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Abstract

Performance assessments heavily rely on human ratings. These ratings are typically
subject to various forms of error and bias, threatening the assessment outcomes’
validity and fairness. Differential rater functioning (DRF) is a special kind of threat to
fairness manifesting itself in unwanted interactions between raters and performance-
or construct-irrelevant factors (e.g., examinee gender, rater experience, or time of
rating). Most DRF studies have focused on whether raters show differential severity
toward known groups of examinees. This study expands the DRF framework and
investigates the more complex case of dual DRF effects, where DRF is simultaneously
present in rater severity and centrality. Adopting a facets modeling approach, we pro-
pose the dual DRF model (DDRFM) for detecting and measuring these effects. In two
simulation studies, we found that dual DRF effects (a) negatively affected measure-
ment quality and (b) can reliably be detected and compensated under the DDRFM.
Using sample data from a large-scale writing assessment (N = 1,323), we demon-
strate the practical measurement consequences of the dual DRF effects. Findings have
implications for researchers and practitioners assessing the psychometric quality of
ratings.
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Differential Rater Functioning

In performance assessments, it is common practice to use human raters for evaluat-

ing examinees’ responses to constructed-response tasks like essay writing, providing

work samples, or solving problems. However, raters may exhibit various kinds of

judgmental tendencies, errors, and biases, together called rater effects, threatening

the ratings’ validity and fairness (Johnson et al., 2009; Myford & Wolfe, 2003; Saal

et al., 1980). Therefore, researchers have developed a wide range of psychometric

models and statistical indices to examine the extent to which raters are subject to

these effects and to ensure sufficiently high rating quality (Engelhard & Wind, 2018;

Wind & Peterson, 2018; Wolfe & Song, 2016).

A particularly intricate class of rater effects concerns differential rater functioning

(DRF), commonly understood as systematic interactions between rater characteristics

(e.g., response styles like severity or leniency and scoring experience) and perfor-

mance- or construct-irrelevant characteristics of examinees (e.g., gender and age) or

assessment conditions (e.g., time of rating and tasks or domains in an analytic scoring

rubric). The net effect of such interactions is that examinee measures are not invar-

iant over different levels of these characteristics (Eckes, 2015; Engelhard & Wind,

2018; Jin & Eckes, in press).

So far, most DRF studies have examined unwanted interactions focusing on rater

severity, that is, differential severity/leniency (e.g., Hoskens & Wilson, 2001; Leckie

& Baird, 2011; Lunz et al., 1996; Myford & Wolfe, 2004; Wind & Ge, 2021; Wind

& Guo, 2019). Raters subject to differential severity/leniency tend to assign systema-

tically lower/higher scores to particular subgroups of examinees after controlling for

the examinees’ locations on the latent variable. For example, researchers have shown

that raters exhibited significant differences in severity over time (Congdon &

McQueen, 2000; Lamprianou et al., 2021), examinee gender groups (Wind & Sebok-

Syer, 2019), and examinee proficiency level (Kondo-Brown, 2002). Severity levels

may also systematically vary when allowing raters to share their views before rating

performances (Wang et al., 2014).

In the rest of this paper, we will call DRF in severity/leniency ‘‘DRF-S’’ (for

short). Note that DRF-S is analogous to uniform differential item functioning (DIF)

in two-facet data, incorporating examinees and items (Gamerman et al., 2018;

Osterlind & Everson, 2009; Penfield & Camilli, 2007).

Following the Rasch facets model (RFM; Linacre, 1989), DRF-S is usually

assessed through the residual-based mean square error (MSE) statistics infit (weighted

MSE) and outfit (unweighted MSE; Engelhard, 2008; Wind & Guo, 2019; Wind &

Sebok-Syer, 2019). When a rater’s ratings exactly agree with RFM assumptions, this

rater’s infit and outfit values are expected to be close to 1.0. Wind and Guo (2019)

conducted a simulation study, showing that raters exhibiting DRF-S had infit and out-

fit values greater than 1.0 (e.g., infit MSE ranging from 1.16 to 1.50). However, rater

infit and outfit statistics may be influenced by many factors other than differential

severity (Eckes & Jin, 2021; Wind & Guo, 2019). Therefore, observing rater fit statis-

tics greater than 1.0 does not provide conclusive evidence of DRF-S.
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Recent research has increasingly focused on another rater effect having a similarly

pervasive and negative influence on rating quality: central tendency or centrality (Jin

& Wang, 2018; Uto & Ueno, 2020; Wolfe & Song, 2015, 2016; Wu, 2017). This

effect refers to raters’ tendency to overuse the rating scale’s middle category or cate-

gories. In other words, raters subject to central tendency (‘‘central’’ raters, for short)

underestimate high performance levels and overestimate low performance levels. In

contrast to rater severity, centrality effects cannot be directly measured using a tradi-

tional many-facet-Rasch measurement framework (Eckes, 2015; Eckes & Jin, 2021).

Unlike research on DRF-S, studies investigating DRF effects in terms of differen-

tial centrality (DRF-C) have been scarce (for an exception, see Myford & Wolfe,

2009). However, similar to DRF-S, DRF-C poses threats to an assessment’s validity

and fairness. Therefore, both kinds of DRF effects, that is, DRF-S and DRF-C, should

jointly be considered in rating quality studies.

As discussed later in somewhat more detail, DRF-C is conceptually similar to

non-uniform DIF in two-facet data (i.e., examinees and items). That is, DRF-S and

DRF-C may be effective in many-facet assessment settings much like uniform and

non-uniform DIF in two-facet settings. We call the simultaneous presence of DRF-S

and DRF-C in performance assessments ‘‘dual DRF effects.’’ At its core, the present

study proposes a new psychometric model to measure dual DRF effects. We report

simulations and empirical findings attesting to the model’s utility in detecting these

effects.

Model Development

Rating data typically comprise at least three-facets: examinees, criteria (tasks and

items), and raters. In assessment settings like this, an instance of the RFM widely

used is:

log
Pijkl

Pij k�1ð Þl

� �
= ui � dj � tjk � hl, ð1Þ

where ui is the proficiency of examinee i; dj and tjk are the mean difficulty and kth

step difficulty of criterion j, respectively; and hl is the severity of rater l. Higher

scores will be observed when ui is high, dj is low, and hl is low.

The distribution of step difficulties tjk is related to the variance of observed scores

(Jin & Wang, 2018). For example, let there be a four-category rating scale. Figure 1

shows the item characteristic curves for two different sets of step difficulties. The dis-

persed steps (upper panel) would lead to a much higher proportion of middle scores

than the condensed steps (lower panel).

Since raters may have different preferences for giving middle or extreme scores,

it appears more appropriate to model a unique rating scale structure for each rater.

Therefore, another version of the RFM to examine rater centrality looks like this

(Myford & Wolfe, 2004; Wolfe & Song, 2015):
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log
Pijkl

Pij k�1ð Þl

� �
= ui � dj � hl � ylk , ð2Þ

where ylk is the kth step difficulty for rater l. Consequently, SD(ylk) represents the

centrality level of rater l (e.g., Eckes & Jin, 2021). However, the estimate of ylk is

associated with measurement error; therefore, the precision of the SD(ylk) index is

problematic. Also, SD(ylk) is not directly estimated in the model, making statistical

testing infeasible.

Figure 1. Two items with dispersed steps Panel (a) and condensed steps Panel (b).
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Based on this reasoning, Jin and Wang (2018) proposed an extended model to

quantify rater centrality:

log
Pijkl

Pij k�1ð Þl

� �
= ui � dj � vltjk � hl, ð3Þ

where vl is the centrality of rater l, indicating that raters are allowed to vary in the

spread of individual step difficulties. In Equation (3), the parameter vl assumes posi-

tive values (i.e., vl . 0). Generally, vj values greater than 1 indicate that raters tend

to overuse the rating scale’s middle categories; vj values less than 1 indicate that

raters tend to overuse the extreme categories.

When vl is re-parameterized as e-l (2N \ -l \ N), Equation (2) becomes:

log
Pijkl

Pij k�1ð Þl

� �
= ui � dj � e-l tjk � hl, ð4Þ

Raters associated with higher - parameter values tend to cluster scores around the

rating scale’s middle category (or categories).

Equations (3) and (4) rest on the assumption that raters maintain a uniform level

of severity and centrality over subgroups. However, some raters may be subject to

DRF-S, DRF-C, or both, thus exhibiting DRF-S and DRF-C to varying degrees.

Therefore, we extended Equation (4) to include DRF-S and DRF-C parameters for

rater l:

log
Pijklg

Pij k�1ð Þlg

� �
= uig � dj � e-lg tjk � hlg, ð5Þ

where hlg and -lg denote rater l’s severity and centrality, respectively, toward exami-

nee group g.

Put differently, Dhl(=hlF 2 hlR) and D-l(=-lF 2 -lR) represent rater l’s DRF-S

and DRF-C magnitudes regarding a reference group (R) and a focal group (F). Note

that examinees’ group membership may be observed or latent (Jin & Wang, 2017).

We refer to Equation (5) as the ‘‘dual DRF model’’ (DDRFM). When Dhl = 0 and

D-l = 0 for all raters, suggesting raters exhibit no DRF, the DDRFM becomes

Equation (4). Furthermore, when all raters are fair and exhibit the same severity and

centrality level, the DDRFM reduces to the two-facet partial credit model (Masters,

1982).

Figure 2 illustrates dual DRF effects’ impact on expected scores. The area between

two expected score curves for the reference and focal groups shows the direction and

magnitude of DRF (Raju, 1988). Let there be a criterion with mean difficulty of 0

and three step difficulties of 21.5, 0.5, and 1, respectively. In the first example

(Figure 2a), rater l exhibits DRF-S only (e.g., hlR = 0, hlF = 1 and -lR = 0, and

-lF = 0); that is, this rater consistently gives lower scores to examinees in the focal

group.
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In the second example (Figure 2b), rater l exhibits DRF-C only (e.g., hlR = 0,

hlF = 0, -lR = 0, and -lF = 1). Thus, focal group members with lower proficiencies

would receive higher scores than reference group members at the same proficiency

level; however, this pattern reverses when considering examinees at high proficiency

levels.

Finally, Figure 2c displays what might happen when rater l exhibits DRF-S and

DRF-C simultaneously (hlR = 0, hlF = 1, -lR = 0, and -lF = 1). The score differ-

ences between the focal and reference groups are more complex and difficult to

interpret. Drawing the parallel between DRF and DIF effects again, the slopes and

locations of the two expected score curves for the reference and focal groups would

affect whether the biased rater can be successfully detected (Narayanon &

Swaminathan, 1996).

In operational large-scale performance assessments, ratings are often missing by

design; that is, the assessments use incomplete rating designs where not every rater

scores every examinee’s performance. Typically, only two or three raters score each

performance, yielding proportions of missing data around 90% or more (e.g., Eckes,

2005; Wind & Jones, 2019). Therefore, we included similar conditions in our

DDRFM applications.

Model Parameter Estimation

We estimated DDRFM parameters through Bayesian methods using Markov chain

Monte Carlo (MCMC) in JAGS (Plummer, 2017). In the simulation and empirical

studies discussed later, the priors of the estimated parameters were specified as fol-

lows: uiR ; N(0, s2
R), uiF ; N(mF, s2

F), di ; N(0, 4), tik ; N(0, 4), hlR ; N(0, 4),

-lR ; N(0, 4), Dhl ; N(0, 4), and D-l ; N(0, 4). The priors for the hyper-

parameters were: mF ; N(0, 4), s2
R ; l(0.25, 0.25), and s2

F ; l(0.25, 0.25).

Finally, the posterior distributions of model parameters were proportional to the like-

lihood of the rating data and the given priors:

g uR, uF, d, t, hR, -R, Dh, D-jY
� �

}L YjuR, uF, d, t, hR, -R, Dh, D-

� �
3g d, t, hR, -R, Dh, D-
� �

3g uR, uFjs2
R, mF, s2

F

� �
3g s2

R, mF, s2
F

� �
,

ð6Þ

where Y refers to the rating data and g(.) denotes the probability density function.

An anchor has to be set in DRF detection studies for model identification. One

may constraint
PL
l = 1

Dhl = 0 and
PL
l = 1

D-l = 0, implying that the magnitude of DRF-S

and DRF-C effects, respectively, is zero on average. In our studies, we opted for this

constraint because researchers, before the analysis, usually lack the knowledge to

identify raters that may be considered fair or unbiased. Following this way of anchor-

ing, each rater received an individual measure for DRF-S and DRF-C. Alternatively,
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when a rater (indexed as L#) has been chosen to act as a reference (an unbiased or

expert rater), this rater may serve as an anchor using a modified constraint, for exam-

ple, by setting the DRF-S and DRF-C for rater L# to zero: DhL# = 0 and D-L# = 0.

Across studies we ran a single MCMC chain to save computing time.1 We dis-

carded the first 5,000 iterations as burn-in, and kept the subsequent 5,000 iterations to

form the posterior distributions. Based on the final 5,000 draws, we used the posterior

distributions’ means as point estimates for the respective parameters. For a sample of

the JAGS code, see the Supplemental Appendix.

We examined the convergence of MCMC draws within a chain by computing the

Geweke z statistic (test of non-stationarity; Geweke, 1992; see also Jackman, 2009).

The distributions of the first and second halves of samples for each estimate were

compared. When converged, the two distributions are not significantly different, and

the Geweke z statistic would follow an asymptotically standard normal distribution.

In other words, when the Geweke z statistic exceeds 61.96 (i.e., the 95% confidence

interval), the convergence of MCMC is considered questionable. We expected the

percentage of z statistics exceeding 61.96 to be around 5% for a converged model.

The Bayesian chi-square statistic with posterior predictive model checking

(Rubin, 1984) was used to evaluate the DDRFM’s absolute goodness-of-fit. The pos-

terior predictive p-value (PPP-value) summarizes the discrepancy between the

observed and replicated responses given the parameter estimates in each iteration.

An extreme PPP-value (higher than .975 or lower than .025) indicates poor data-

model fit (Levy & Mislevy, 2016).

Finally, to address the issue of relative model fit, that is, to compare the DDRFM

to the RFM in terms of data-model fit, we computed the Bayesian deviance informa-

tion criterion (DIC; Spiegelhalter et al., 2002) for each model. Models showing

smaller DIC values are generally preferred as better fitting (Levy & Mislevy, 2016).

Simulation 1: Consequences of Ignoring Dual DRF

Design

Simulation 1 aimed to examine the consequences of ignoring dual DRF effects. We

created rating data for 200 examinees, five criteria, and three raters; these conditions

are quite common in applied assessment research (e.g., Kondo-Brown, 2002;

Springer & Bradley, 2018). Data generation followed the same general settings as in

Jin and Wang (2018). Ratings were provided using a five-category rating scale (rang-

ing from 0 to 4).

Table 1 shows the rating design underlying this simulation. The total sample was

divided equally into a reference group (R) and a focal group (F). Within each group,

there were two equally sized subgroups. Within each subgroup, two raters assigned

ratings to each examinee. We defined the first rater as unbiased (fair) and the second

rater as biased (subject to severity or centrality).

Specifically, for examinees belonging to Subgroups 1 and 2, the first rater, rater U

(for short), was an unbiased rater, defined by hUR = hUF = 0 and -UR = -UF = 0.
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The second rater, rater S, was biased, defined by hSR = 0, hSF = 1 and

-SR = -SF = 0; that is, rater S was simulated to be severe when rating focal group

examinees but not when rating reference group examinees, thus exhibiting DRF-S.

For examinees belonging to Subgroups 3 and 4, the first rater was again unbiased

and the second rater again biased. However, this time, the biased rater, rater C, was

defined by hCR = hCF = 0 and -CR = 0, -CF = 1; that is, rater C was simulated to

assign scores clustering around the rating scale’s middle category when rating focal

group examinees but not when rating reference group examinees, thus exhibiting

DRF-C.

For each subgroup, we generated 100 datasets from the DDRFM. Each dataset

was fit by the RFM and the DDRFM. In these analyses, the parameters for rater U

were fixed at their true values, whereas the parameters for raters S and C were freely

estimated. In each replication, we computed the assessment’s reliability as the

squared correlation coefficient between the true and estimated examinee proficien-

cies (u values) under the RFM and DDRFM. We also computed the mean absolute

rank change (MARC) to evaluate the empirical consequences of using these two-facet

models:

MARC =

P200
i = 1 zi � ẑi

�� ��
200

, ð7Þ

where zi and ẑi are the true and estimated rank orders of examinee i in each replica-

tion. We hypothesized that ignoring dual DRF effects by fitting the RFM would

decrease test reliability and increase MARC.

Results

The Markov chains converged in all analyses. Unsurprisingly, the DIC uniformly

favored the DDRFM (i.e., the data-generating model) across replications. Figure 3

displays the distributions of scores observed within each subgroup across 100 repli-

cations. The fair and biased raters assigned almost identical scores to reference group

Table 1. Rating Design Used in Simulation Study 1.

Group Subgroup n

Raters

Rater U Rater S Rater C

Reference 1 50 X X
Focal 2 50 X X
Reference 3 50 X X
Focal 4 50 X X

Note. Rater U is an unbiased (fair) rater. Rater S is a biased rater exhibiting DRF-S. Rater C is a biased

rater exhibiting DRF-C.
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examinees (Subgroups 1 and 3; Figure 3a and c). However, for focal group exami-

nees (Subgroups 2 and 4), the distributions of scores assigned by fair and biased

raters were strikingly different. In Subgroup 2 (Figure 3b), biased rater S generally

assigned lower scores (M = 2.12) to examinees in the focal group than fair rater U

(M = 3.00). In Subgroup 4 (Figure 3d), biased rater C tended to assign much more

scores around the middle categories (SD = 1.07) than fair rater U (SD = 1.41). In

sum, the two different kinds of biased ratings each had a strong differential impact

on individual examinees’ scores belonging to the focal group.

Figure 4 displays test reliability and MARC distributions for the reference and

focal groups under the two models across 100 replications. Reliability values were

consistently higher under the DDRFM than under the RFM (upper panel).

Figure 3. Observed score distributions (percentages) in Simulation Study 1: (a) Subgroup 1,
(b) Subgroup 2, (c) Subgroup 3, and (d) Subgroup 4.
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Furthermore, MARC values were consistently lower under the DDRFM than under

the RFM (lower panel).

Regarding the biased ratings’ impact on the measurement precision, we looked at

the relationship between true and estimated examinee proficiency estimates under the

RFM and the DDRFM. For an exemplary simulated dataset, Figure 5 illustrates this

relationship. Under the RFM (upper panel), the values were scattered widely around

the identity line. By contrast, under the DDRFM, the values generally stayed much

closer to the identity line, providing further evidence of higher DDRFM measurement

precision.

Figure 4. Test reliability estimates and mean absolute rank change (MARC) for reference (R)
and focal group examinees (F) under the RFM and the DDRFM in Simulation Study 1.
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Simulation 2: False-positive and True-positive
Rates of Dual DRF Detection

Design

In Simulation Study 2, we examined the efficiency of the model-based approach to

detect dual DRF effects correctly. We generated item responses under the DDRFM

employing a design similar to Simulation Study 1. Differences concerned the

Figure 5. Relationship between true and estimated examinee proficiency estimates under
the RFM and the DDRFM in Simulation Study 1.
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systematic variation of three factors: (1) the number of examinees (I = 500 or

1,000), (2) the number of criteria (J = 3 or 5), and (3) the number of rating scale

categories (K = 3 or 5). These three factors are directly related to the amount of

information on how raters use the rating scale.

Reference and focal groups were sampled from a standard normal distribution

with a mean of zero and unit variance. The true values of parameters were taken

from Jin and Wang (2017) and related studies. When J = 3, the mean criterion diffi-

culties were set at 20.5, 0, and 0.5; when J = 5, the mean difficulties were set at

20.5, 20.25, 0, 0.25, and 0.5. For simplicity, the step parameters for all criteria were

set at 20.5 and 0.5 when K = 3, and 20.75, 20.25, 0.25, and 0.75 when K = 5.

As shown in Tables 2 and 3, we specified three rater severity levels (h), each with

3 or 4 raters: 20.5, 0, and 0.5. Similarly, we specified three rater centrality levels

(-): 20.5, 0, and 0.5. The size of DRF-S (Dhl) was set at 0.5 for the two biased raters,

Table 2. Type I Error Rates (%) of Severity and Centrality Effect Detection under the
DDRFM in Simulation Study 2.

Rater True value DRF size

Three criteria Five criteria

Three scale
categories

Five scale
categories

Three scale
categories

Five scale
categories

Severity
1a 0 0 – – – –
2 0 0.5 – – – –
3 0 0 8/5 6/7 7/6 12/7
4 0 0.5 – – – –
5 20.5 0 6/13 4/4 5/9 6/8
6 20.5 0 6/5 7/4 3/9 12/5
7 20.5 0 7/6 6/5 4/7 10/9
8 0.5 0 4/5 10/2 5/5 8/9
9 0.5 0 5/8 7/4 2/6 4/12
10 0.5 0 1/4 4/4 7/6 7/6

Centrality
1a 0 0 – – – –
2 20.5 0 1/3 3/6 4/2 6/4
3 0 0 10/9 4/8 6/4 4/5
4 0.5 0 9/1 6/6 7/6 3/2
5 20.5 0 0/4 5/5 2/4 4/6
6 0 0.5 – – – –
7 0.5 0 8/6 3/6 4/3 6/3
8 20.5 0 1/7 5/6 1/4 7/5
9 0 0.5 – – – –
10 0.5 0 4/9 6/7 5/4 7/3

Note. Values before and after the slash are Type I error rates under the conditions with 500 and 1,000

examinees, respectively.
aRater 1 is an unbiased rater used as an anchor. Type I error rates are reported for raters who did not

exhibit DRF-S or DRF-C.
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and the size of DRF-C (D-l) was set at 0.5 for the other two biased raters; that is, two

raters were more severe toward the focal group, whereas the other two raters exhib-

ited more centrality toward the focal group.

The simulated data were fit with the data-generating model. Therefore, rater l was

identified as exhibiting DRF-S (or DRF-C) if the 95% probability interval of Dhl (or

D-l) did not include zero. Regarding the Type I error rate, we computed the percent-

age of times a fair rater was mistakenly identified as exhibiting DRF-S (or DRF-C)

across 100 replications. As to the power rate, we computed the percentage of times a

biased rater was correctly identified as exhibiting DRF-S (or DRF-C). Under the true

model, the Type I error rates should be close to the nominal 5% level across condi-

tions. The power rates should depend on the manipulated factors: We expected higher

power rates under conditions with more examinees, more criteria, and more scale

categories.

Table 3. Power Rates (%) of Severity and Centrality Effect Detection under the DDRFM in
Simulation Study 2.

Rater True value DRF size

Three criteria Five criteria

Three scale
categories

Five scale
categories

Three scale
categories

Five scale
categories

Severity
1a 0 0 – – – –
2 0 0.5 41/72 57/94 65/87 89/100
3 0 0 – – – –
4 0 0.5 30/62 41/74 44/74 62/83
5 20.5 0 – – – –
6 20.5 0 – – – –
7 20.5 0 – – – –
8 0.5 0 – – – –
9 0.5 0 – – – –
10 0.5 0 – – – –

Centrality
1a 0 0 – – – –
2 20.5 0 – – – –
3 0 0 – – – –
4 0.5 0 – – – –
5 20.5 0 – – – –
6 0 0.5 26/49 47/77 25/57 69/96
7 0.5 0 – – – –
8 20.5 0 – – – –
9 0 0.5 19/52 49/73 28/65 73/93
10 0.5 0 – – – –

Note. Values before and after the slash are power rates under the conditions with 500 and 1,000

examinees, respectively.
aRater 1 is an unbiased rater used as an anchor. Power rates are reported for raters who did exhibit

DRF-S or DRF-C.
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Results

Table 2 summarizes the Type I error rates under the eight conditions. Overall, Type I

error rates of DRF-S and DRF-C detection were well controlled at the 5% level across

conditions. Similarly, Table 3 presents the power rates under the eight conditions.

Consistently, higher power rates were observed with 1,000 examinees, 5 criteria, and

5 scale categories.

We also conducted three-way ANOVAs on the power rates of DRF-S and DRF-C,

respectively. Under the current simulation design, the first manipulated factor (i.e.,

the number of examinees) had the greatest influence on the power rate of DRF-S

detection (p = .002, partial h2 =0.70). In contrast, the third manipulated factor (i.e.,

the number of rating scale categories) had the greatest influence on the power rate of

DRF-C detection (p \ .001, partial h2 =0.98).

Notably, rater centrality (- parameter) influenced the power rates of DRF-S detec-

tion: a biased rater with lower centrality was more likely detected as exhibiting DRF-

S than a biased rater with higher centrality. The reason for this centrality-dependent

DRF-S detection is mainly that, for a given DRF-S size, a larger area between two

expected score curves for the reference and focal groups is obtained for raters with

lower - parameters.

An Empirical Example: TestDaF Essay Rating Data

Instrument and Procedure

The Test of German as a Foreign Language (TestDaF, Test Deutsch als

Fremdsprache) is officially recognized as a language exam for international students

applying for entry to higher education institutions in Germany (Eckes & Althaus,

2020; for a review, see Norris & Drackert, 2018). The TestDaF writing section

assesses an examinee’s ability to produce a coherent and well-structured text on a

given topic taken from the academic context. The dataset considered here had been

analyzed before using a traditional facets modeling approach (Eckes, 2005).

Two out of 29 raters (23 women and 6 men) independently scored the written per-

formances of 1,359 examinees on three criteria (global impression, task fulfillment,

and linguistic realization) using a four-category rating scale (below TDN 3, TDN 3,

TDN 4, and TDN 5; coded as 0–3). As mentioned previously, the proportion of miss-

ing ratings was high (93.1%). Nonetheless, the dataset was connected (Eckes, 2015;

Engelhard & Wind, 2018).

At the time of this exam (April 2002), the examinees’ full names were provided

in the label attached to each paper. Raters were thus able to infer most examinees’

gender from parts of these names. Moreover, research has shown that female and

male handwritings look significantly different (Beech & Mackintosh, 2005; Boulet

& McKinley, 2005; Siddiqi et al., 2015), increasing the chances for raters to guess

an examinee’s gender correctly. Therefore, the essay ratings seemed to provide a

suitable dataset for studying the potential impact of gender-related differential
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severity and centrality effects. Since 36 examinees did not indicate their gender, we

included the responses of 1,323 examinees (728 females and 595 males) in the pres-

ent analyses.

Table 4 gives the means and standard deviations (SDs) of each rater’s score distri-

bution, listed separately for female and male examinees. Observed means and SDs

can serve as rough indicators of rater severity and centrality, respectively (Johnson

et al., 2009). Across raters, the overall mean for female examinees was 1.78

(SD = 0.84). For male examinees, the overall mean was 1.58 (SD = 0.83), suggest-

ing that females, on average, slightly outperformed males. Notably, however, 6 raters

Table 4. Means and Standard Deviations of Observed Scores Assigned to Female and Male
Examinees by 29 Raters in the Essay Rating Study.

Rater

Female examinees Male examinees

N M SD N M SD

1 46 1.69 0.89 35 1.56 0.96
2 65 2.10 0.82 45 1.96 0.89
3 88 1.63 0.61 60 1.43 0.76
4 30 1.98 0.79 18 2.06 0.68
5 73 1.40 1.04 45 1.13 1.06
6 16 1.08 0.82 10 1.63 0.76
7* 44 1.75 0.89 13 2.00 0.95
8 54 2.35 0.78 33 2.28 0.70
9 46 1.67 0.86 48 1.32 0.87
10 31 2.00 0.88 23 1.93 0.75
11 61 1.56 0.63 63 1.48 0.71
12 21 1.52 1.06 14 1.19 0.89
13 55 1.44 0.90 54 1.66 0.85
14 104 2.08 0.77 76 1.50 0.85
15 54 1.42 0.95 51 1.42 0.89
16 80 2.01 0.76 52 1.68 0.69
17 50 1.73 0.85 47 1.35 0.76
18 69 1.71 0.97 73 1.47 0.93
19 44 1.67 1.04 52 1.38 1.10
20 122 2.30 0.82 100 2.06 0.90
21* 39 2.09 1.11 46 1.09 1.04
22 18 2.28 0.79 24 2.07 0.89
23* 54 0.94 0.95 40 1.02 0.93
24* 20 1.97 0.69 17 1.86 0.78
25 19 1.30 0.98 16 1.23 0.69
26 18 1.93 0.80 27 1.72 0.76
27 19 1.88 0.73 13 2.10 0.64
28* 41 1.66 1.01 54 1.60 1.03
29* 75 1.64 1.06 41 1.44 1.04

Note. Raters marked with an asterisk (*) are male. N is the number of female and male examinees,

respectively, each rater scored. M and SD values refer to the four-category rating scale ranging from 0

(below TDN 3) to 3 (TDN 5). Higher means indicate higher writing proficiency.
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(four women and two men) on average assigned higher ratings to male examinees,

pointing to the possibility that raters’ severity levels may have varied with gender.

Similarly, the observed SDs show that 16 raters (13 women and 3 men) tended to

assign females less homogeneous scores than males. Our DDRFM analyses were to

shed more light on these differential tendencies.

Data Analysis

The RFM and DDRFM were fit to the data, with male examinees treated as the refer-

ence group. For model identification, the mean ability of males was fixed at zero.

Following the partial-credit approach in Eckes (2005), each criterion was modeled to

have its own set of threshold parameters.

Results

The PPP-value of the Bayesian chi-square for the DDRFM was .175, indicating satis-

factory absolute data-model fit. Furthermore, only 6.6% of the z statistics fell beyond

the 61.96 interval, suggesting convergence of the Markov chain to the posterior dis-

tribution. The DDRFM yielded a lower DIC value (13,315) than the RFM (13,612),

providing evidence that the more complex model (i.e., DDRFM) fit the essay rating

data better, taking into account the greater number of estimated parameters in terms

of the penalty statistic for the DDRFM.

The findings regarding model fit suggest that important assumptions of the RFM

regarding rater functioning, including equal centrality levels across raters and the

nonexistence of DRF-S or DRF-C, respectively, were disconfirmed. On the other

hand, the DDRFM fit the rating data so well that a closer look at the resulting para-

meter estimates seemed warranted.

Figure 6 displays the estimates (and the 95% probability intervals) for DRF-S and

DRF-C, respectively. As can be seen (Figure 6a), raters 8, 13, 15, and 23 (three women

and one man) were more severe to females, whereas raters 11, 14, 19, and 29 (three

women and one man) were more lenient to females. The DRF-C estimates (Figure 6b)

reveal that (female) rater 3 and (male) rater 7 tended to overuse middle categories (TDN

3 or TDN 4) when rating females’ performances, whereas (female) raters 8 and 16

tended to preferably assign extreme categories (below TDN 3 or TDN 5) to females.

Notably, rater 8 was identified to exhibit DRF-S and DRF-C simultaneously.

Under the DDRFM, for male examinees, the mean u estimate was 0 (males were

treated as the reference group), and the variance of the estimates was 6.09; for female

examinees, the respective statistics were 0.61 and 6.60, respectively, suggesting that

females outperformed males. Figure 7a displays the relationship between the u esti-

mates obtained under the DDRFM and the RFM. The two sets of estimates were

highly correlated (0.99). However, when taking the DDRFM u estimates as the gold

standard, the rank-order change was between 289 and 136 ranks (M = 8.85) for

males and between 2175 and 216 ranks (M = 7.23) for females. As illustrated in
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Figure 7b and c, fitting the RFM would make many male examinees attain higher

ranking positions than female examinees, suggesting that females are disadvantaged

when dual DRF effects are not taken into account.

Discussion

Severity and centrality are two main kinds of rater characteristics that need to be

detected, measured, and compensated for as much as possible to ensure performance

Figure 6. DRF-S and DRF-C estimates for 29 raters in the TestDaF essay rating study.
Note. Hollow and solid circles refer to non-DRF and DRF raters, respectively.
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Figure 7. Writing proficiency estimates under the RFM and the DDRFM in the essay rating
study: (a) u estimates, (b) Rank-order change for males, and (c) Rank-order change for
females.
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assessments’ validity and fairness (Engelhard, 1992; Myford & Wolfe, 2003, 2004;

Saal et al., 1980). Ideally, once trained and sufficiently experienced, raters should

exhibit only minimal severity and centrality levels, if at all, when judging examinee

performances. Consistently small severity and centrality effects imply that raters

should assign ratings, which are largely invariant over examinee characteristics irrele-

vant to the performance or construct in question. However, the bulk of research on

rating quality in a wide variety of assessment settings has consistently provided evi-

dence that raters, even when extensively trained, are subject to various forms of errors

and biases, including DRF (Eckes, 2015; Engelhard & Wind, 2018; McNamara et al.,

2019; Wind & Peterson, 2018; Wolfe & Song, 2016). In other words, performance

assessments typically do not seem to come close to the ideal of raters acting as a

homogeneous group and achieving undisputable high levels of interrater agreement

and reliability. Instead, it may reasonably be doubted whether this ideal is ever attain-

able by rater training alone.

Measurement models help remedy this problematic situation. In the present

research, we proposed a facets model, the dual differential rater functioning model

(DDRFM), aiming to examine whether raters exhibited differential severity (DRF-S), dif-

ferential centrality (DRF-C), or both, toward identifiable groups of examinees. In two

simulation studies, we found that ignoring DRF-S and DRF-C would lead to poorer mea-

surement quality, especially for the focal group. In addition, the proposed DDRFM

allows researchers to detect DRF-S and DRF-C with well-controlled Type I error rates.

We also applied the DDRFM to a real dataset, using ratings from a large-scale

writing performance assessment. The presence of gender-related severity biases in

these data had been studied before using an exploratory interaction analysis based on

the RFM (Eckes, 2005). In pairwise comparisons, statistically significant results were

obtained for only three raters: two raters were more severe with male than with

female examinees, one rater was more lenient with male than with female exami-

nees. The present DDRFM analysis yielded a much more detailed, precise, and com-

prehensive picture of gender bias: 11 out of the 29 raters were identified to exhibit

differential severity or differential centrality regarding examinee gender groups. One

of these raters was subject to both DRF-S and DRF-C.

We illustrated the practical implications of dual DRF effects by comparing the

examinee rank-ordering resulting from the DDRFM proficiency estimates (reference)

to the examinee rank-ordering produced by the RFM estimates. On average, the rank

orderings for male examinees differed by 8.85 ranks; for female examinees, the rank-

order change averaged 7.23, depending on which model was used for estimating their

proficiency. Rank differences of this magnitude may have severe consequences for

individual examinees, for example, when deciding on university admission.

Several limitations should also be noted. In this study, we focused on between-

rater variations of DRF-S and DRF-C. More specifically, in the DDRFM (Equation

5), we treated the dual DRF effects as fixed effects. Consequently, we were not able

to consider possible within-rater variations (Wang & Wilson, 2005). A straightfor-

ward approach to account for within-rater differences in dual DRF effects would be
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to extend the DDRFM by defining the rater parameters as random effects (e.g., fol-

lowing normal distributions). Of course, fitting a random-effects DDRFM to real data

requires much larger sample sizes for parameter estimation; that is, each rater should

have rated a sufficiently large number of performances.

It should be noted that the choice of priors may influence the estimation results for

DDRFM parameters (Gelman et al., 2013 ; Lunn et al., 2013 ). Therefore, it appears

generally advisable to reanalyze the data with different priors and check the consis-

tency of the results. In Simulation Study 1, for example, we ran an additional analysis

with even less informative priors to investigate the parameter recovery when fitting

the RFM and DDRFM; that is, we used N(0, 10) and l(0.01, 0.01), respectively. The

results were highly similar to the first analysis, attesting to our findings’ stability.

Furthermore, non-rating data targeting the same latent proficiency may be included

as auxiliary information to improve parameter estimation. Particularly, it is common to

use multiple item or task formats in large-scale assessments, including selected-response

items (e.g., multiple-choice or short-answer questions; Guo & Wind, 2021; Wind & Ge,

2021). In such mixed-format situations, examinee responses to items objectively scored

could be included to provide more information on examinee proficiency, further increas-

ing the precision of dual DRF effects detection in DDRFM studies.

As a practical implication, measuring both differential severity and differential cen-

trality effects can improve rater training and monitoring through providing individua-

lized feedback to raters. This kind of feedback may help sensitize raters for possible

biases that otherwise would go unnoticed. Regarding test or assessment development,

any clues that may reveal examinees’ performance- or construct-irrelevant characteris-

tics should be eliminated as far as possible. As for the TestDaF writing assessment

(Eckes, 2005), subsequent examinations used completely anonymized paper scanning

and rating procedures. Furthermore, with the recent advent of the web-based, digital

TestDaF (g.a.s.t, 2020), examinees type their written responses using a keyboard,

eliminating any gender-related information that may emerge from their handwriting.

Much like the situation in DIF research more generally (Penfield & Camilli,

2007), providing reasonable explanations for dual DRF effects that a DDRFM analy-

sis may have revealed is quite challenging and often requires considering information

on examinees and raters, respectively, coming from other sources. For example,

since rating accuracy is influenced by raters’ cognitive and meta-analysis strategies

(Zhang, 2016), researchers may investigate through a mix of quantitative and qualita-

tive methods (e.g., eye-tracking analysis, think-aloud protocols, or structured inter-

views) how raters subject to dual DRF effects go about assigning ratings to

examinees. Findings from studies along these lines may help to identify possible

causes of dual DRF effects.
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Note
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just as stable as multiple chains.
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