs when an AI 
is too closely aligned with its training data-
set and prone to error when applied to novel 
cases. Often this is a byproduct of a small 
training set.60 Neuroradiology, particularly with 
uncommon, advanced imaging methods, has 
a smaller number of available studies.61 Even 
with more prevalent imaging modalities, such 
as head CT, the work of collecting training 
scans from patients with the prerequisite dis-
ease processes, particularly if these processes 
are rare, can limit the number of datapoints col-
lected. Neuroradiologists should understand 
how an AI tool was generated, including the 
size and variety of the training dataset used, to 
best gauge the clinical applicability and fitness 
of the system. 

Another point of concern for AI clinical  
decision support tools’ implementation is  
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automation bias—the tendency for clinicians to 
favor machine-generated decisions and ignore 
contrary data or conflicting human decisions.62 
This situation often arises when radiologists ex-
perience overwhelming patient loads or are in 
underresourced settings, where there is little 
ability to review every AI-based diagnosis. Al-
though AI might be of benefit in such conditions 
by reducing physician workload and stream-
lining the diagnostic process, there is the pro-
pensity to improperly rely on a tool meant to 
augment, not replace, a radiologist’s judgment. 
Such cases have led to adverse outcomes for 
patients, and legal precedence shows that this 
constitutes negligence.63 Maintaining awareness 
of each tool’s limitations and proper application 
is the only remedy for such situations. 

Ethically, we must consider the opaqueness 
of ML-developed neuroimaging AIs. For many 
systems, the specific process by which an AI 
arrives at its conclusions is unknown. This AI 
“black box” can conceal potential errors and bi-
ases that are masked by overall positive perfor-
mance metrics. The lack of understanding about 
how a tool functions in the zero-failure clinical 
setting understandably gives radiologists pause. 
The question must be asked: Is it ethical to use a 
system that is a relatively unknown quantity? En-
tities, including state governments, Canada, and 
the European Union, have produced an answer. 
Each of these governments have implemented 
policies requiring that health care AIs use some 
method to display to end users the process by 
which they arrive at conclusions.64-68 

The 21st Century Cures Act declares that to 
attain approval, clinical AIs must demonstrate 
this explainability to clinicians and patients.69 The 
response has been an explosion in the devel-
opment of explainable AI. Systems that visual-
ize the areas where AI attention most often rests 
with heatmaps, generate labels for the most 
heavily weighted features of radiographic im-
ages, and create full diagnostic reports to justify 
AI conclusions aim to meet the goal of trans-
parency and inspiring confidence in clinical end 
users.70 The ability to understand the “thought 
process” of a system proves useful for error cor-
rection and retooling. A trend toward under- or 
overdetecting conditions, flagging seemingly ir-
relevant image regions, or low reproducibility can 
be better addressed when it is clear how the AI 
is drawing its false conclusions. With an iterative 
process of testing and redesigning, false positive 
and negative rates can be reduced, the need for 

human intervention can be lowered to an appro-
priate minimum, and patient outcomes can be 
improved.71 

Data collection raises another ethical con-
cern. To train functional clinical decision 
support tools, massive amounts of patient 
demographic, laboratory, and imaging data 
are required. With incentives to develop the 
most powerful AI systems, record collection 
can venture down a path where patient auton-
omy and privacy are threatened. Radiologists 
have a duty to ensure data mining serves pa-
tients and improves the practice of radiology 
while protecting patients’ personal informa-
tion.62 Policies have placed similar limits on the 
access to and use of patient records.64-69 Pa-
tients have the right to request explanation of 
the AI systems their data have been used to 
train. Approval for data acquisition requires the 
use of explainable AI, standardized data se-
curity protocol implementation, and adequate 
proof of communal benefit from the clinical de-
cision support tool. Establishment of state- 
mandated protections bodes well for a fu-
ture when developers can access enormous 
caches of data while patients and health care 
professionals are assured that no identify-
ing information has escaped a well-regulated 
space. On the level of the individual radiolo-
gist, the knowledge that each datum repre-
sents a human life. These are people who has 
made themselves vulnerable by seeking re-
lief for what ails them, which should serve as 
a lasting reminder to operate with utmost care 
when handling sensitive information. 

CONCLUSIONS
The demonstrated applications of AI in neuro-
imaging are numerous and varied, and it is rea-
sonable to assume that its implementation will 
increase as the technology matures. AI use for 
detecting important neurologic conditions holds 
promise in combatting ever greater imaging vol-
umes and providing timely diagnoses. As medi-
cine witnesses the continuing adoption of AI, it 
is important that practitioners possess an un-
derstanding of its current and emerging uses.  
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