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Abstract

Adaptive measurement of change (AMC) is a psychometric method for measuring
intra-individual change on one or more latent traits across testing occasions. Three
hypothesis tests—a Z test, likelihood ratio test, and score ratio index—have demon-
strated desirable statistical properties in this context, including low false positive
rates and high true positive rates. However, the extant AMC research has assumed
that the item parameter values in the simulated item banks were devoid of estimation
error. This assumption is unrealistic for applied testing settings, where item para-
meters are estimated from a calibration sample before test administration. Using
Monte Carlo simulation, this study evaluated the robustness of the common AMC
hypothesis tests to the presence of item parameter estimation error when measuring
omnibus change across four testing occasions. Results indicated that item parameter
estimation error had at most a small effect on false positive rates and latent trait
change recovery, and these effects were largely explained by the computerized adap-
tive testing item bank information functions. Differences in AMC performance as a
function of item parameter estimation error and choice of hypothesis test were gen-
erally limited to simulees with particularly low or high latent trait values, where the
item bank provided relatively lower information. These simulations highlight how
AMC can accurately measure intra-individual change in the presence of item para-
meter estimation error when paired with an informative item bank. Limitations and
future directions for AMC research are discussed.
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Researchers and practitioners in the social sciences often seek to measure intra-

individual change across multiple occasions. For example, a teacher might track

whether students’ math or reading ability improved after a semester course, or a

medical clinician might want to determine whether significant change in a patient’s

reported symptoms has occurred following treatment. Traditional methods for mea-

suring change, largely based on classical test theory (CTT), are commonly used in

applied research, yet can be psychometrically flawed (Cronbach & Furby, 1970;

Finkelman et al., 2010; O’Connor, 1972; Wang et al., 2020). For example, proposed

change statistics like the reliable change index (Jacobson et al., 1984; Jacobson &

Truax, 1991) generally depend upon the sample composition and reliability, and are

thus unable to adequately identify significant intra-individual change between test

administrations that is independent of the group in which an individual is embedded

(Finkelman et al., 2010; Kim-Kang & Weiss, 2007, 2008; Wang et al., 2020). More

modern methods to identify longitudinal individual change (e.g., Embretson’s, 1991,

multidimensional Rasch model for learning and change) are also limited by restric-

tive item parameter assumptions and insufficient generalizability (Finkelman et al.,

2010).

A viable psychometric alternative is adaptive measurement of change (AMC;

Kim-Kang & Weiss, 2007, 2008; Weiss & Kingsbury, 1984), which determines

whether a single individual has significantly changed on one or more latent traits

across testing occasions. To achieve this goal, AMC uses the principles of item

response theory (IRT) and computerized adaptive testing (CAT; Weiss, 1982). CAT

tailors a test to an individual’s unique ability, and there is evidence (e.g., Weiss,

1982, 2004; Weiss & Kingsbury, 1984) that this method facilitates more efficient

and precise measurements of the intended latent trait. CAT can either provide a

latent trait (u) point estimate, or can classify individuals into discrete categories (e.g.,

Pass/Fail). In particular, AMC uses a classification procedure wherein an individual’s

trait estimates (û) are compared across testing occasions, and the individual is cate-

gorized based on whether the differences among their estimates are ‘‘psychometri-

cally significant.’’1 AMC first functions as an omnibus test, classifying whether

individuals have changed across the full set of testing occasions. If significant change

is indicated, post hoc analyses are necessary to pinpoint between which testing occa-

sions the change occurred.

The efficacy of AMC thus largely depends upon the method’s ability to accurately

determine if, and when, an individual’s û has substantially changed. The extant liter-

ature on AMC implements null hypothesis significance testing methods to make

these individual classifications. Specifically, for t testing occasions measuring the

same u, the null hypothesis denotes no differences among an individual’s u estimates
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from these t test occasions. Then, the alternative hypothesis denotes a nonzero differ-

ence between at least two of the estimates (Finkelman et al., 2010; Wang & Weiss,

2018; Wang et al., 2020). Researchers have proposed several statistical tests to

address these hypotheses, including variants of a Z test, a likelihood ratio test (LRT;

Finkelman et al., 2010; Phadke, 2017; Wang & Weiss, 2018), and a score ratio index

(SRI; Lee, 2015; Phadke, 2017; Wang & Weiss, 2018). Previous simulation studies pro-

vide evidence that these significance tests exhibit strong statistical properties across a

variety of CAT applications, including the unidimensional two-occasion (Finkelman

et al., 2010; Lee, 2015) and multi-occasion (Phadke, 2017) testing scenarios.2

However, a significant limitation of these simulations is that all have assumed that

the item parameter values in the examined item banks do not contain estimation error

(Wang et al., 2020). Specifically, these studies designed their item banks by generat-

ing item parameters (e.g., difficulty, discrimination) with values drawn directly from

a specified population distribution. This process strongly contrasts with CAT devel-

opment in applied settings, where the test developers do not know the true parameter

values. Instead, item banks are typically created by (a) developing a large set of

items, (b) administering these items to a calibration sample, and (c) using the

responses to then estimate the item parameter values (Embretson & Reise, 2000).

This estimation process inherently adds error to the item bank. Thus, assuming that

item banks contain true rather than estimated item parameter values limits the gener-

alizability of previous AMC hypothesis test research.

Item parameter estimation error can be particularly problematic for ensuring ade-

quate measurement quality in adaptive testing. There is compelling evidence, both in

adaptive (e.g., Patton et al., 2013; van der Linden & Glas, 2000) and nonadaptive

testing contexts (e.g., Cheng & Yuan, 2010; Hambleton & Jones, 1994), that higher

degrees of item parameter estimation error are associated with negatively biased u

standard errors. Consequently, spuriously small standard errors might lead research-

ers to overestimate both the accuracy of the u estimates and the corresponding test

information functions (Hambleton et al., 1993; Olea et al., 2012; Patton et al., 2013;

van der Linden & Glas, 2000). Moreover, when the CAT termination criterion

depends on the standard errors (e.g., the test terminates when the u confidence inter-

val is of a certain width), standard error deflation can cause variable-length CATs to

stop prematurely (Patton et al., 2013). Importantly, the effects of item parameter esti-

mation error are often exacerbated as the item bank’s calibration sample size

decreases (e.g., Drasgow, 1989; Feuerstahler, 2018; Hambleton & Jones, 1994; Li &

Lissitz, 2004; Swaminathan et al., 2003; Weiss & Von Minden, 2012; Yoes, 1995).

As noted above, the extant AMC literature has largely ignored the presence of

estimation error when designing CAT item banks. However, because AMC hypoth-

esis tests generally involve estimating u and the associated standard error, it is plausi-

ble that item parameter estimation error could influence the performance of these

hypothesis tests (Wang et al., 2020). For example, the Z-test statistic is based on the

ratio of the difference between two u estimates and the pooled standard error. Larger

estimation error might spuriously increase the magnitude of this test statistic, leading
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to higher false positive rates. Understanding the relationship between item parameter

estimation error and AMC hypothesis test performance will expand the efficacy and

accurate implementation of this method across a broader range of test settings.

Moreover, identifying the degree to which AMC hypothesis tests are robust to esti-

mation error will highlight the necessary calibration sample sizes for facilitating

quality measurement of intra-individual change.

Purpose

The present study addressed this gap in the AMC research by testing the robustness

of three omnibus AMC hypothesis tests—the Z test, LRT, and SRI—to the presence

of item parameter estimation error. Across a variety of testing conditions with four

CAT administrations, two related research questions were examined. First, to what

extent do errors in item parameter estimates affect the ability of the three AMC

hypothesis tests to detect psychometrically significant individual change? Second, if

item parameter estimation error influences the results of the hypothesis tests, what

calibration sample size is necessary for accurately measuring intra-individual change

with AMC?

Method

Omnibus AMC hypothesis test performance in the presence of item parameter esti-

mation error was examined using three Monte Carlo simulations, with CATs admi-

nistered at four testing occasions. Specifically, the simulations measured false and

true positive rates, average test length, and u change recovery when manipulating

three design factors: (a) amount of item parameter estimation error, (b) magnitude of

change between true u values at each testing occasion, and (c) AMC hypothesis test.

The primary simulation, referred to as Simulation 1, introduced item parameter

estimation error by estimating item parameters from an ‘‘error-free’’ item bank with

calibration samples of varying sizes. Two additional simulations were conducted to

examine the generalizability of the results from Simulation 1. Specifically, these

simulations either modified the ‘‘error-free’’ (EF) item bank (Simulation 2) or the

method of introducing estimation error (Simulation 3).

Simulation 1
Item Parameter Generation. The Simulation 1 item bank was generated with 300

dichotomous items from the unidimensional three-parameter logistic model (3PLM;

Birnbaum, 1986) with D = 1. The item parameters—discrimination (a), difficulty

(b), and pseudo-guessing (c)—were randomly drawn from specified distributions to

construct an item bank with a moderately high and relatively flat bank information

function. The a parameters were drawn from a truncated N(1.25, 0.25) distribution

with bounds at 0.50 and 2.0. A truncated normal distribution was used to mirror a

typical CAT bank, where items with extremely small or large discriminations are
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often removed (Crichton, 1981). The b parameters were drawn from a sequence of

uniform distributions ranging from 23.0 to 3.0. This sequence was segmented into

12 intervals of width 0.50 (i.e., [23.0, 22.5], [22.5, 22.0], . . . , [2.0, 2.5], [2.5,

3.0]). Within each interval, 25 realizations of a uniform distribution with the corre-

sponding bounds were generated (Finkelman et al., 2010). The c parameters were

realizations of a U[0.00, 0.25] distribution (Sahin & Weiss, 2015). In this EF item

bank consisting of the 300 true (i.e., not estimated) item parameters, the means and

standard deviations for the a, b, and c parameters were 1.21 (0.40), 0.00 (1.73), and

0.12 (0.07), respectively.

Item Parameter Estimation. Using the EF item bank, varying degrees of estimation

error were generated in Simulation 1 by systematically decreasing the calibration

sample size for each estimated item bank. This method of incorporating item para-

meter estimation error has been commonly used in previous research (e.g., Cheng &

Yuan, 2010; Feuerstahler, 2018; Kaskowitz & De Ayala, 2001; Patton et al., 2014).

Four calibration sample sizes were selected, comprising either 500, 750, 1,000, or

2,500 simulees. Based on common guidelines for accurate 3PLM item parameter esti-

mation (e.g., De Ayala, 2013; Hulin et al., 1982; Lord, 1968; Sahin & Anil, 2017),

these sample sizes were chosen to construct a range of simulees from arguably too

small (N = 500) to sufficiently large (N = 2,500).

To create each estimated item bank, response vectors based on the true item and

person parameter values were first generated. The u values for simulees in the cali-

bration samples were random realizations of the standard normal distribution. The

calibration samples were independent, such that a new set of simulees was generated

for each calibration sample rather than selecting simulees from one large sample. To

generate each item response, the probability of a simulee’s correct response to the

given item, P(u), was calculated using the 3PLM with the simulee’s true u value and

the true item parameters (i.e., from the EF item bank). A single realization of the

U[0,1] distribution was subsequently generated; a simulee was considered to have a

correct response (denoted 1) if P(u) was greater than the randomly generated number,

and a score of 0 was assigned otherwise. Note that although the true item parameter

values were used to simulate the item responses, the estimated item parameters were

used for subsequent CAT item selection, u estimation, and AMC hypothesis testing.

Using the simulated response vectors for each calibration sample, the three item

parameter values (a, b, and c) were estimated for each of the 300 items. Item para-

meter estimation was completed using an expectation-maximization (EM) algorithm

(Bock & Aitkin, 1981) with 62 quadrature points and the nlminb optimizer (as imple-

mented in the R package mirt; Chalmers, 2012). Parameter bounds were used for the

intercept and slope values (24 \ d \ 4 and 0.5 \ a \ 2.5, respectively) to facilitate

convergence. Note that mirt by default uses the slope-intercept parameterization;

these parameters were converted to the traditional IRT parameterization (a, b, and c)

prior to subsequent analyses. Parameter bounds also helped produce more realistic
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item banks, with estimated parameter values that better align with those seen in prac-

tice (e.g., Reise, 2014).

Table 1 presents the item parameter recovery statistics within each estimated item

bank in Simulation 1. Supporting past research on item parameter estimation error

(e.g., Drasgow, 1989; Patton et al., 2013, 2014; Swaminathan et al., 2003; Weiss &

Von Minden, 2012; Yoes, 1995), the bias and root mean-square error (RMSE) for all

three parameters decreased as the calibration sample size increased. For example, the

RMSE for a decreased from 0.399 to 0.176 as the calibration sample size increased

from 500 to 2,500 simulees. Furthermore, the correlations between the true and esti-

mated item parameters increased for larger calibration sample sizes. Although some

of the recovery statistics indicated relatively poorer item parameter recovery than in

other simulation studies, the estimated item banks were sufficient for addressing the

primary research aim: examining AMC’s performance in the presence of item para-

meter estimation error.

Corresponding item bank information functions (BIFs) are presented in Figure 1.

All item banks provided decreasing information as u became increasingly negative or

positive. For �0:5 � u � 2:0, the error-laden item banks provided more information

than the EF item bank (e.g., Hambleton et al., 1993; van der Linden & Glas, 2000).

The EF BIF was similar to simulated item banks used in previous AMC research

(Finkelman et al., 2010). Moreover, the EF BIF corresponded to a standard error of

measurement (SEM) below 0.25 for the range of latent trait values examined in the

subsequent simulations (i.e., �2:5 � u � 2:5).

Table 1. Item Parameter Recovery Statistics for Item Banks Estimated With Varying
Degrees of Item Parameter Estimation Error.

Item bank

Bias RMSE Correlations

a b c a b c a b c

Simulation 1
500 0.131 0.147 0.058 0.399 0.751 0.177 0.668 0.912 0.250
750 0.071 0.139 0.044 0.335 0.543 0.162 0.737 0.953 0.280
1,000 0.092 0.138 0.069 0.289 0.537 0.177 0.798 0.954 0.266
2,500 0.053 0.102 0.039 0.176 0.363 0.122 0.911 0.980 0.475

Simulation 2
500 0.118 0.501 0.114 0.588 1.325 0.294 0.158 0.896 —
750 0.097 0.575 0.121 0.507 1.283 0.282 0.180 0.909 —
1,000 0.047 0.475 0.104 0.425 1.144 0.254 0.306 0.929 —
2,500 0.037 0.356 0.091 0.308 0.946 0.234 0.371 0.945 —

Simulation 3
Moderate 0.012 0.008 0.085 0.500 0.297 0.169 0.382 0.986 0.213
Large 0.028 0.008 0.153 0.562 0.533 0.244 0.264 0.954 0.223

Note. Correlations between true and estimated c parameters in Simulation 2 are not available because

the true parameter value was 0.20 for all items.
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Figure 1. Item bank information functions for Simulations 1, 2, and 3.
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AMC Hypothesis Tests. The simulation compared three common AMC hypothesis

tests: the Z test, the likelihood ratio test, and the score ratio index. All three hypoth-

esis tests have demonstrated desirable statistical properties in previous AMC research

(e.g., Finkelman et al., 2010; Lee, 2015; Phadke, 2017; Wang et al., 2020). In a typi-

cal AMC procedure, each hypothesis test is conducted after an examinee responds to

an administered item (assuming that one or more CATs have preceded the given test,

to appropriately compare the u estimates). This iterative process continues until either

(a) the method determines that psychometrically significant intra-individual change

has occurred or (b) a maximum number of items has been administered without a sig-

nificant change determination.

Z test. The omnibus Z test (Phadke, 2017) compares the standardized differences

among u estimates at three or more testing occasions. The omnibus test requires the

computation of Z indices between all unique pairs of testing occasions; with t testing

occasions, there will be K = t(t�1)
2

unique Z indices (Phadke, 2017). For the kth unique

Z index between testing occasions i (Ti) and j (Tj), the Z index is

jZjk =
ûj � ûi

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ij ûPoolij

� � +
1

Ii ûPoolij

� �
s ð1Þ

where ûj and ûi are the estimated trait values at Tj and Ti, respectively, ûPoolij is the

estimated u across all items administered at both testing occasions, and Ij(ûPoolij) and

Ii(ûPoolij ) are the expected test information values computed at ûPoolij for items admi-

nistered at Tj and Ti, respectively (Finkelman et al., 2010). The expected test informa-

tion was used in this context to avoid the possibility of negative information values

with the 3PLM (Bradlow, 1996). It merits comment that the Z test incorporates differ-

ent information functions (and therefore different likelihood functions), each which

correspond to the specified set of items. However, all u estimates remain on a com-

mon scale because the test uses a common item bank.

The Z statistic in Equation 1 quantifies the difference in u estimates between any

two testing occasions. For the multiple-occasion context, a Z statistic is computed for

all possible pairs of testing occasions. Then, the omnibus ZO index is computed as

(Phadke, 2017)

ZO =
XK

k = 1

Zj j2k ð2Þ

where the null hypothesis for the omnibus test indicates no difference between the u

values across the t testing occasions (i.e., H0 : u1 = u2 = . . . = ut). Because jZjk is

compared with quantiles from the standard normal distribution (Finkelman et al.,

2010), ZO is compared with a chi-square distribution with k degrees of freedom to

determine significance (Phadke, 2017).
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Likelihood ratio test. The second hypothesis test examined was a likelihood ratio

test (LRT), which compares the likelihood function evaluated at the maximum likeli-

hood estimate (MLE) under the null hypothesis with the likelihood function evaluated

at the MLE with no restrictions (Agresti, 2007). In the AMC context, ûPoolt (calculated

across t testing occasions) is the MLE under H0 : u1 = u2 = � � � = ut. Given no para-

meter restrictions, the likelihood function across all testing occasions is the product of

the separate likelihoods evaluated at the corresponding u estimate (Finkelman et al.,

2010; Phadke, 2017). Thus, the omnibus likelihood ratio for t testing occasions is

LO =
L u1 + 2 + ��� + tjûPoolt

� �
L u1jû1

� �
3L u2jû2

� �
3 � � �3L utjût

� � ð3Þ

where L(�) is the likelihood function for the 3PLM evaluated at a given u value, ui is

the response vector for Ti (i = 1, . . . , t), and u1 + 2 + ... + t is the response vector across

all testing occasions. The LRT index is then computed as �2logeLO. Under the null

hypothesis, this statistic follows a chi-square distribution with (t � 1) degrees of free-

dom (Phadke, 2017).

Score ratio index. The third hypothesis test examined in these simulations was the

score ratio index (SRI), first proposed for the AMC domain with two testing occa-

sions by Lee (2015, pp. 19-21), and then extended to the multi-occasion scenario by

Phadke (2017). The SRI is based on the score test statistic, defined as

S(u) =
½‘0 ujuð Þ�2

I uð Þ ð4Þ

where ‘
0

ujuð Þ is the first derivative (with respect to u) of the log-likelihood function

for the response vector u evaluated at u (also referred to as the score function), and

I uð Þ is the test information evaluated at u (Lee, 2015). Across t testing occasions, the

SRI for AMC is constructed as

SO û
� �

=
½‘0 ûPoolt ju1

� �
�2

I1 ûPoolt

� � +
½‘0 ûPoolt ju2

� �
�2

I2 ûPoolt

� � + � � � +
½‘0 ûPoolt jut

� �
�2

It ûPoolt

� � ð5Þ

where ûPoolt is again calculated using the response pattern across all t testing occa-

sions. Under the null hypothesis of no change, SO(û) follows a chi-square distribution

with (t � 1) degrees of freedom (Phadke, 2017).

Critical values for variable-length tests. For all three AMC hypothesis tests, critical

values are chosen to maintain nominal error rates (e.g., a = 0:05). As noted above,

asymptotic distributions have been derived for each of the aforementioned hypoth-

esis tests (see Finkelman et al., 2010; Lee, 2015; Phadke, 2017). Yet in variable-

length CAT, the hypothesis tests are conducted after each item administration, so

choosing critical values without accounting for multiple testing issues can inflate

false positive rates. To adjust for the potential inflation in false positive rates, a pre-

liminary simulation was conducted to select sets of empirically derived critical
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values that would maintain the desired error rates. Specifically, a procedure outlined

by Finkelman et al. (2010), and later replicated by Lee (2015), was used. Three sets

of critical values were chosen to correspond to each of the three omnibus hypothesis

tests when using the EF item banks; these selected critical values were then used for

the remaining conditions with the four estimated item banks.

Simulated CAT Administration. The aim of the omnibus AMC procedure is to deter-

mine whether intra-individual change had occurred across four testing occasions.

Therefore, four CAT administrations were simulated, with AMC applied only at the

fourth testing occasion. At each of the four testing occasions, a set of item responses

was generated for a CAT measuring one latent trait. The true u values at the first

testing occasion (u1) again comprised 11 discrete values ranging from 22.5 to 2.5

(Finkelman et al., 2010) with 1,000 replications of simulees at each of the possible

u1 values. As shown in Table 2, 10 change trajectories for u were examined, includ-

ing one linear trajectory (where u increased by 0.25 at each testing occasion), eight

nonlinear trajectories, and one ‘‘No Change’’ condition where u remained constant

across all four testing occasions. The nonlinear trajectories were selected to mimic

change patterns seen in longitudinal health data (Wang et al., 2020).

All four simulated tests were fixed-length CATs with 50 items. The starting u val-

ues for the first testing occasion (T1) were set to 0 (the average true u), and the start-

ing values for subsequent CAT administrations were set to the final u estimates from

the previous test administration. For example, the starting values at T3 were the final

û2 values. To measure the performance of the three AMC hypothesis tests as termi-

nation criteria, a post hoc analysis was conducted using the response data from the

T4 CAT. This analysis implemented the AMC termination indices as if the T4 admin-

istration was a variable-length test. This approach was used to directly compare the

performance of the three AMC hypothesis tests on the same data sets.

Table 2. Change Trajectory Patterns Analyzed Across Four Simulated Testing Occasions.

Pattern u2 � u1 u3 � u2 u4 � u3

Linear + 0.25 + 0.25 + 0.25
Nonlinear 1 + 0.50 + 0.25 + 0.00
Nonlinear 2 + 0.75 + 0.00 + 0.00
Nonlinear 3 + 0.75 20.25 20.25
Nonlinear 4 + 0.50 + 0.25 20.50
Nonlinear 5 + 0.00 + 0.00 + 0.50
Nonlinear 6 + 0.00 + 0.00 + 0.75
Nonlinear 7 –0.50 20.25 + 0.00
Nonlinear 8 + 0.00 20.50 + 0.00
No change + 0.00 + 0.00 + 0.00

Note. u1 was set as a sequence of values from 22.5 to 2.5 with a step size of 0.5, and 1,000 simulees

were assigned to each value in the sequence.
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Rather than simulate three fixed-length tests and a final variable-length test,

variable-length CATs could have been simulated at all testing occasions. In practice,

variable-length CATs are commonly used, based on improved test efficiency and

accuracy compared with using a fixed-length termination criterion (Choi et al., 2011;

Wang et al., 2019). However, recall that AMC was applied in the current study to

identify omnibus change across all four testing occasions. Using only one variable-

length CAT (at T4) provided a clearer picture of AMC’s performance as a termination

criterion (rather than comparing AMC results across two or more testing occasions).

Given that the primary focus of the analyses was on the fourth testing occasion, the

first three testing occasions used a fixed-length termination criterion to better standar-

dize the AMC process.

In the post hoc, variable-length CAT for T4, the minimum and maximum test

lengths were set to 10 and 50, respectively. For each simulee and each AMC hypoth-

esis test, a sequence of test statistics was computed, corresponding to Items 10

through 50. This sequence of statistics was used to identify the item after which the

T4 CAT would have terminated in a variable-length administration (note that these

statistics were computed only after all four CATs were administered). Based on this

stopping point, the corresponding item response pattern was used to evaluate the

hypothesis test performance (described below). In this context, termination for the

omnibus AMC method was based on whether psychometrically significant change

had occurred (a dichotomous ‘‘yes’’ or ‘‘no’’) across all four testing occasions. In

this study, no post hoc analyses were conducted to identify between which specific

test occasions the change had occurred.

In these simulated CAT administrations, each u value was estimated using maxi-

mum likelihood estimation. When a simulee did not have a mixed response vector

(i.e., the simulee answered all items correctly or incorrectly, typically occurring only

in the early stages of a CAT), u was estimated using maximum a posteriori estima-

tion with a standard normal prior distribution. Moreover, at each stage of the CAT,

items were chosen to maximize the expected Fisher information at the current latent

trait estimate (Embretson & Reise, 2000). It merits comment that within each condi-

tion, items were drawn from the same item bank at each testing occasion. In this

way, simulees could answer a given item multiple times across the four simulated

CAT administrations.

Dependent Variables. In summary, Simulation 1 comprised a Monte Carlo simulation

with four CAT administrations to examine AMC performance when varying three

design factors: (a) item bank calibration sample size, (b) magnitude and pattern of

change between true us at each testing occasion, and (c) AMC hypothesis test.

Results were compared across 150 conditions (5 levels of item parameter estimation

error 3 10 u change trajectories 3 3 omnibus hypothesis tests) at 11 starting u levels

with 1,000 simulees (i.e., replications) per u level. Because AMC examines psycho-

metric change at the individual level, each simulation condition was essentially repli-

cated 1,000 times at each u level.
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Using the post hoc analysis results to simulate a variable-length CAT at T4, AMC

performance was evaluated using false positive rates (FPRs)—the proportion of

simulees identified as demonstrating psychometrically significant change when their

us did not change across testing occasions—and true positive rates (TPRs)—the pro-

portion of simulees identified as demonstrating psychometrically significant change

when their us did indeed change across testing occasions. Next, the average test

length (ATL) at T4 was computed when employing each of the hypothesis tests

(Finkelman et al., 2010).

It also was of interest to examine the extent to which the estimated change

between the initial and final testing occasions mirrored the true change in u. To

quantify this (omnibus) intra-individual change recovery, a ‘‘change recovery index’’

was calculated as

CRI = u4 � u1½ � � û4 � û1

� �
ð6Þ

where ui and ûi (i 2 f1, 4g) are the true and estimated latent trait values, respectively,

at the first or fourth testing occasion, averaged across all 1,000 replicated simulees in

a given condition with the same u at T1. In Equation 6, the first quantity represents

the true difference between the final and initial u. The second quantity represents the

corresponding estimated change, using the u estimates from the first fixed-length

CAT administrations (T1) and the final, variable-length AMC administration (T4).

The above dependent variables were compared among the simulation conditions

in three ways. First, a series of two-way analyses of variance3 (ANOVAs) were fit to

describe the relative effects of the three design factors (amount of item parameter

estimation error, u change pattern, and AMC hypothesis test) on each termination

index. The true u value at the first testing occasion (u1) was also included as a pre-

dictor in the ANOVAs to examine differences across the trait continuum. Classical

effect sizes were computed as

h2 =
SSFactor

SSTotal

ð7Þ

where SS denotes the sum-of-squares from the ANOVA computation. Separate

ANOVAs were run for each dependent variable (e.g., FPRs, ATL). Second, using

the nonnegligible effect sizes as guidance for subsequent interpretation (h2 . 0:02),

each dependent variable was examined when averaging across all us. Finally, results

were analyzed when conditioning on u1.

Simulations 2 and 3

A common question with any CAT-based simulation concerns the extent to which

results are driven by such factors as the choice of item bank or estimation procedure,

rather than reflective of underlying trends in CAT performance. To better evaluate

the generalizability of the results from the present study, Simulation 1 was
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reproduced in two ways. These additional simulations differed from Simulation 1 pri-

marily in the methods used for item bank generation. All other procedures from

Simulation 1 (i.e., CAT administration, u estimation, post hoc analyses for AMC test

performance) were replicated in Simulations 2 and 3.

In Simulation 2, a different EF item bank was constructed with a new set of item

parameters. Specifically, 300 items were generated following a unidimensional

3PLM model with b;U ½�4:5, 4:5�, a;N (1:25, 0:152) with bounds at 0.5 and 2.0,

and c = 0:20 for all items (Lee, 2015). Compared with the item parameter distribu-

tions in Simulation 1, the new item bank in Simulation 2 included a widened diffi-

culty distribution, relatively smaller variance for the discrimination parameter, and a

constant (rather than uniformly distributed) pseudo-guessing parameter. As in

Simulation 1, item parameters for four item banks were then estimated using an EM

algorithm (Bock & Aitkin, 1981) in mirt (Chalmers, 2012) with the aforementioned

calibration sample sizes.

The item parameter recovery statistics for this set of item banks are provided in

Table 1, and the corresponding BIFs are presented in Figure 1. Compared with

Simulation 1, both the EF and error-laden item banks in Simulation 2 provided rela-

tively less information across much of the u continuum. The low information in the

Simulation 2 EF item bank was largely due to the relatively low discrimination val-

ues. Indeed, the BIF in Figure 1 aligns with the information function from a ‘‘low-dis-

crimination’’ condition in Lee (2015). Although arguably providing less information

than some banks used in practice with CAT, the EF item bank in Simulation 2 facili-

tated a clear comparison of AMC’s performance in the presence of item parameter

estimation error as a function of bank information (i.e., when comparing between

Simulations 1 and 2). Moreover, note that even with the relatively low information,

the SEM for the EF item bank in Simulation 2 was still less than approximately 0.25

across the range of u values examined in the current study (i.e., �2:5 � u � 2:5).

In Simulation 3, rather than estimating item parameters with calibration samples

of varying sizes, item parameter estimation error was introduced by adding a residual

term of a given magnitude to each true item parameter value. Numerous researchers

(e.g., Crichton, 1981; Huang, 2018; Patton et al., 2013; Sun et al., 2020) have used

such a method to simulate calibration error in the item parameters. Following proce-

dures from Crichton (1981), the estimated parameter values were computed as

ĝ = g + ε ð8Þ

where ĝ is the estimated item parameter value, g is the true item parameter value,

and ε;N(0, s2). The true parameter values (g) were the EF item parameter values

used in Simulation 1. The degree of item parameter estimation error was systemati-

cally increased by modifying the value of s2, which were based on common RMSE

values for the three item parameters in 3PLM research. Using values reported in

Crichton (1981), two item banks with estimation error were created, comprising

either a moderate or large amount of added error. In the moderate-error item bank,

the s2 values for the discrimination, difficulty, and pseudo-guessing parameters were
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0.4, 0.1, and 0.04, respectively. Similarly, in the large-error item bank, the s2 values

were 0.6, 0.3, and 0.08, respectively (Crichton, 1981). In both item banks with error,

the error-laden item parameter values were bounded such that �3:5 � b̂ � 3:5,

0:25 � â � 2:15, and 0:0 � ĉ � 1:0.

Again, the item parameter recovery statistics for the three item banks in

Simulation 3 are presented in Table 1. As shown in Figure 1, whereas the incorpora-

tion of item parameter estimation inflated the BIFs for some u values in Simulations

1 and 2 (e.g., Hambleton et al., 1993; van der Linden & Glas, 2000), item parameter

estimation error in Simulation 3 was associated with uniformly lower bank informa-

tion across the u continuum.

Software

All simulations were conducted using R statistical software (R Core Team, 2021).

Item parameter and u estimation were completed using the mirt (Chalmers, 2012)

and catIrt (Nydick, 2014) libraries, respectively. Figures were created using ggplot2

(Wickham, 2016). All other analyses (e.g., simulated CAT administrations) used

author-written functions. The code for these analyses is available on request.

Results

Simulation 1

Although AMC was only applied at T4, the AMC hypothesis tests incorporate the

latent trait estimates from previous testing occasions. Therefore, the observed SEMs

for û1 through û3 were first examined to ensure sufficient estimation accuracy.

Averaging the SEM values across the 1,000 simulees in each (u1 3 Calibration size

3 Change trajectory) condition, the median SEM for all three latent trait estimates

was 0.222, with corresponding interquartile ranges of 0.215 to 0.232 for all three

testing occasions. Note that the median and interquartile range were reported here

due to positive skew in the SEM distributions. A relatively small proportion of con-

ditions (less than 0.03) for a given testing occasion produced SEM values greater

than 0.30, all of which corresponded to simulees with u1 � �2:0.

Results of the two-way ANOVA examining the effects of four factors—calibration

sample size, u change trajectory, u value at the first testing occasion (u1), and AMC

hypothesis test—on each of the dependent variables of interest are presented in Table

3. The change pattern produced the largest effect across all dependent variables, with

h2 greater than 0.79 for TPRs and ATL. The starting u value demonstrated moderate

effects, both on its own and in conjunction with the true u change trajectory. The cali-

bration sample size and choice of AMC hypothesis test had negligible effects on

ATL and change recovery, but these factors accounted for larger proportions of var-

iance in FPRs (Table 3). The AMC hypothesis test choice had a small effect on

TPRs. Moreover, the interactions between u1 and calibration sample size had nontri-

vial effects on FPRs, and to a lesser extent change recovery, with h2 of 0.216 and
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Table 3. Classical Effect Sizes (h2) From a Two-Way Analysis of Variance (ANOVA) on False
Positive Rates, True Positive Rates, Average Test Length, and Change Recovery.

Factor h2 Sum of squares df

False positive rates
Starting u (Trait) 0.300 0.019 10
Calibration size (Size) 0.170 0.011 4
AMC hypothesis test (Test) 0.152 0.010 2
Trait 3 Size 0.216 0.014 40
Trait 3 Test 0.124 0.008 20
Size 3 Test 0.006 0.000 8
Residuals — 0.002 80

True positive rates
Starting u (Trait) 0.060 1.082 10
Calibration size (Size) 0.001 0.017 4
AMC hypothesis test (Test) 0.021 0.372 2
True change (Change) 0.793 14.206 8
Trait 3 Size 0.023 0.415 40
Trait 3 Test 0.013 0.230 20
Trait 3 Change 0.049 0.879 80
Size 3 Test 0.000 0.001 8
Size 3 Change 0.004 0.072 32
Test 3 Change 0.002 0.035 16
Residuals NA 0.599 1264

Average test length
Starting u (Trait) 0.038 1605.090 10
Calibration size (Size) 0.002 78.258 4
AMC hypothesis test (Test) 0.002 89.332 2
True change (Change) 0.847 35872.322 9
Trait 3 Size 0.014 585.960 40
Trait 3 Test 0.022 936.969 20
Trait 3 Change 0.023 992.919 90
Size 3 Test 0.000 8.490 8
Size 3 Change 0.004 156.991 36
Test 3 Change 0.012 528.193 18
Residuals NA 1498.775 1412

Change recovery index
Starting u (Trait) 0.170 3.189 10
Calibration size (Size) 0.012 0.219 4
AMC hypothesis test (Test) 0.002 0.040 2
True change (Change) 0.307 5.744 9
Trait 3 Size 0.032 0.608 40
Trait 3 Test 0.048 0.901 20
Trait 3 Change 0.277 5.185 90
Size 3 Test 0.001 0.023 8
Size 3 Change 0.016 0.303 36
Test 3 Change 0.011 0.202 18
Residuals NA 2.296 1412

Note. Classical effect sizes greater than or equal to 0.02 have been bolded. AMC = Adaptive

measurement of change.
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0.032, respectively. However, the interactions between calibration sample size and

AMC hypothesis test did not strongly influence the examined dependent variables.

False Positive Rates. Marginalizing across the u1 continuum, there was evidence of a

small negative relationship between item parameter estimation error and FPRs for all

three AMC hypothesis tests. As shown in the first panel of Figure 2, under the condi-

tion of ‘‘no change,’’ the FPRs slightly increased as the calibration sample size

decreased to 500 examinees. This relationship reflects the moderate effect size from

the ANOVA (h2 = 0:170). Still, the FPRs among the item banks never differed by

more than 0.03, and thus, these results might not reflect a practically significant rela-

tionship between calibration sample size and FPRs.

Figure 3 presents the FPRs conditional on the simulees’ u1 values. As the calibra-

tion sample size decreased, there was greater variation in FPRs across the u1 conti-

nuum, with FPRs reaching or exceeding 0.10 in some cases. The conditional analyses

also highlight the possibility of differential FPRs among the three hypothesis tests for

particularly high-performing (u1 � 2:0) and low-performing (u1 � �2:0) simulees.

Specifically, the Z test consistently produced higher FPRs than the LRT or SRI for

these extreme u1 values. Still, the differences in FPRs among the hypothesis tests

were small, and reanalyzing the data using only simulees with �2:0 � u1 � 2:0 did

not substantially change the average FPRs for each of the three hypothesis tests

across the calibration sample sizes.

True Positive Rates. The remaining panels in Figure 2 present the TPRs for each AMC

hypothesis test among the nine linear and nonlinear change patterns. These results

suggest negligible differences in TPRs as the degree of item parameter estimation

error increased (reflecting the very small effect size of h2 = 0:001). Specifically,

across the examined change and AMC hypothesis test conditions, using an item bank

calibrated with 500 examinees produced TPRs that were roughly equivalent to those

produced when using an item bank with the true EF parameter values. There was evi-

dence of slight differences in TPRs as a function of calibration sample size for a

handful of change trajectories (e.g., Panels 4 and 8 of Figure 2), but the total magni-

tude of differences never exceeded 0.05. Rather, the largest determinant of differ-

ences in TPRs was the true change trajectory (h2 = 0:793), with certain nonlinear

trajectories (e.g., a moderate increase between the final two testing administrations,

as in Panel 7 of Figure 2) resulting in lower TPRs across the examined item banks.

Examining the TPR patterns across the u1 continuum, there was also little evi-

dence of a relationship between calibration sample size and TPRs conditional on u1.

As shown in Figure 4, any differences that occurred among the varying calibration

sample sizes were generally limited to simulees with extremely small or large u1 val-

ues. Across the TPR analyses, there were also few meaningful differences in TPRs

when comparing among the AMC hypothesis tests. Only for extreme u1 values did

there appear evidence of relatively small differences among the hypothesis tests.
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Average Test Length. Simulation 1 results did not provide compelling evidence that

using an item bank with higher levels of item parameter estimation error substantially

influenced the ATL of a variable-length CAT at the final testing occasion. As seen in

Figure 5, the u change trajectory was the strongest driver of differences in ATL

among the examined testing conditions (h2 = 0:847). In the ‘‘no change’’ condition

(Panel 1), all three hypothesis tests required close to the maximum number of items

(50 items) to terminate the test. Importantly, comparing among the AMC hypothesis

tests, the ATL differences never exceeded three to four items.

Like the TPR analyses, the ATL patterns conditional on u1 (see Figure 6) also

demonstrated a negligible relationship between calibration sample sizes and variable-

length CAT test length (h2 = 0:002). Across the examined u change conditions, ATL

was often smaller among u1 values for which the hypothesis tests demonstrated

higher TPRs. The conditional ATL analyses further highlight that the largest differ-

ences in ATL among the hypothesis tests generally occurred for simulees with large

or small u1. In particular, in many contexts where u1 � j1:0j, the Z test required

fewer items than the LRT or SRI to determine whether psychometrically significant

change had occurred (e.g., Columns 2 and 7 of Figure 6). There were also some con-

ditions wherein the Z test required more items for simulees with midrange u1 values,

but the number of items only differed by approximately five.

Change Recovery. The final dependent variable examined in Simulation 1 was change

recovery, quantified as the difference between the true and estimated u change

between the first and fourth testing occasions. The results (Figure 7) indicated no

strong evidence that AMC’s ability to recover the true u change was affected by the

introduction of item parameter estimation error. Marginalizing across all other design

factors, the average change magnitudes never differed by more than 0.04 among the

examined calibration sample sizes, and the standard deviations increased by at most

0.05 between the error-free and error-laden item banks.

Unsurprisingly, the largest determinant of change recovery was the true u change

trajectory (Figure 8). Specifically, the variability in change recovery increased for

change trajectories with larger true differences between the initial and final u. For

instance, with all other factors held constant, the standard deviations for the change

recovery index were approximately 0.11 or 0.12 for trajectories with a true change

magnitude of j0:75j. On the contrary, the standard deviations were 0.04 for both tra-

jectories with a true change magnitude of j0:25j. In other words, for simulees with

larger change in u values, AMC was more likely to either under- or overestimate the

change magnitude.

The change recovery analyses conditional on the u1 value, shown in Figure 8,

again indicated few differences as a function of calibration sample size. Rather, dif-

ferences in change recovery were largely driven by the u1 value. As shown in Figure

8, for many change trajectories, AMC tended to overestimate the change magnitude

(translating to a more negative change recovery index value) as u1 increased past 1.5.

The conditional analyses also highlight how, compared with the other two hypothesis
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tests, the Z test suffered the greatest declines in change recovery among particularly

high- or low-performing simulees. For example, note how in Figure 8 (Columns 1, 9,

and 10) the Z test tended to underestimate change for u1\� 2:0. Although not

always to the same extent as the Z test, the LRT and SRI similarly demonstrated

slightly worse change recovery for simulees with extreme u1 values.

Simulations 2 and 3
Simulation 2. Again, the fixed-length CATs for the first three testing occasions

demonstrated reasonable observed SEM values for the latent trait estimates.

Specifically, averaged across the 1,000 simulees in each condition (i.e., u1 3 calibra-

tion size 3 change trajectory), the median SEM values and corresponding interquar-

tile ranges for û1, û2, and û3 were 0.267 (0.255–0.285), 0.264 (0.255–0.284), and

0.264 (0.255–0.284), respectively. Average SEM values greater than 0.30 were lim-

ited to simulees with u1 � �1:5.

The results from Simulation 2, using a different EF item bank, corroborated cer-

tain trends that were observed in Simulation 1. For example, the Simulation 2 results

also demonstrated a small negative relationship between calibration sample size and

FPRs (with differences in FPRs between item banks at most 0.02). Additionally, cali-

bration sample size had a negligible effect on TPRs and ATL. The ANOVA results

for Simulation 2 are presented in Table S1 (available online). Additionally, Figures

S1 to S7 (available online) replicate Figures 2 to 8 using the data from Simulation 2.

However, the Simulation 2 results contrasted with those from Simulation 1 in two

important ways. First, the calibration sample size had a larger effect on the change

recovery index (h2 = 0:086 in Simulation 2 compared with h2 = 0:012 in Simulation

1). Importantly, this relationship was significantly moderated by u1 (h2 = 0:082), the

change trajectory (h2 = 0:090), and the choice of AMC hypothesis test (h2 = 0:022).

Figure S6 (available online) shows that when marginalizing across the change trajec-

tory conditions, the LRT and SRI tended to underestimate u change for simulees with

high positive u1 values as the calibration sample size decreased. The Z test, however,

showed an opposing trend. Specifically, the Z test tended to underestimate change

for simulees with high negative u1 values as calibration sample size decreased. For

simulees with high positive u1 values (e.g., u1 . 1:5), the Z test tended to overesti-

mate change, even using the EF item bank.

Figure S7 (available online) presents the change recovery across both the u1 conti-

nuum and examined change trajectories. This figure highlights that across the u1 con-

tinuum, the LRT and SRI showed relatively little bias in omnibus change recovery

with calibration sample sizes of approximately 1,000 or higher. Even with smaller

calibration sample sizes, the change recovery index never exceeded 0.25 for either

the LRT or SRI when measuring simulees with extreme u1 values. In the majority of

change trajectories, however, the Z test demonstrated a notable dip in change recov-

ery when u1 . 1:5, indicating a tendency to overestimate the magnitude of change

between the first and final testing occasion.
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These trends in the change recovery index further illustrate the second major dif-

ference in results between Simulations 1 and 2. Namely, the choice of AMC hypoth-

esis test had a larger effect on all examined dependent variables in Simulation 2

(h2
FPR = 0:112, h2

TPR = 0:131, h2
ATL = 0:096, and h2

CRI = 0:021). The analyses condi-

tional on u1 indicated that similar to the aforementioned change recovery results,

these effect sizes were largely driven by the Z test’s performance among simulees

with high positive u1 values, even when using the EF item bank. For example, as

shown in Figures S2 and S5 (available online), using AMC with the Z test tended to

produce higher FPRs and required fewer items for this range of simulees.

Importantly, for simulees in the middle range of the u1 continuum, the Simulation 2

results again indicated few substantial differences as a function of AMC hypothesis

test.

Simulation 3. In the third simulation, item parameter estimation error was introduced

by adding normally distributed residual terms to each item parameter value (using

the true item parameters from the EF item bank in Simulation 1). This simulation

examined AMC performance across three item banks, with either no, moderate, or

large levels of estimation error. The median observed SEM values and corresponding

interquartile ranges were 0.233 (0.227–0.240) for all three testing occasions. Again,

average SEM values exceeding 0.30 were limited to simulees with u1 values less

than 22.0.

Table S2 (available online) and Figures S8 to S14 (available online) present the

results from this set of analyses. Simulation 3 again indicated a positive relationship

between item parameter estimation error and FPRs. Additionally, the relationships

among the examined design factors and the dependent variables largely depended on

simulees’ u1 values, with greater variation among simulees with particularly large

positive or negative u1 values. However, in contrast to Simulations 1 and 2, the effect

of the degree of item parameter estimation error on all dependent variables was sub-

stantially larger in Simulation 3 (h2
FPR = 0:789, h2

TPR = 0:092, h2
ATL = 0:168, and

h2
CRI = 0:161). For example, the differences in FPRs between the item banks with

and without error reached a magnitude of 0.19 (recall that in Simulations 1 and 2,

the FPRs differed by at most 0.03). In contrast to Simulations 1 and 2, the dependent

variables in Simulation 3 tended to change as the degree of item parameter estima-

tion error increased for simulees with midrange ability levels. For example, Figure

S13 (available online) shows that across the u1 continuum, the change recovery

index became more negative (implying a tendency to overestimate omnibus change)

for item banks with more estimation error.

Discussion

The results from three Monte Carlo simulations suggest that item parameter estima-

tion error plays at most a small role in AMC performance. Specifically, when aver-

aging across all u values, increasing the degree of item parameter estimation error
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(either through reducing the calibration sample size or adding normally distributed

error terms) was associated with a modest increase in FPRs. Item parameter estima-

tion error, when introduced using varying calibration sample sizes, had negligible

effects on TPRs or ATL, and at most a small effect on change recovery. Analyses

conditional on the initial u estimate revealed that differences in the four examined

dependent variables—FPRs, TPRs, ATL, and change recovery—as a function of

item parameter estimation error and hypothesis test choice were mainly driven by

differences among particularly low- and high-u examinees (i.e., ju1j � 2:0). For

example, AMC was more likely to under- or overestimate the u change between the

first and final testing occasions for simulees with large positive or negative u1 values.

Focusing on the middle range of the u1 continuum (i.e., �1:5 � u1 � 1:5), only

Simulation 3 revealed noticeable differences in AMC performance, specifically

related to FPRs and omnibus change recovery, as a function of item parameter esti-

mation error (introduced using normally distributed residual terms).

Across all analyses, examinee u played an important role in AMC performance. A

consistent trend emerged wherein the greatest differences in the dependent variables

occurred for simulees with particularly extreme u1 values, both when averaging

across and comparing among the three hypothesis tests. The BIFs provide some

insight into this trend. For example, Figures 1 and 3 together highlight how u1 values

with relatively lower bank information were associated with greater variation in the

FPRs. Interestingly, although error-laden item banks demonstrated inflated informa-

tion for certain ranges of simulees (e.g., �1:0 � u � 2:0 in Simulations 1 and 2), a

trend that corroborates past research (see, Hambleton et al., 1993; van der Linden &

Glas, 2000), these changes in information did not noticeably translate to stronger

effects on AMC performance in terms of the examined dependent variables. The one

exception was for the change recovery index, which was relatively higher (indicating

a tendency to underestimate change) at u values with inflated BIFs.

Relatedly, even though the BIFs substantially decreased in magnitude at both

extremes of the u continuum, the AMC methods tended to perform more poorly for

simulees with large, positive u1 values than simulees with large, negative u1 values.

For example, in Simulation 1, all three AMC hypothesis tests demonstrated notable

dips in the change recovery index for u1 . 1, but not to the same extent for u1\� 1

(see Figure 7). To explain this phenomenon, recall that seven of the 10 latent trait

change trajectories had a positive omnibus change from u1 to u4. In these cases,

simulees with large positive u1 values had even more extreme u values when AMC

was applied at the fourth testing occasion. The AMC procedure may have therefore

demonstrated a ceiling effect at these high u values. On the contrary, simulees with

large negative u1 values were more likely to have midrange u values at the fourth

testing occasion, among which AMC tended to show better performance. In sum-

mary, these results strongly suggest that researchers and practitioners should use cau-

tion when applying AMC to measure high-ability individuals, particularly, when

coupled with item banks providing relatively little information at these u values.
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When controlling for simulees’ u1 values, the overall level of information pro-

vided by the item bank appeared to moderate the relationship between AMC change

recovery and item parameter estimation error. Recall that the error-free BIF for

Simulation 2 provided substantially less information across the u continuum than in

Simulation 1. Comparing the results between the first two simulations, the calibration

sample size had a larger effect on the change recovery index when using the lower

information BIF. Moreover, even when not accounting for the amount of item para-

meter estimation error present in the bank, the lower BIF in Simulation 2 was associ-

ated with lower FPRs and TPRs, as well as higher ATLs, than in Simulation 1.

Taken together, these results highlight the importance of using an item bank with

sufficient information at the desired latent trait levels when implementing AMC.

Figure 1 also helps to explain the stronger effects of item parameter estimation

error that were revealed in Simulation 3. Namely, the differences in BIFs between

each of the generated item banks were exacerbated in Simulation 3 as compared with

Simulations 1 and 2. Incorporating item parameter estimation error in Simulation 3

reduced bank information along a larger proportion of the u continuum, which might

explain why Simulation 3, but not Simulations 1 and 2, revealed a stronger negative

relationship between item parameter estimation error and u change recovery among

simulees with midrange u levels. Whereas both estimation error methods (i.e., using

calibration samples in Simulations 1 and 2, or adding normally distributed error

terms in Simulation 3) introduced sampling error, using a calibration sample intro-

duced additional variability due to the chosen estimation method (e.g., an EM algo-

rithm with a specified number of quadrature points and other software options).

Using calibration sizes less than 1,000 likely also introduced additional instability in

the item parameter estimates. For Simulations 1 and 2, the increased estimation

variability might have minimized the differences in item parameter recovery and

BIFs among the error-laden item banks, precluding the stronger relationships

revealed in Simulation 3. These results highlight how the method of incorporating

item parameter estimation error plays an important role in simulation studies focused

on item parameter recovery and CAT item bank structures. Given that calibration

samples are used to generate item banks in applied test settings, future research in

this area should further compare AMC’s performance across item banks using differ-

ent implementations of the EM algorithm, or alternative item parameter estimation

methods.

Furthermore, the present study revealed noticeable differences among the three

AMC hypothesis tests. In particular, the Z test tended to perform worse than the LRT

or SRI, as evidenced by higher FPRs and less accurate omnibus u change recovery.

This trend was largely among simulees with extreme u1 values, and often evident

even when using an EF item bank. It is possible that the AMC hypothesis tests were

differentially influenced by the lower bank information at these u values.

Specifically, the AMC hypothesis test had the strongest effect on all four dependent

variables in Simulation 2, which had the lowest BIFs. This reduced information

might have exacerbated differences between the Z test and the LRT or SRI.
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The present study highlights important considerations for designing a testing pro-

tocol using AMC. First, these simulations provide evidence that AMC is relatively

robust to the presence of item parameter estimation error as long as the item bank

provides sufficient information for the intended examinee u levels. For example,

Simulations 1 and 2 indicated that given adequate information, AMC could provide

relatively accurate identification of psychometrically significant change for many

examinees with a calibration sample size of only 500 examinees. Therefore, research-

ers implementing AMC should prioritize constructing an item bank with an informa-

tion function that closely corresponds to their measurement goals (i.e., with high

information across the range of hypothesized u values). Still, when the goal is to

accurately measure intra-individual change for individuals with particularly low and

high u values, the current findings suggest that researchers would be wise to use a

calibration sample size of at least 1,000 examinees in conjunction with a carefully

constructed, high-information item bank. Finally, given the differential performance

of the three AMC hypothesis tests in the present study, test administrators should

consider using the SRI or LRT with a minimum calibration sample size of 1,000

examinees for the best combination of low error, high power, and accurate u change

estimation. If the Z test is to be used, then the item bank should provide high infor-

mation across the range of intended u levels. Still, more research replicating these

effects is necessary to provide widespread recommendations for AMC’s practical

use.

Despite the relationships between item parameter estimation error and AMC per-

formance revealed in these simulations, it is important to again stress that differences

among item banks and among AMC hypothesis tests were often trivial in magnitude.

For instance, it is an open question as to whether an average increase of 0.03 in FPRs

across item banks with varying calibration sample sizes is practically significant.

Additionally, item parameter estimation error did not strongly influence TPRs or

ATL. As previously noted, it is possible that the small effects revealed in Simulations

1 and 2 might be a result of the small differences in BIFs.

Furthermore, these trends were highly dependent upon underlying latent trait

change patterns, which are unknown in applied test settings. For example, the true

change trajectories produced the largest effect sizes across the examined dependent

variables, with h2 . 0:80 in some cases. This finding is not particularly surprising,

and aligns with previous AMC research (e.g., Finkelman et al., 2010; Wang et al.,

2020) showing that the power to detect true change is dependent upon the given

change trajectory. However, these results suggest that item parameter estimation error

does not substantially influence AMC’s performance either above and beyond, or as a

function of, the true latent trait change trajectory. Future AMC research would benefit

from a more nuanced exploration of the method’s performance across a broader range

of plausible u change trajectories.

It also merits comment that the TPRs in these analyses were relatively small, rang-

ing between approximately 0.30 and 0.70. The small TPRs likely stem from the com-

bination of (a) relatively small omnibus changes in u between the first and fourth
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testing occasions ( uDj j\1:0), and (b) relatively small item discriminations. Indeed,

the TPR range in the current study agrees with previous results at similar u change

magnitudes with error-free item banks (Finkelman et al., 2010; Phadke, 2017; Wang

et al., 2020). Previous research demonstrates that with item banks consisting of higher

discriminations, higher power, and simulees with larger u changes between testing

occasions, AMC’s power often exceeds 0.80 (Finkelman et al., 2010; Lee, 2015;

Phadke, 2017; Wang et al., 2020).

Limitations

This study is the first to test the AMC method in conditions that incorporate item

parameter estimation error. It is thus important to emphasize additional limitations in

the study design to facilitate future research in this area. For one, as with any set of

simulations, these findings can only be generalized to testing scenarios that match the

examined conditions. Although the aforementioned results were replicated with more

than one item bank and more than one method of introducing item parameter estima-

tion error, the studied conditions clearly do not extend to all possible testing scenar-

ios. Future studies should further explore the influence of item parameter estimation

error on AMC performance by (a) expanding the range of calibration sample sizes,

(b) generating item banks with different sets of parameter distributions (particularly

with higher discrimination values), (c) modifying the number of testing occasions,

and (d) incorporating conditions of model misspecification, such as when dimension-

ality or other model assumptions are violated. Two of the current authors are also

developing a new stochastic curtailment termination criterion for AMC, designed to

terminate an AMC CAT when significant change is not detected. This new method

should be compared with the current AMC hypothesis tests in conditions of item

parameter estimation error.

On the topic of item bank generation, the item parameter recovery statistics in

these studies demonstrated poorer recovery than might be expected in practice with

the 3PLM. One factor underlying these results might have been the relatively small

calibration sizes (De Ayala, 2013). Indeed, in a study examining the effects of item

calibration error on CAT performance, Patton et al. (2013) chose to introduce error

by adding normally distributed residual terms to facilitate convergence with a 400-

item bank and calibration sizes of only 500 examinees. The relatively low item bank

information in Simulation 2 might have also led to the higher bias and RMSE values

for the item parameter estimates as compared with Simulation 1. Finally, the rela-

tively poor item parameter recovery could also be the result of the estimation soft-

ware used, and corresponding options selected when implementing the estimation.

Regardless of the source of the less-than-optimal recovery, the focus of Simulations

1 and 2 was on the effect of magnitudes of error that resulted from item parameter

estimation. Therefore, the source of item parameter estimation error (and its compar-

isons to previous studies) was not of relative importance for addressing the primary

research aim.

672 Educational and Psychological Measurement 82(4)



Still, in future AMC research, a wider range of item banks should be examined to

gauge the generalizability of the current findings. In addition, different estimation

methods for calibrating item banks should be compared. In the present study, the item

banks were appropriate for examining AMC’s performance in the presence of item

parameter estimation error. Interestingly, negligible to small effects were found even

with item banks that demonstrated relatively poor item parameter recovery. This find-

ing suggests that item parameter estimation error could have an even smaller effect

on AMC’s performance when using (potentially more realistic) item banks with better

parameter recovery.

Moreover, in any longitudinal study, it is important to establish measurement

invariance for the latent trait of interest. In other words, do the u values measured at

each testing occasion represent the same underlying construct (Meredith, 1993;

Millsap, 1997; Widaman & Reise, 1997)? Although the present study assumed mea-

surement invariance across the four testing occasions (an assumption made in previ-

ous AMC research; Wang et al., 2020; Wang & Weiss, 2018), applied testing

contexts should explicitly evaluate this assumption.

As currently implemented, AMC functioned as an omnibus test, indicating

whether psychometrically significantly change occurred at any point across the four

testing occasions. Because AMC uses u estimates across numerous testing occasions,

AMC’s performance is arguably contingent upon the accuracy of these estimates.

The three examined AMC hypothesis tests account for the uncertainty of these esti-

mates by incorporating the previous û values and associated standard errors. The

observed SEM values for û1 through û3 were relatively reasonable given the amount

of information in the corresponding item banks. Still, future researchers and practi-

tioners seeking to use AMC should be cognizant of, and routinely verify, the accu-

racy of the u estimates across all testing occasions prior to AMC’s implementation.

Two additional suggestions for future research in this area merit comment. First,

it would be beneficial to examine the performance of post hoc hypothesis tests to

pinpoint the particular testing occasions between which significant change occurred.

The majority of the extant AMC research has focused on the omnibus method, leav-

ing open numerous avenues for future research into the efficacy of these post hoc

methods. Finally, as previously mentioned, the current study used fixed-length CATs

for the first three testing occasions. Future research should therefore replicate these

analyses using variable-length CATs (e.g., with a stopping rule based on the standard

error of measurement; Choi et al., 2011; Wang et al., 2019).

Conclusions

In summary, these simulations are the first to highlight the functioning of AMC, in

terms of decision accuracy and u change recovery, in the presence of item parameter

estimation error. These results add to a growing body of literature (e.g., Finkelman

et al., 2010; Phadke, 2017; Wang & Weiss, 2018; Wang et al., 2020) supporting

AMC as a psychometrically rigorous and practical method for understanding latent
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trait change at the individual level. Integrating the extant research, this method pro-

vides promise for the accurate and effective implementation of a person-centered

approach to the measurement of change. Still, a plethora of future work remains to

better understand the nuanced applications of AMC to psychological and educational

testing.
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Notes

1. In this context, ‘‘psychometrically significant’’ change refers to evaluating differences in

trait estimates at the individual level based on psychometric error theory. In contrast, ‘‘sta-

tistically significant’’ change refers to evaluating trait differences at the group (i.e., sam-

ple) level using statistical sampling theory (Wang et al., 2020).

2. Although this study focuses exclusively on the unidimensional u testing scenario, AMC

has also been recently extended to the multidimensional two-occasion (Wang & Weiss,

2018) and multi-occasion testing scenarios (Wang et al., 2020).

3. A two-way ANOVA was conducted here because with the number of simulation condition

combinations, a three-way ANOVA resulted in a fully saturated model and precluded the

computation of effect sizes.
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