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Abstract

Determining the optimal number and identity of structural clusters from an ensemble of molecular 

configurations continues to be a challenge. Recent structural clustering methods have focused on 

the use of internal coordinates due to the innate rotational and translational invariance of these 

features. The vast number of possible internal coordinates necessitates a feature space supervision 

step to make clustering tractable, but yields a protocol that can be system type specific. 

Particle positions offer an appealing alternative to internal coordinates, but suffer from a lack of 

rotational and translational invariance, as well as a perceived insensitivity to regions of structural 

dissimilarity. Here, we present a method, denoted shape-GMM, that overcomes the shortcomings 

of particle positions using a weighted maximum likelihood (ML) alignment procedure. This 

alignment strategy is then built into an expectation maximization Gaussian mixture model (GMM) 

procedure to capture metastable states in the free energy landscape. The resulting algorithm 

distinguishes between a variety of different structures, including those indistinguishable by RMSD 

and pair-wise distances, as demonstrated on several model systems. Shape-GMM results on an 

extensive simulation of the the fast-folding HP35 Nle/Nle mutant protein support a 4-state folding/

unfolding mechanism which is consistent with previous experimental results and provides kinetic 

detail comparable to previous state of the art clustering approaches, as measured by the VAMP-2 

score. Currently, training of shape-GMMs is recommended for systems (or subsystems) that 

can be represented by ≲ 200 particles and ≲ 100K configurations to estimate high-dimensional 

covariance matrices and balance computational expense. Once a shape-GMM is trained, it can be 

used to predict the cluster identities of millions of configurations.
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1 Introduction

Structural clustering of molecular dynamics (MD) simulation data of macromolecules is 

often necessary to draw physical conclusions about molecular mechanisms from large 

amounts of simulation data. Consider, for example, the challenge of protein folding. At 

or near its folding temperature, a protein will populate both folded and unfolded states. 

Molecular simulations used to probe this process yield a trajectory of atomic positions 

that approximate the equilibrium conformational ensemble of the molecule. To study the 

mechanisms of folding and unfolding, it is useful to discretize the protein configurations that 

are observed within this trajectory. Which configurations are folded, which are unfolded? 

Are there multiple folded and/or unfolded states? Are there metastable states along the 

folding pathway(s)?

To address these, and other similar questions, it is helpful to employ automated structural 

clustering methods on the trajectory data. In time-continuous simulations, kinetic clustering, 

such as spectral clustering of the transition matrix,1-3 can be employed (see Refs 4-6 for 

comparisons between kinetic and structural clustering). Alternatively, clustering solely on 

the basis of structural data (structural clustering) can be applied to either time-continuous 

or disjoint simulation data. Here, we focus on developing a robust structural clustering 

procedure that can be readily applied to a broad range of systems and depends on only 

a small number of user-specified, readily understandable, parameter choices. Structural 

clustering requires the choice of both a clustering algorithm and the features on which to 

perform the clustering. We start our discussion with the choice of features, which can be 

separated into two categories: internal coordinates and particle positions.

Internal coordinates of a macromolecule are an appealing choice of features because they 

are invariant to both translation and rotation. These coordinates include distances (two-body 

terms), angles (three-body terms), dihedral angles (four-body terms), and higher order terms 

not often considered for clustering purposes. The inclusion of even all two-body terms 

yields a feature space that drastically overdetermines the system and hinders the ability 

to cluster in this space. Possible solutions to the over determination problem include 

the use of a priori knowledge of the system to develop a hypothesis-driven selection 
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of key internal coordinates, segmentation of the trajectory,7 combining both kinetic and 

structural information,8 and unsupervised dimensionality reduction techniques. We note that 

applying dimensionality reduction to internal coordinates is non-trivial as projection errors 

can misconstrue data.9 Recent efforts, even methods that combine kinetic and structural 

information, have focused on choosing a subset of features, e.g. backbone dihedral angles 

of proteins, that are able to distinguish between perceived important structural states of 

the macromolecule of interest.10,11 This supervision step, however, yields a protocol that 

is specific to the system/problem of interest. Thus, it remains a challenge to use internal 

coordinates in a general structural clustering workflow.

Particle positions offer an appealing alternative choice of features because they do not 

drastically overdetermine a system. A major limitation of particle positions is that they are 

defined in the lab frame and thus are not invariant to translation and rotation.11 Previously, 

structural alignment based on root-mean-squared displacement (RMSD) has been used to 

overcome rotational and translational invariance, and subsequent RMSD between structures 

has been used as a distance metric in clustering algorithms.4,12 This has led to the 

conclusion that particle positions have a second disadvantage: RMSD between structures 

is a poor estimate of similarity for systems in which there is regional heterogeneity in 

particle fluctuations.4,12 Below, we will demonstrate that this conclusion is due to the 

assumption, implicit in RMSD alignment, that particles vary in independent, equivalent, 

spherical distributions.

Numerous clustering algorithms have been applied to structural data from MD simulations 

but the connection between the resulting clusters and the underlying assumptions of the 

algorithm are often obscure. Recent efforts have focused on the use of non-hierarchical 

algorithms applied to a reduced dimensional subspace of the original features. These 

algorithms include k-means,13-15 Gaussian mixture models (GMMs),16 and density-based 

clustering schemes.17-20 Unsupervised dimensionality reduction has been achieved using 

principal component analysis (PCA), time-lagged independent component analysis (TICA), 

sketch map,21 UMAP,22 or a variety of other methods.6 The combination of internal 

coordinates (e.g. distances, angles and/or dihedrals) and dimensionality reduction schemes 

makes it challenging to predict the expected form of the distribution in these spaces. This 

has led to the popularity of density-based clustering schemes. The downside of these 

schemes are two-fold: first, there is a perception that they can only be applied in fairly 

low-dimensional spaces and second, there is not a strong theoretical connection between the 

clustering algorithm and the physics governing the resulting conformational clusters.

In this paper, we present shape-GMM, a method to cluster macromolecule trajectory data 

directly using particle positions. Previous shortcomings of RMSD clustering are overcome 

using a more general Mahalanobis distance and a weighted maximum likelihood (ML) 

alignment procedure.23 The shape-GMM algorithm incorporates this rigorous alignment 

strategy into an expectation maximization (EM) GMM procedure. The GMM approach 

is conceptually appealing because it resembles a second-order approximation to the 

expected probability density of particle positions. The ability of shape-GMM to correctly 

cluster molecular structures is first assessed using a set of elastic network model systems 

with known "ground truths". Subsequently, the real-world applicability of this method is 
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demonstrated on a challenging, well-studied protein folding system, and the results are 

shown to be consistent with previous experimental and theoretical studies. Combined, this 

work establishes shape-GMM as an appealing clustering approach to a broad range of 

macromolecular structures.

2 Theory and Methods

2.1 Molecular Size-and-Shape

We consider a MD simulation of a macromolecule in solution. From a single frame, the 

macromolecule is represented by N atoms considered important (e.g. all protein, all heavy 

atoms, just Cα atoms, etc.) or an N particle coarse-grained mapping (e.g. the centers of mass 

of each protein residue). These features are a point in ℝ3N encoded by a matrix, x, of order 

N × 3. The Hamiltonian for any system considered here is independent of the lab-frame, and 

so the features of interest, [xi], are the orbit of all possible rigid-body transformations of xi. 

This is written as an equivalence class,

[xi] = {xiRi + 1N ξ i
T

: ξ i ∈ ℝ3, Ri ∈ SO(3)}, (1)

where ξ i is a translation in ℝ3, Ri is a rotation ℝ3 ℝ3, and 1N is the N × 1 vector of 

ones. The features, [xi] exist as a point in size-and-shape space.24 Size-and-shape space has 

dimensions 3N – 6 and is defined as SΣN
3 = ℝ3N ∕ G where G = ℝ3 × SO(3) is the group of 

all rigid-body transformations for each frame with elements g = ( ξ , R).

For a trajectory consisting of M frames or M molecular configurations, the set of recorded 

points {x1, …, xM} is effectively regarded as a set of orbits

{[x1], …, [xM]} = {gi−1xi :gi ∈ G} . (2)

The group G is said to act freely, or GM acts component-wise, one group element per frame.

2.2 Gaussian Distribution of Positions

If we consider the macromolecule to be in a single free energy minimum, the expected 

second-order approximation to the probability density is Gaussian in ℝ3N. The normalized 

multivariate Gaussian distribution is given as

N(xi ∣ μ, Σ) =
exp − 1

2(gi−1xi − μ)TΣ−1(gi−1xi − μ)

(2π)(3N) det Σ
, (3)

where μ and Σ are the mean and covariance (3N × 3N), respectively, and the multiplication 

inside the exponent requires a flattening of the (gi−1xi − μ) matrix. The estimation of well-

defined average and covariance matrices from an MD trajectory requires determining the 

appropriate set of rigid body transformations, (g1, …, gM), for which we define a maximum 

likelihood (ML) procedure.
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2.3 Maximum Likelihood Alignment

The following ML alignment is adapted from Theobald and Wuttke25 in two ways. First, 

we generalize the allowed form of the covariance and, second, we do not enforce an 

inverse gamma distribution of the eigenvalues of the covariance because we expect sufficient 

sampling of this matrix from the MD trajectory. The log likelihood of a trajectory alignment 

is given as

ln(L) = ∑
i = 1

M
ln(N(xi ∣ μ, Σ)) . (4)

There are two distinct components for the parameters in a single trajectory ML alignment:

1. the alignment parameters or group elements (g1, …, gM); and

2. the mean configuration μ, and the covariance matrix Σ.

The translation alignment parameters are easily resolved by removing the center of geometry 

from each configuration. Methods to determine optimal rotation matrices have only been 

identified for covariances of the form Σ ∝ I3N
26,27 or Σ = ΣN ⊗ I3,23,28 where ⊗ is a 

Kronecker product and ΣN is the N × N covariance matrix. We note that a covariance of the 

form Σ ∝ I3N assumes that particles oscillate in uncoupled, identical, spherical distributions. 

Here, we will employ the forms Σ = ΣN ⊗ I3 (“weighted”) and Σ ∝ I3N (“uniform”).

The problem of finding the parameter values that maximize the likelihood can be solved by 

iterating between two steps until the log likelihood (Equation 4) has converged within some 

threshold.

1. Given g1, …, gM, calculate μ, Σ by

xi = gi−1xi, (5)

μ = ∑
i = 1

M xi
M , (6)

ΣN = ∑
i = 1

M (xi − μ)(xi − μ)T

3(M − 1) (7)

For the sub-model in which Σ = σ2I3N, it suffices to take σ2 = Tr(ΣN) ∕ N.

2. Given μ, Σ and an appropriate inverse W = Σ−1, estimate the alignments g1, …, 

gM by minimizing the Mahalanobis distance

‖gi−1xi − μ‖2 = Tr((gi−1xi − μ)TW (gi−1xi − μ)) (8)

with respect to gi.
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The second step is the generalized Procrustes problem, which can be solved either by using 

the singular-value decomposition23,25,26,28 or by quaternion methods.27,29,30 For the case 

that Σ ∝ I3N (“uniform”), Equation 8 simplifies to the mean squared displacement. Thus, our 

uniform covariance model is equivalent to an RMSD alignment and distance metric.

If ΣN is unrestricted, the estimate ΣN has rank N − 1 and kernel 1. In that case, W is the 

spectral inverse which also has kernel 1.

2.4 Gaussian Mixture Model for Size-and-Shape Features

In a non-harmonic force field description of a globular macromolecule, multiple metastable 

configurations will be encountered. It is natural to consider the probability density in this 

feature space as a mixture of K multivariate Gaussians,31

P(xi) = ∑
j = 1

K
ϕjN(xi ∣ μj, Σj), (9)

where ϕj is the weight (∑j = 1
K ϕj = 1), μj is the mean, and Σj is the covariance of the jth 

Gaussian probability density. Equation 9 will be a good approximation for the probability 

density near local minima, the preferentially sampled configurations in conventional 

molecular dynamics. This approximation will fail near transition states although adaptations 

to this formulation have been developed to account for this.16

Equation 9 is known as a Gaussian Mixture Model (GMM), and the goal of determining 

the optimal {ϕj}, {μj}, and {Σj} that fit observations has been achieved previously with 

algorithms including expectation maximization (EM) with a maximum likelihood criterion 

or Bayesian approaches including variational inference or sampling techniques (e.g Markov 

Chain Monte Carlo32 or Gibbs Sampling33). Any of these approaches can be applied to 

the trajectory features, {[xi]}, but care must be taken to correctly account for the feature 

equivalences.

2.4.1 Gaussian Mixture Model: Expectation Maximization—Within the EM 

framework, for a fixed number of Gaussians, K, the following steps are taken.34 Note that in 

this work two choices are available for step 3, depending on the approximation to the form 

of Σ chosen, as described in the previous section.

1. Provide initial guesses for {ϕj}, {μj}, and {Σj}

2. Expectation: estimate the posterior distribution for latent variable of mixture 

components, Zi ∈ {1, …, K}:

γZi(j) = ϕjN(xi ∣ μj, Σj)
∑j = 1

K ϕjN(xi ∣ μj, Σj)
(10)

3. Maximization: update {ϕj}, {μj}, and {Σj}.
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ϕj =
∑i = 1

M γZi(j)
M

(11)

μj =
∑i = 1

M γZi(j)gi, j−1xi

∑i = 1
M γZi(j)

(12)

Σj =

∑i = 1
M γZi(j)〈σ2〉i

∑i = 1
M γZi(j)

I3N uniform

∑i = 1
M γZi(j)〈ΣN〉i

∑i = 1
M γZi(j)

⊗ I3 weighted

(13)

4. Iterate steps 2-3 until the log likelihood converges within some threshold. Log 

likelihood is defined as

ln(L) = ∑
i = 1

M
ln ∑

j = 1

K
ϕjN(xi ∣ μj, Σj) (14)

2.4.2 Shape-GMM Procedure—Shape-GMM adapts the EM algorithm for size-and-

shape space by including trajectory alignments in both the Expectation and Maximization 

steps:

1. In the Expectation step, the distribution N(xi ∣ μj, Σj) is determined for each 

frame after alignment (either uniform or weighted) to the respective average. 

This requires K non-iterative trajectory alignments.

2. In the Maximization step, the means and covariances are updated using the ML 

alignment described in Sec. 2.3. This requires K iterative trajectory alignments.

2.4.3 Model Initialization—The EM procedure must be initialized by providing guesses 

for {ϕj}, {μj}, and {Σj}. This can be achieved in a variety of ways including dividing the 

trajectory into K parts, using a k-means algorithm, or randomly selecting initial frames as 

averages and assigning frames to their nearest (measured by RMSD) cluster center. All of 

these procedures are implemented in our code, but we use the random frame initialization 

for all examples unless explicitly stated otherwise.

2.4.4 Assigning Frames to Clusters—Within the context of clustering from a GMM, 

a frame (or data point) is assigned to the cluster in which it has the largest likelihood. This is 

no different in size-and-shape space.

2.4.5 Determining the Number of Clusters—The number of clusters, K, must be 

specified in order to perform shape-GMM. The best choice of K will be system specific 
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and is a challenge to determine for any clustering method. Here, we use the elbow 

method coupled with cross-validation. The elbow method is a heuristic method to identify 

a significant change in slope in the log likelihood (in the case of GMMs) as a function 

of number of clusters. Cross-validation is a method of applying the trained model on a 

validation (non-trained) data-set. This is done as a function of number of clusters and an 

elbow in this curve is used to pick the number of clusters. Examples of these plots are given 

for systems in the Results and Discussion section and SI.

For cross-validation, we use a simple scheme to break up the data into a training set and 

a validation set. The training set is randomly (uniformly) chosen from the entire data set 

and the remaining data is used for validation. The number of frames chosen for training is 

system specific (but at least 1000 for all systems studied here) and is given in the Results 

and Discussion section for each system.

2.4.6 Implementation—The current implementation of shape-GMM is written in 

python with acceleration/parallelization using the numba package.35 The shape-GMM 

package is written to mimic the interface of the Scikit-learn Gaussian Mixture package.36 

The package can be easily installed using pip (pip install shapeGMM). All code, as well 

as examples of the full analyses performed below are available from https://github.com/

mccullaghlab/GMM-Positions.

3 Results and Discussion

We explore the shape-GMM clustering method using a variety of examples. The first 

example we consider is a set of elastic network models (ENMs) designed to probe the ability 

of both uniform and weighted covariance versions of shape-GMM to distinguish between 

structures for a known clustering. Subsequently, we examine performance on one toy and 

one real example of models where molecular topology is free to change, to demonstrate 

the ability of weighted shape-GMM to estimate the number and identity of configurational 

clusters in the data. Full descriptions of MD procedures for each system are provided in the 

Sec. 5.

3.1 Elastic Network Models

In order to rigorously compare and contrast clustering protocols, we create amalgamated 

trajectories of various Elastic Network Models (ENMs). The force constants and topologies 

of the ENMs are chosen such that each ENM will populate a single conformation. 

Specifically, we consider a variety of ENM models with topologies motivated by protein 

secondary structure elements. To further mimic the nature of combined protein structural 

elements, we utilize an anisotropic network model (ANM). The Hamiltonian for our ANM 

models is given as

H(x) = ∑
i, j > i

kij( ∣ r ij ∣ − ∣ r ij
0 ∣ )2, (15)

where ∣ r ij ∣ = ∣ x i − x j ∣ is the distance between particles i and j, ∣ r ij
0 ∣ is the distance 

between particles i and j in the reference geometry, and
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kij =

100 j = i + 1

20 ∣ r ij
0 ∣ = 1.7Å

10e−‖ r ij
0 ∣ − 1.7 ∣ otherwise,

(16)

where kij has units kcal · mol−1 · Å−2. The strongest force constant is reserved for primary 

sequence bonds, “hydrogen bonds” are given the second strongest force constant and are 

set at a separation distance of 1.7 Å, and all remaining pairwise interactions are given an 

exponentially decaying distance dependent force constant.

A variety of topologies and system sizes of these types of ANMs are used in the subsequent 

subsections. Examples of the types of topologies are depicted in Figure 1(A). We note that 

because shape-GMM relies only on positions, it applies to these coarse-grained models 

without modification, whereas many state-of-the art clustering methods designed for protein 

data either require temporal information or are applied on backbone dihedral angles, and 

hence we cannot compare to them here.

3.1.1 Clustering of 5 ANMs using shape-GMM—To rigorously assess the ability 

of uniform and weighted shape-GMM to cluster molecular-like configurations, we have 

constructed a set of five ANMs each with 12 particles depicted in Figure 1A. These five 

structures are motivated by protein secondary structural elements: a left-handed helix, a 

right-handed helix, a beta sheet-like structure with a four bead hairpin, a partially unfolded 

beta sheet (PUBS) with both a structured region and an unstructured region, and a linear 

chain that might represent an unfolded or an unstructured region of a protein. Equal length 

simulations (10000 frames each) of each model were run and a single trajectory was created 

by concatenation. Clusterings can be compared to the ground truth (denoted by which ANM 

simulation the frame comes from) using correctly clustered frame pairs to avoid cluster 

index invariance.

Shape-GMM is able to correctly identify five clusters in the amalgamated trajectory of 

the five ANMs depicted in Figure 1A. To demonstrate this, we trained both uniform and 

weighted shape-GMMs for numbers of clusters varying from 2 to 8 on 2000 randomly 

selected frames; this process was repeated on five different training sets to demonstrate 

repeatability (and to estimate error) and the cross-validation set was the remaining 48K 

frames for each set. The results for uniform and weighted shape-GMM are comparable so 

we will only discuss the uniform results for clarity. The resulting relative log likelihood per 

frame of the uniform shape-GMM is plotted as a function of number of clusters as the blue 

(training) and orange (cross-validation) curves in Figure 1B. The log likelihoods of both the 

training set and the cross-validation set rapidly increase from 2 to 5 clusters at which point 

the values plateau. The plateau in log likelihood at 5 clusters indicates that increasing the 

number of clusters does not improve the fit of the model to the data. Additionally, a lack of 

measurable deviation between the training set and the cross-validation set indicates no over 

or under fitting of the model. Thus, uniform shape-GMM on this data suggests choosing five 

clusters. Both uniform and weighted five cluster shape-GMMs yield 100% agreement with 

the ground truth on the cluster assignments.
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3.1.2 Clustering of 5 ANMs using Internal Coordinates—Internal coordinates can 

be used to cluster these same five ANM structures, but an accurate clustering requires 

a combination of pairwise distances and backbone dihedrals. Internal coordinates do not 

comprise a vector space and thus the distributions in these spaces will not be strictly 

Gaussian. Thus, we employ a density-based clustering algorithm, CLoNe, that has been 

recently applied to molecular dynamics data.20 CLoNe has a single free parameter, denoted 

pdc, that dictates the maximum distance to consider grouping points together. Altering this 

parameter can change the number and identity of clusters in the data. For all feature spaces 

investigated, we scanned this parameter and chose a value that optimized the clustering 

overlap with the ground truth.

CLoNe on pairwise positions or backbone dihedrals is insufficient to adequately cluster the 

amalgamated 5 ANM trajectory. In both cases, CLoNe predicts four major clusters (some 

frames are assigned as noise). CLoNe on all pairwise distances (pdc=6; 66 total distances) 

unsurprisingly groups the two helix structures into one cluster as pairwise distances take on 

the same values in the two clusters. This yields a clustering overlap with the ground truth of 

91.3 %. CLoNe on backbone dihedrals (pdc=5.7; 18 values encoded by sin and cos of the 9 

dihedrals) divides the linear structure into two clusters due to the ability of each dihedral to 

take on a wide array of values. The resulting overlap with ground truth is 88.6 %. CLoNe on 

a feature space composed of backbone dihedrals and pairwise distances (pdc=4.1; 84 total 

features) predicts the proper five clusters and yields an overlap with ground truth of 99.9%.

While CLoNe on the combination of internal coordinates is able to properly cluster the 

five ANM models, this agreement requires two significant supervision steps. First is the 

choice of specific internal coordinates. It is common to choose one or the other of these 

coordinates but there are some cases in which both are important. This could be a situation 

like the combined dissociation of tertiary and secondary structural elements during protein 

unfolding. The second supervision step is the choice of the pdc parameter. Here, we chose 

a pdc parameter that yielded an improved agreement with ground truth. Clearly, that is not 

feasible in all situations.

3.1.3 Uniform versus Weighted Alignment in Shape-GMM—Uniform shape-

GMM is unable able to distinguish between subtle structural differences in systems 

with enhanced flexibility throughout different regions of the molecule. This is because 

uniform shape-GMM relies on a RMSD-based alignment that assumes particles fluctuate 

independently in equivalent, spherical distributions. To demonstrate this failing, we look at 

two partially unfolded beta sheet ANM models, named PUBS 1 and PUBS 2 and depicted in 

the insets in Figure 2. The only difference between the two structures is that two beads in the 

four bead loop region of PUBS 1 are moved into “hydrogen bonding” distance in PUBS 2. 

The size of the “unfolded” region is varied from zero to eight beads in each system to assess 

the impact of changing the size of the highly varying region. Simulations of each of these 

were performed independently and an amalgamated trajectory was created with 5000 frames 

from each simulation.

Uniform shape-GMM is unable to distinguish the two partially unfolded beta sheet 

structures when the unfolded region becomes comparable in size to the folded region. To 
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quantify this, we performed uniform shape-GMM on combined trajectories of PUBS 1 and 

PUBS 2 for varying sizes of the unfolded region (quantified by n in Figure 2). The number 

of clusters was fixed at 2 and the model was initiated with the correct clustering (to avoid 

convergence to local maxima). The fraction of correctly clustered pairs of frames from the 

output clustering was then calculated as a function of unfolded region size (Figure 2). The 

uniform shape-GMM curve (blue), correctly clusters almost all frame pairs for unfolded 

region sizes from 0 to 3 beads. For 3 < n < 7, the uniform shape-GMM overlap with the 

ground truth clustering rapidly decays to only getting 50% of the frame pairs correct, the 

minimum possible given that each frame must be clustered into one of two clusters. Thus, 

uniform shape-GMM is unable to distinguish between configurations PUBS 1 and PUBS 

2 for unfolded regions of five or more beads, situations in which the folded region and 

unfolded region are comparable in size. This result is consistent with previous findings 

based on pairwise RMSD clustering.

Weighted shape-GMM can distinguish between the two partially unfolded beta sheet 

structures for all unfolded regions sampled. Again, this is quantified by the clustering 

overlap with the ground truth as a function of unfolded region size in Figure 2B. The 

weighted shape-GMM curve, depicted in orange, demonstrates a fraction of correctly 

clustered frame pairs near 1.0 for all sampled unfolded region sizes. This result demonstrates 

that the covariance in the weighted model is a better match to the actual covariance from 

the PUBS 1 and PUBS 2 ANMs than the uniform covariance. Additionally, this result 

indicates that the shape-GMM procedure can correctly capture subtly different behavior in 

heterogeneously fluctuating molecules such as the ones depicted here. This result exhibits 

how weighted shape-GMM overcomes a previous challenge that limited the applications of 

particle positions as features for clustering.

3.2 Beaded Helix Transitions

To assess the ability of the shape-GMM to cluster a non-harmonic system, we consider a 12-

bead helix system with harmonic bonds along the backbone and Lennard-Jones attractions 

between every fifth bead described in Ref. 37. Depending on the strength of attraction 

between every i, i + 4 bead (or nearly equivalently, the temperature), this model can be 

trapped in its starting helix or make transitions between left- and right-handed helices. A 

schematic of this process is depicted in the inset of Figure 3B. We choose an attractive 

strength of ϵ = 6kBT, in which case the helices are stabilized but some rare transitions can 

occur. We performed both uniform and weighted shape-GMM on a 10000 frame trajectory 

to assess the ability of these models to cluster the data.

Both uniform and weighted shape-GMM support the choice of three clusters to represent the 

simulation data. A plot of the log likelihood per frame as function of number of clusters is 

depicted inFigure 3A for both uniform and weighted. In this scan, five randomly selected 

training sets of 1000 frames are chosen. Uniform and weighted shape-GMMs are fit with 

the training set and then cross-validated on the remaining 9000 frames. Both uniform and 

weighted models have a significant change in slope at 3 clusters for both training and 

cross-validation curves. Additionally, the cross-validation curve for weighted shape-GMM 

(red) starts to deviate significantly from the training curve (green) as the number of clusters 
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is increased above 3. This behavior indicates an overfitting of the weighted shape-GMM 

above three clusters. The overfitting behavior is less significant for the uniform shape-GMM 

but is still present and, as seen in the previous section, a weighted shape-GMM is able 

to differentiate between heterogeneously fluctuating systems more readily than a uniform 

shape-GMM.

Weighted shape-GMM identifies three states corresponding to the left-handed helix, right-

handed helix and an intermediate configuration between the two. To demonstrate this, we 

plot the free energy of the simulation as a function of the Mahalanobis distance (Equation 

8) from clusters 1 and 2 as a contour plot in Figure 3B. There are two distinct stable states 

in this 2D free energy surface, each of which is centered around a small separation from 

either cluster 1 or cluster 2. These are the left- and right-handed helices. Cluster identities 

from the three cluster model of weighted shape-GMM are indicated by the three colors of 

points on the same plot. The cluster labeling does a good job distinguishing fully folded 

(yellow and teal) from partly folded (purple) configurations as well as distinguishing the 

left- and right- handed helical configurations picked out by the centers of two clusters. This 

result is encouraging, because it demonstrates that shape-GMM is able to identify not only 

quasiharmonic metastable states, but also separate out and classify together intermediate 

structures.

3.3 Application to HP35

HP35, the C-terminal subdomain of villin, has been the focus of numerous experimental 

and theoretical studies of protein folding due to its ability to autonomously fold.38,39 The 

35-residue chicken villin headpiece protein contains three helices with helix 1 composed 

of residues 4-10, helix 2 of residues 15-19, and helix 3 of residues 23-32. Wild-type 

HP35 has a folding rate of (4.3 ± 0.6 μs)−1,40 which was further observed in atomistic 

molecular dynamics simulations with implicit solvent.41 Mutations were sought to enhance 

the folding rate42 and ultimately yielded a fast folding double mutant referred to as Nle/Nle 

(Nle - norleucine) with a measured folding rate of (0.73± 0.05 μs)−1 at 300K.43 The ~ 

305 μs all-atom, explicit solvent, molecular dynamics simulation of the HP35 Nle/Nle 

mutant from D. E. Shaw Research has been extensively studied and serves as a benchmark 

system for structural clustering.7,9,17,44-51 Here, we use this simulation at 360 K to compare 

and contrast between uniform and weighted shape-GMM, compare weighted shape-GMM 

clusterings to previous results, and, finally, propose the structural folding mechanism most 

consistent with the weighted shape-GMM results.

3.3.1 Uniform vs. Weighted Shape-GMM for HP35—We hypothesize that uniform 

and weighted shape-GMM will give consistent clustering results for well-folded states 

but inconsistent results for partially and completely unfolded states. This hypothesis is 

consistent with the cluster results from the ANMs in Sec. 3.1.3. To test this hypothesis, we 

trained 6-state uniform and weighted shape-GMMs on ~61K frames of the HP35 trajectory. 

For reference, a reasonable training set size should include at least 25K frames to sample 

one of the observed 61 folding/unfolding events within the ~1.5M-frame trajectory.44 A 

6-state model was chosen due to literature precedent and simplicity of comparison (results 

from a scan of cluster sizes are discussed in Sec. 3.3.2). Backbone atoms (C, CA and 
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N from residues 2 through 34, C from residue 1 and N from residue 35) are selected 

for the feature set to remain consistent with previous backbone dihedral value clustering 

methods.7,48 For each covariance approximation, 20 models with different randomly chosen 

starting conditions were trained and the model with the largest log likelihood was used for 

subsequent analysis.

Uniform and weighted 6-state shape-GMMs show consistency in separating the folded from 

unfolded states of HP35. To support this claim, we combine clustering overlap between 

the two models as assessed by a matching wheel (Figure 4A) and stability of dihedral 

distributions of the residues in each cluster represented in ramacolor plots17 (Figure 4B 

for uniform and Figure 4C for weighted). The backbone dihedral to color array mapping 

can be found in Figure S2. Starting with the weighted shape-GMM 6-state ramacolor 

plot (Figure 4C), we observe that states I and II have bright coloration for all residues 

indicating well-defined dihedral distributions in these states. State IV has the majority of 

residues in well-defined dihedral states with the C-terminus starting to display some dihedral 

disorder as evidenced by the muted color for residues 30-34. The remaining weighted 

shape-GMM states (III, V, and VI) have over half of the residues with muted ramacolor 

distributions indicating that these states are relatively disordered. Thus we conclude that 

weighted shape-GMM states I, II, and IV are folded states and III, V, and VI are unfolded. 

The matching wheel indicates that weighted shape-GMM folded states (I, II, and IV) are 

predominantly matched with states 1, 2, 4, and 6 from uniform shape-GMM. The ramacolor 

plot for uniform shape-GMM indicates that states 1, 2, 4, and 6 are all fairly structured in 

their dihedral distributions and that the remaining clusters (3 and 5) are disordered. Thus 

we conclude that uniform and weighted shape-GMM are both able to separate folded from 

unfolded states.

Weighted shape-GMM separates states by distinct regions of instability corresponding to 

secondary structure elements in HP35. Considering the most unstable uniform states 3 and 

5, indicated by muted colors across nearly all residues, there are no obvious differences 

between these two states indicated in Figure 4B. In contrast, the unstable weighted states 

III, V and VI have clear structural differences (Figure 4C). The dihedral distributions of 

residues within weighted state III closely resemble either uniform states 3 and 5, where 

all three helices show instability but there is stability in turn 2 and in some subsequent 

residues. Alternatively, weighted state VI is entirely unstable, but gets divided up evenly to 

define uniform states 3 and 5. Weighted state V has stability in helix 3, and helix 2, and is 

composed of frames that make uniform states 3, 4, and 5. Finally, weighted state IV is a very 

stable state besides the C-terminal end, which compares reasonably well with the uniform 

state 4 besides the weighted state showing more stability in the N-terminal helix. Altogether, 

these results confirm that weighted shape-GMM improves structural discrimination when 

it comes to flexibility in particular regions, whether it’s a single residue or secondary 

structures. Therefore, for identifying states in challenging biomolecular processes such as 

protein folding, a weighted shape-GMM is preferred.

The 6-state weighted shape-GMM trained on backbone atoms captures several structural 

distinctions between unfolded, intermediate and native states previously suggested by 

backbone dihedral clustering schemes for 6- and 12-state models.7,9,17,48 For example, 
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the Ramacolor plot for this model in Figure 4C illustrates that states I and II differ in 

the conformation of Asp3. The helical conformation of Asp3 has previously been shown 

to distinguish between native and intermediate states in 6- and 12-cluster models.17,48 

That weighted shape-GMM predicts the native state to be larger in population than the 

intermediate state is inconsistent with some previous results17 but consistent with other 

recent results.7 A native-like state that is structurally similar to the native state, but differing 

mainly in the dynamics due to an unlocked and partially unfolded helix 3 has been identified 

previously, and is in line with state IV from weighted shape-GMM.45,48,52-54 Alternatively, 

state V indicates the opposite trend; the N-terminus and helix 1 are highly fluctuating, 

and there is more stability from residue 17 leading into helix 3, with a slight increase in 

positional variance again at the C-terminus. This indicates state V has an unfolded helix 1, 

but partial folding of helices 2 and 3. These structural attributes have also been discussed in 

previous models, and used to define unfolded states in more detailed 12-state models.17 The 

ability of our weighted shape-GMM to capture these features in a 6-state model supports the 

high capacity for structural discrimination and the model’s prioritization of these states as 

distinct.

3.3.2 HP35 Folding: An Intuitive 4-state Model—Weighted shape-GMM results on 

HP35 are most consistent with a 4-state model. A 10-fold cross-validation scheme using a 

~ 25K frame training set applied to a scan of cluster sizes shows a significant % change in 

the slope of the log likelihood at a cluster size of 4 (see Figure S1) which suggests that 4 

clusters is an appropriate choice given the structural data used to fit the model. A cluster size 

of 8 could also be considered with this reasoning, however the deviation of log likelihood 

between the training and prediction data is an indication of model overfitting. It is possible 

that with this large of a cluster size the training data size must be increased to build a model 

with representation in the training data for 8 states to be sufficiently clustered.

The 4-state weighted shape-GMM is composed of a native state, near native state, 

intermediate state, and an unfolded state. The most populated cluster (53.41%) is 

characterized as the native state, N, with completely folded helices and the αL-Asp3 

conformation (Figure 5). The native-like state, N’, that resembles N, but differs in the partial 

unfolding of helix 3, is the least populated (13.95%). In contrast to the previous 6-state 

model, a near-native intermediate state with completely folded helices and a αR-Asp3 is 

not prioritized as a distinct state with a cluster size of 4. This model still identifies an 

intermediate state, I (17.46%) with an unfolded helix 1, and partial folding in helices 2 and 

3, and a broadly disordered unfolded state, U (15.17%).

A Markov state model (MSM) with a lag time of 2 ns, built from the 4-state shape-GMM 

results using PyEMMA,55 yields three dynamically distinct processes. The trajectory of 

cluster identities was first fed through a dynamic coring procedure with a minimum window 

of 2 ns (10 frames).51 This changed only 3.8% of frames suggesting that the results from 

weighted shape-GMM were already dynamically stable. The 4-state model yields a passing 

Chapman-Kolmogrov test (see Figure S3). Three implied timescales are observed, having 

values of 348 ns, 40.9 ns, and 19.1 ns. The processes associated with these three timescales 

are population shifts from states I and U to states N and N’, between states I and U, and 
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between states N and N’, respectively. Additional results from this model are depicted in the 

network diagram presented in Figure 6.

The folding mechanism of HP35 (Nle/Nle mutant) proceeds from the unfolded state, U, 

through an intermediate state, I, and near-native state, N’, to the native state, N. The mean 

first passage time (MFPT) to go from U to I is 80 ns and this process is characterized by a 

partial structuring of the C-terminal end of helix 3 (residues 29-34). Subsequent folding of 

helices 1 and 2 (I to N’) is the rate-limiting step, requiring 210 ns. Once the N-terminal helix 

has formed, the final step is to completely fold the C-terminal helix, taking 0.12 μs. Previous 

models proposed a native-like state that serves as a kinetic trap, only accessible through 

N,47 however, our model shows N’ is en route to N, which is consistent with experimental 

evidence.52 The unfolding mechanism is similar to folding, but in reverse. In both cases, the 

transition states are observed between the N’ and I states as quantified by the committors.

The structural characteristics of the intermediate state support a mechanism that primarily 

folds helix 3 and 2 before helix 1. The order of helix formation during HP35 folding has 

been heavily debated, both experimentally and theoretically, with some evidence that order 

is highly influenced by both physical and methodological factors, such as temperature, or 

force-field used.48,50,52,56-58 A recent MSM of Nle/Nle HP35, built from a 57-state model, 

found that over 90% of all pathways formed helix 3 before helices 2 and 1.51 The most 

preferred pathway appeared to fold in the order of helix 3, then 2, and lastly 1, which agrees 

well with our much more reduced model. Additionally, recent studies show evidence of 

Nle/Nle folding beginning with stabilization in the middle of helix 3 at residue 28, to the 

helix 3 N-terminus at residue 22, rather than a fully folded helix 3,50,56 which aligns well 

with our results that show even in the unfolded state the N-terminus of helix 3 has the lowest 

variance in backbone atom positions (Figure 6). In going from U to I, the backbone atom 

variances decrease significantly for residues in helices 3 and 2. Interestingly, residues 20-29 

in the intermediate state appear fairly stable in that the variance is nearly the same for each 

backbone atom, yet the unchanging value is still high (~ 20 Å2). While these residues exist 

in stable conformations (also indicated in Figure 5), they may need to accommodate for the 

large fluctuations coming from the unfolded helix 1 and loop 1. This indicates that even 

though these regions are folded, their stability can be influenced by the rest of the protein. 

Furthermore, this information is a direct result of weighted shape-GMM, as the covariance is 

iteratively evaluated and used to optimally define each cluster.

A MSM based on our weighted shape-GMM 4-state discretization represents a respectable 

balance between structural resolution and kinetic detail. The mechanism of folding aligns 

well with previous models, even those based on much larger MSMs, and captures subtle but 

relevant state differences, such as the increased C-terminal variance in the native-like state. It 

is important to reiterate that this model was fit on ~ 4% of the total trajectory data, therefore, 

not all folding events were represented during training. It is becoming more evident that 

although HP35 is a small protein, the folding mechanism is complex and likely to result 

from multiple pathways with possible kinetic traps and misfolded states. If the goal was to 

model an ensemble of folding pathways, which have been suggested for this system, then we 

propose: 1) using a larger training size to invite more representations for potential pathways, 

such that larger cluster sizes (e.g. 8) can be chosen without overfitting, and 2) exploring 
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additional features, such as side chain center of mass, since it has been proposed that for 

HP35 the secondary structures form first, primarily in the unfolded basin, and that then 

longer scale side-chain ordering must occur to achieve native contacts.46,59 As a measure 

of MSM validation, VAMP-2 scores for various HP35 discretizations, with and without 

dynamical coring are provided in Table 1 of the SI. The VAMP-2 scores of 4-state, 6-state, 

and 12-state Shape-GMM results compare favorably with a well-informed 12-state model 

following the most probable path (MPP) clustering protocol designed by Nagel et al.(51), 

especially when the clusterings are further refined using dynamical coring. This supports 

the viability of this structure-based method in yielding kinetically relevant information, even 

though the procedure is void of explicit dynamic information.

3.4 Practical Considerations for shape-GMM

Shape-GMM is an appealing approach to structural clustering but is not without its 

limitations. There are three major points to consider when using this method: (1) difficulty 

in convergence to global maxima, (2) estimating high dimensional objects, and (3) the 

computational expense of fitting the models. The first of these limitations is true for any 

EM procedure. This concern can be alleviated by performing each maximization numerous 

times with different model initialization parameters and selecting the model with the 

highest resulting log likelihood, as suggested by others.60 While there may be additional 

improvements that can be done to ensure global maxima convergence, we believe that the 

other two limitations are more specific to the application of shape-GMM to MD data and are 

discussed in more detail in the following subsections.

3.4.1 Clustering Convergence and Estimating N × N Covariances.—The most 

challenging component of estimating a weighted shape-GMM are the multiple, high 

dimensional, covariance matrices. To estimate a weighted shape-GMM for K clusters on 

a trajectory with N atoms, one must estimate K N×N covariance matrices. The minimum 

criteria is to make each matrix full rank which requires N + 1 independent data points for 

each matrix. Shape-GMM is aided in this endeavor by two aspects of the model. First, there 

are three independent measures of the N × N covariance in each frame. Second, each frame 

can contribute to the covariance matrix of each cluster as indicated in Equation 13. The 

weight of each frame is determined by the posterior distribution (Equation 10) and can be 

vanishingly small. Practically speaking, one must have multiple (> 10) independent samples 

of each covariance to have any confidence in their estimates. Thus, a reasonable estimate is 

α (N + 1)
3  frames with α > 10 for a training set. The quality of the estimate of the covariance 

will be dictated by α and the value needed to perform clustering will depend on the system 

being clustered.

The PUBS 1 and PUBS 2 ANM models with n = 8 provides a challenging system to 

cluster because the difference in the two structures is heavily dependent on the difference 

in covariances. Thus, we investigate the convergence of weighted shape-GMM on this data 

as function of training set size (Figure 7). We consider training sets of sizes varying from 

100 to 2000 frames with each training set picked randomly from the total of 10K frames. 

Each training set size was sampled ten times and the resulting models were used to predict 

clustering on the full 10K frame trajectory. The resulting clustering overlap with the ground 
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truth and log likelihood per frame are depicted in Figure 7. For training sets of size < 

300 frames, we see that the clustering overlap with ground truth is low (≈ 50%) but that 

this overlap rapidly increases from training set sizes 300 to 700. From there, there is some 

oscillation of the average value but overlaps are all near or above 90 %. The log likelihood 

per frame of the entire clustering show a similar but more steady increase and plateauing 

behavior. We note that the clustering overlap for models trained on even > 1000 frames still 

shows significant deviation between 50 % and 100 % overlap with ground truth as indicated 

by the shaded region. This indicates the importance of the particular training set chosen, 

especially for relatively small training sets. Therefore, it is recommended to fit shape-GMM 

on various training sets and use the model with the highest log likelihood on the entire data 

set.

As N gets large, sampling of the covariance matrices will become more challenging. It has 

previously been estimated that RMSD-based clustering will start to fail for greater than 200 

particles.61 This analysis utilized both a standard RMSD measure as well as a weighted 

RMSD measure, but this weighted measure still equates to a diagonal covariance matrix, 

not the weighted form of the covariance we describe in this paper. Thus, it remains an open 

question as to the limit of N for our weighted shape-GMM clustering. All systems studied in 

this paper fall under the 200 particle threshold given for RMSD.

3.4.2 Computational Expense of Shape-GMM—Computational expense of 

weighted shape-GMM scales linearly with the number of clusters. This can be observed 

in both plots depicted in Figure 8. We focus on the orange curve with a training set of 

25K frames in Figure 8A as this is the same training set size used for our cluster scan. 

We observe that for 2 clusters, a weighted shape-GMM takes approximately 10 minutes to 

optimize. For 14 clusters, it takes approximately 150 minutes to optimize. The large variance 

in optimization time, as indicated by 90% confidence intervals surrounding the solid lines, 

is a natural aspect of the EM procedure for GMMs. The time it takes to find a maximum in 

log likelihood depends dramatically on the starting conditions. Regardless, the trend in the 

average time as a function of number of clusters is clearly linear, as one would expect for a 

serial implementation of the EM GMM procedure.

Computational expense scales linearly with the number of frames in the training set. The 

four different lines in Figure 8A indicate different training set sizes. We start with 12.6K 

frames and then increase by multiples of 2 to include ~ 25K, 50K, and 75K frames. The 

slopes of the best fit lines are 5.1, 10.4, 19.7, and 30.0 CPU min/cluster, respectively. These 

scale by the same multiplicitive factor as the number of frames thus indicating that the 

procedure scales linearly with number of frames.

Computational expense scales quadratically with the number of atoms, beyond an initial 

subquadratic region. The CPU time as a function of number of clusters is plotted for four 

different feature space sizes in Figure 8B. All of these were done with 12.6K frames in 

the training set. The behavior between different feature space sizes is not as clear as that 

of training set size. The slopes of the best fit lines are 5.1 CPU min/cluster for 34 atoms, 

5.3 CPU min/cluster for 68 atoms, 9.1 CPU min/cluster for 102 atoms. and 21.8 CPU min/

cluster for 136 atoms. The ratio of the slopes of the smallest feature space size (34 atoms) 
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to that of the largest feature space size (136 atoms) is approximately 4, comparable to the 

ratio of the feature space sizes themselves. The two medium-sized feature spaces behave 

sublinearly compared to the smallest feature space size. Comparing the slopes of the CPU 

times of 68 and 136 atoms, we observe a quadratic relationship between time and feature 

space size. We expect CPU time to scale as N2 due to the two dominant processes being 

calculations of covariances.

It is possible to train weighted shape-GMMs with 100s of atoms on 10s of thousands of 

frames within a few hours. The computational time is compounded by the recommendation 

to run multiple iterations to increases chances converging to a global maximum, as well as 

the potential need to scan number of clusters. That said, each of those runs is completely 

independent and thus can be run simultaneously on separate processors. Additionally, the 

clustering algorithm requires very few user parameters: feature space size, training set size, 

and number of clusters. This is in stark contrast to many other clustering protocols.

4 Conclusion and outlook

A Gaussian Mixture Model on particle positions is a conceptually appealing approach to 

model the high dimensional probability density of macromolecules. The difficulty in doing 

so has been to account for the ability of the molecule to freely rotate and translate in a 

way that properly accounts for particle-particle correlation. Here, we present the maximum 

likelihood alignment and GMM procedures necessary to determine optimal parameters for a 

given mixture size. This procedure can be used to discretize conformational space in a way 

that theoretically matches the intuition of molecules hopping between harmonic free energy 

minima.

Two shape-GMMs are presented: uniform, a model in which the particle covariance of each 

mixture is presumed to be proportional to the identity matrix, and weighted, a model in 

which the particle covariance of each mixture is presumed to have the form Σ = ΣN ⊗ I3. 

Both uniform and weighted models are able to distinguish between five structurally distinct 

elastic network models.

Weighted shape-GMM is able to distinguish between distinct structures for species with 

heterogeneous particle variation. This finding disproves a previously held belief that 

particle positions cannot distinguish between these types of structures, and demonstrates 

an achievement of shape-GMM that will greatly benefit the field.

Weighted shape-GMM also provides globally distinct clusters for the folding/unfolding of 

HP35 from an all-atom molecular dynamics trajectory. The identified clusters corroborate 

some previously identified features of the conformational ensemble of HP35, but are distinct 

in the global picture of the folding pathway. Specifically, a four-state model is most 

consistent with our data and predicts that the native state comprises 50+% of the entire 

trajectory and follows a C-terminal unfolding and then N-terminal unfolding pathway.

Weighted shape-GMM can also be used to compare clusterings from other, potentially 

faster procedures. The log likelihood of a particular clustering can be readily computed and 
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compared between clusterings. The clustering with the largest log likelihood represents the 

best partitioning of the data under the given GMM.

The generality of our approach is strengthened by the ease of access and application. The 

package can be easily installed from PyPI (pip install shapeGMM) or directly from github 

(https://github.com/mccullaghlab/GMM-Positions). The code interface is designed to mimic 

the Scikit-learn GaussianMixture package with and object initialization, fitting (albeit with 

uniform and weighted versions), and prediction routines.

The shape-GMM algorithm is more computationally demanding than some other clustering 

procedures. While linear scaling is observed, as expected, as a function of number of 

clusters and training set size, quadratic scaling is observed for feature space size. This 

will limit the system sizes that weighted shape-GMM can be readily applied to. We 

note, however, that there are some distinct advantages, other than conceptual ones, of the 

algorithm: few parameters are needed for clustering, and the method can be directly applied 

to any type of molecular system. Looking forward, we expect a GPU implementation of the 

algorithm to greatly improve the applicability for larger system sizes or data sets.

5 Simulation Details

5.1 Elastic Network Model Simulations

Elastic Network Models (ENMs) were simulated in the LAMMPS package.62 Harmonic 

bonds were placed between each bead. Langevin dynamics simulations were performed at 

300 K in the NVT ensemble with a damping coefficient of 10 fs−1. An integration timestep 

of 2 fs was used. Simulations were run for 10 million steps with frames written every 1000 

steps.

5.2 Beaded Helix Simulations

A 12-bead model designed to have two equienergetic ground states as left- and right-handed 

helices37 was simulated in LAMMPS.62 11 harmonic bonds between beads having rest 

length length 1.0 and spring constant 100 form a polymer backbone. Lennard-Jones (LJ) 

interactions between every i, i + 4 pair of beads with ϵ = 6.0 and σ = 1.5 and a cutoff length 

of 3.0 give rise to the helical shape. All non-bonded i, i + 2 and farther also have a repulsive 

WCA interaction with ϵ = 3.0 and σ = 3.0 added to prevent overlap, with the ϵ for i, i + 

2 reduced by 50%. Simulations at temperature 1.0 were performed using ‘fix nvt’ using a 

simulation timestep of 0.005 and a thermostat timestep of 0.5. A folding/unfolding trajectory 

of length 50000000 steps was generated and analyzed as above. Here, all parameters are in 

reduced (LJ) units.

5.3 HP35 Simulation

A 305 μs all-atom simulation of Nle/Nle HP35 at 360 K from Piana et al.58 was analyzed. 

The simulation was performed using the Amber ff99SB*-ILDN force field and TIP3P 

explicit water model. Protein configurations were saved every 200 ps, resulting in ~1.5M 

frames.

Klem et al. Page 19

J Chem Theory Comput. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/mccullaghlab/GMM-Positions


Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

The authors would like to thank Peter McCullagh for useful discussions on maximum likelihood procedures and 
size-and-shape space. We would also like to thank D.E. Shaw Research for providing simulation data on the HP35 
protein. GMH was supported by the National Institutes of Health through the award R35GM138312. MM would 
like to acknowledge funding from National Institute of Allergy and Infectious Diseases of the National Institutes of 
Health under award number R01AI166050.

References

(1). Deuflhard P; Huisinga W; Fischer A; Schütte C Identification of almost invariant aggregates in 
reversible nearly uncoupled Markov chains. Linear Algebra Appl. 2000, 315, 39–59.

(2). Deuflhard P; Weber M Robust Perron cluster analysis in conformation dynamics. Linear Algebra 
Appl. 2005, 398, 161–184.

(3). Kannan D; Sharpe DJ; Swinburne TD; Wales DJ Optimal dimensionality reduction of Markov 
chains using graph transformation. J. Chem. Phys 2020, 153.

(4). Keller B; Daura X; Van Gunsteren WF Comparing geometric and kinetic cluster algorithms for 
molecular simulation data. J. Chem. Phys 2010, 132.

(5). Peng JH; Wang W; Yu YQ; Gu HL; Huang X Clustering algorithms to analyze molecular 
dynamics simulation trajectories for complex chemical and biological systems. Chinese J. Chem. 
Phys 2018, 31, 404–420.

(6). Glielmo A; Husic BE; Rodriguez A; Clementi C; Noé F; Laio A Unsupervised Learning Methods 
for Molecular Simulation Data. Chem. Rev 2021, 121, 9722–9758. [PubMed: 33945269] 

(7). Damjanovic J; Murphy JM; Lin YS CATBOSS: Cluster Analysis of Trajectories Based on 
Segment Splitting. J. Chem. Inf. Model 2021, 61, 5066–5081. [PubMed: 34608796] 

(8). Cocina F; Vitalis A; Caflisch A Sapphire-Based Clustering. J. Chem. Theory Comput 2020, 16, 
6383–6396. [PubMed: 32905698] 

(9). Sittel F; Filk T; Stock G Principal component analysis on a torus: Theory and application to 
protein dynamics. J. Chem. Phys 2017, 147.

(10). Altis A; Otten M; Nguyen PH; Hegger R; Stock G Construction of the free energy landscape of 
biomolecules via dihedral angle principal component analysis. J. Chem. Phys 2008, 128.

(11). Sittel F; Stock G Perspective: Identification of collective variables and metastable states of 
protein dynamics. J. Chem. Phys 2018, 149.

(12). Daura X; Gademann K; Jaun B; Seebach D; Van Gunsteren WF; Mark AE Peptide folding: When 
simulation meets experiment. Angew. Chemie - Int. Ed 1999, 38, 236–240.

(13). Shao J; Tanner SW; Thompson N; Cheatham TE Clustering molecular dynamics trajectories: 
1. Characterizing the performance of different clustering algorithms. J. Chem. Theory Comput 
2007, 3, 2312–2334. [PubMed: 26636222] 

(14). Bowman GR; Beauchamp KA; Boxer G; Pande VS Progress and challenges in the automated 
construction of Markov state models for full protein systems. J. Chem. Phys 2009, 131.

(15). Jain A; Stock G Identifying metastable states of folding proteins. J. Chem. Theory Comput 2012, 
8, 3810–3819. [PubMed: 26593022] 

(16). Westerlund AM; Delemotte L Inflecs: Clustering free energy landscapes with gaussian mixtures. 
J. Chem. Theory Comput 2019,

(17). Sittel F; Stock G Robust Density-Based Clustering to Identify Metastable Conformational States 
of Proteins. J. Chem. Theory Comput 2016, 12, 2426–2435. [PubMed: 27058020] 

(18). Rodriguez A; Laio A Clustering by fast search and find of density peaks. Science (80-.). 2014, 
344, 1492–1496.

Klem et al. Page 20

J Chem Theory Comput. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(19). Melvin RL; Godwin RC; Xiao J; Thompson WG; Berenhaut KS; Salsbury FR Uncovering 
Large-Scale Conformational Change in Molecular Dynamics without Prior Knowledge. J. Chem. 
Theory Comput 2016, 12, 6130–6146. [PubMed: 27802394] 

(20). Träger S; Tamò G; Aydin D; Fonti G; Audagnotto M; Dal Peraro M CLoNe: Automated 
clustering based on local density neighborhoods for application to biomolecular structural 
ensembles. Bioinformatics 2021, 37, 921–928. [PubMed: 32821900] 

(21). Ceriotti M; Tribello GA; Parrinello M Simplifying the representation of complex free-energy 
landscapes using sketch-map. Proc. Natl. Acad. Sci. U. S. A 2011, 108, 13023–13028. [PubMed: 
21730167] 

(22). Trozzi F; Wang X; Tao P UMAP as a Dimensionality Reduction Tool for Molecular Dynamics 
Simulations of Biomacromolecules: A Comparison Study. J. Phys. Chem. B 2021, 125, 5022–
5034. [PubMed: 33973773] 

(23). Theobald DL; Wuttke DS Empirical bayes hierarchical models for regularizing maximum 
likelihood estimation in the matrix Gaussian procrustes problem. Proc. Natl. Acad. Sci. U. S. 
A 2006, 103, 18521–18527. [PubMed: 17130458] 

(24). Dryden IL; Mardia KV Statistical Shape Analysis; John Wiley & Sons: Chichester, 1998.

(25). Theobald DL; Wuttke DS Accurate structural correlations from maximum likelihood 
superpositions. PLoS Comput. Biol 2008, 4, 43.

(26). Kabsch W A discussion of the solution for the best rotation to relate two sets of vectors. Acta 
Crystallogr. Sect. A 1976, 34, 827–828.

(27). Horn BKP Closed-form solution of absolute orientation using unit quaternions. J. Opt. Soc. Am. 
A 1987, 4, 629.

(28). Goodall C Procrustes Methods in the Statistical Analysis of Shape; 1991; Vol. 53; pp 285–339.

(29). Theobald DL Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. 
Acta Crystallogr. Sect. A Found. Crystallogr 2005, 61, 478–480.

(30). Liu P; Agrafiotis DK; Theobald DL Rapid communication fast determination of the optimal 
rotational matrix for macromolecular superpositions. J. Comput. Chem 2010, 31, 1561–1563. 
[PubMed: 20017124] 

(31). Frauenfelder H; Parak F; Young RD Conformational Substates in Proteins. Annu. Rev. Biophys. 
Biomol. Struct 1988, 17, 451–479.

(32). Fong Y; Wakefield J; Rice K An Efficient Markov Chain Monte Carlo Method for Mixture 
Models by Neighborhood Pruning. J. Comput. Graph. Stat 2012, 21, 197–216.

(33). Stephens M Gibbs Sampling for a mixture of normals. https://stephens999.github.io/
fiveMinuteStats/gibbs2.html.

(34). Bonakdarpour M; Stephens M Introduction to EM: Gaussian Mixture Models. https://
stephens999.github.io/fiveMinuteStats/intro_to_em.html.

(35). Lam SK; Pitrou A; Seibert S Numba. 2015, 1–6.

(36). Pedregosa F et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning 
Research 2011, 12, 2825–2830.

(37). Hartmann MJ; Singh Y; Vanden-Eijnden E; Hocky GM Infinite switch simulated tempering in 
force (FISST). J. Chem. Phys 2020, 152, 244120. [PubMed: 32610977] 

(38). McKnight CJ; Doering DS; Matsudaira PT; Kim PS A thermostable 35-residue subdomain within 
villin headpiece. J. Mol. Biol 1996, 260, 126–134. [PubMed: 8764395] 

(39). McKnight CJ; Matsudaira PT; Kim PS NMR structure of the 35-residue villin headpiece 
subdomain. Nat. Struct. Biol 1997, 4, 180–184. [PubMed: 9164455] 

(40). Kubelka J; Eaton WA; Hofrichter J Experimental tests of villin subdomain folding simulations. J. 
Mol. Biol 2003, 329, 625–630. [PubMed: 12787664] 

(41). Zagrovic B; Snow CD; Shirts MR; Pande VS Simulation of folding of a small alpha-helical 
protein in atomistic detail using worldwide-distributed computing. J. Mol. Biol 2002, 323, 927–
937. [PubMed: 12417204] 

(42). Chiu TK; Kubelka J; Herbst-Irmer R; Eaton WA; Hofrichter J; Davies DR High-resolution x-ray 
crystal structures of the villin headpiece subdomain, an ultrafast folding protein. Proc. Natl. 
Acad. Sci. U. S. A 2005, 102, 7517–7522. [PubMed: 15894611] 

Klem et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://stephens999.github.io/fiveMinuteStats/gibbs2.html
https://stephens999.github.io/fiveMinuteStats/gibbs2.html
https://stephens999.github.io/fiveMinuteStats/intro_to_em.html
https://stephens999.github.io/fiveMinuteStats/intro_to_em.html


(43). Kubelka J; Chiu TK; Davies DR; Eaton WA; Hofrichter J Sub-microsecond Protein Folding. J. 
Mol. Biol 2006, 359, 546–553. [PubMed: 16643946] 

(44). Piana S; Lindorff-Larsen K; Shaw DE Protein folding kinetics and thermodynamics from 
atomistic simulation. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 17845–17850. [PubMed: 
22822217] 

(45). Banushkina PV; Krivov SV High-resolution free-energy landscape analysis of α-helical protein 
folding: HP35 and its double mutant. J. Chem. Theory Comput 2013, 9, 5257–5266. [PubMed: 
24348206] 

(46). Best RB; Hummer G; Eaton WA Native contacts determine protein folding mechanisms in 
atomistic simulations. Proc. Natl. Acad. Sci. U. S. A 2013, 110, 17874–17879. [PubMed: 
24128758] 

(47). Sittel F; Jain A; Stock G Principal component analysis of molecular dynamics: On the use of 
Cartesian vs. internal coordinates. J. Chem. Phys 2014, 141.

(48). Jain A; Stock G Hierarchical folding free energy landscape of HP35 revealed by most probable 
path clustering. J. Phys. Chem. B 2014, 118, 7750–7760. [PubMed: 24405039] 

(49). Ernst M; Sittel F; Stock G Contact- and distance-based principal component analysis of protein 
dynamics. J. Chem. Phys 2015, 143.

(50). Mori T; Saito S Molecular mechanism behind the fast folding/unfolding transitions of villin 
headpiece subdomain: Hierarchy and heterogeneity. J. Phys. Chem. B 2016, 120, 11683–11691. 
[PubMed: 27769115] 

(51). Nagel D; Weber A; Lickert B; Stock G Dynamical coring of Markov state models. J. Chem. Phys 
2019, 150.

(52). Reiner A; Henklein P; Kiefhaber T An unlocking/relocking barrier in conformational fluctuations 
of villin headpiece subdomain. Proc. Natl. Acad. Sci. U. S. A 2010, 107, 4955–4960. [PubMed: 
20194774] 

(53). Beauchamp KA; McGibbon R; Lin YS; Pande VS Simple few-state models reveal hidden 
complexity in protein folding. Proc. Natl. Acad. Sci. U. S. A 2012, 109, 17807–17813. [PubMed: 
22778442] 

(54). Serrano AL; Bilsel O; Gai F Native state conformational heterogeneity of HP35 revealed by 
time-resolved FRET. J. Phys. Chem. B 2012, 116, 10631–10638. [PubMed: 22891809] 

(55). Scherer MK; Trendelkamp-Schroer B; Paul F; Pérez-Hernández G; Hoffmann M; Plattner N; 
Wehmeyer C; Prinz J-H; Noé F PyEMMA 2: A software package for estimation, validation, and 
analysis of Markov models. J. Chem. Theor. Comput 2015, 11, 5525–5542.

(56). Wang E; Tao P; Wang J; Xiao Y A novel folding pathway of the villin headpiece subdomain 
HP35. Phys. Chem. Chem. Phys 2019, 21, 18219–18226. [PubMed: 31389931] 

(57). Nagarajan S; Xiao S; Raleigh DP; Dyer RB Heterogeneity in the Folding of Villin Headpiece 
Subdomain HP36. J. Phys. Chem. B 2018, 122, 11640–11648. [PubMed: 30118232] 

(58). Piana S; Lindorff-Larsen K; Shaw DE How robust are protein folding simulations with respect to 
force field parameterization? Biophys. J 2011, 100, L47–L49. [PubMed: 21539772] 

(59). Hu KN; Yau WM; Tycko R Detection of a transient intermediate in a rapid protein folding 
process by solid-state nuclear magnetic resonance. J. of the Am. Chem. Soc 2010, 132, 24–25.

(60). Do CB; Batzoglou S What is the expectation maximization algorithm? Nat. Biotech 2008, 26, 
897–899.

(61). Sargsyan K; Grauffel C; Lim C How Molecular Size Impacts RMSD Applications in Molecular 
Dynamics Simulations. J. Chem. Theory Comput 2017, 13, 1518–1524. [PubMed: 28267328] 

(62). Plimpton S Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys 1995, 
117, 1–19.

Klem et al. Page 22

J Chem Theory Comput. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
Clustering of an amalgamated trajectory of five anisotropic network models (ANMs) of 

a 12 bead system. (A) Schematic of the five topologies considered including left-handed 

helix, right-handed helix, beta-sheet like, and partially unfolded (PUBS), and linear. (B) 

Log likelihood per frame as a function of number of clusters for uniform shape-GMM and 

weighted shape-GMM. Each model has two corresponding curves: the log likelihood per 

frame of the training set and the log likelihood per frame from the cross-validation (CV) set. 

Error bars are the standard deviation of sampling ten different training sets for each model. 

Shaded regions denote the 90% confidence interval.

Klem et al. Page 23

J Chem Theory Comput. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2: 
Clustering of two anisotropic network models (ANMs) with varying length of an unfolded 

region. Fraction of correctly clustered pairs of frames as a function of the size of unfolded 

region for uniform shape-GMM and weighted shape-GMM. Shaded regions denote the 90% 

confidence interval obtained by clustering with 10 different training sets. Schematics of the 

two topologies of ANMs used in the clustering are provided as insets.
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Figure 3: 
Clustering of a 12-bead helix transition trajectory. A) The Log likelihood as a function 

of number of clusters for uniform shape-GMM and weighted-shape-GMM. Error bars 

denote standard deviation and shaded regions denote the 90% confidence interval obtained 

from clustering using five different training sets. B) Clustering results for 3 clusters from 

W-SGMM on 2D free energy surface of weighted Mahalanobis distance from two cluster 

centers (inset: schematic of potential energy diagram).
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Figure 4: 
Uniform and weighted shape-GMM 6-state clustering results on HP35 Nle/Nle mutant. A) 

Matching wheel for cluster trajectories of uniform (top, 1-6) and weighted (bottom, I-VI). 

B) Ramacolor plot of uniform shape-GMM and C) weighted shape-GMM. Percentages 

correspond to cluster populations.
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Figure 5: 
Ramacolor plot for the HP35 weighted shape-GMM 4-state model prior to dynamical 

coring.
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Figure 6: 
Weighted 4-state shape-GMM results for HP35. Variation in backbone atomic displacement 

of each state. Regions corresponding to helix 1, helix 2 and helix 3 are colored forest 

green, cyan, and yellow, respectively. Error bars represent standard deviation of the 

values estimated from dividing the trajectory into 10 equal sized continuous segments. 

Enlarged points represent the Cα atoms of each residue. Top: GMM centers in thick tube 

representation with 100 random frames from each cluster in thin tube representation. State 

lifetimes are shown in each structural figure, with MFPTs between connected states.
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Figure 7: 
Clustering convergence for weighted shape-GMM on the PUBS 1 PUBS ANM system. The 

average clustering overlap with ground truth and log likelihood per frame of the are plotted 

as a function of training set. Each training set was chosen randomly from the 10K total 

frames. This procedure was repeated 10 times to compute the average and 90% confidence 

interval (shaded region).
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Figure 8: 
CPU time for weighted shape-GMM optimization for HP35. A) CPU time to optimize a 

single weighted shape-GMM on 34 atoms as a function of number of clusters for different 

training set sizes. B) CPU time to optimize a single weighted shape-GMM on ~ 13K frames 

as a function of number of clusters for different number of atoms in the feature space.
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