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Abstract 

Background:  Gastric cancer is one of the deadliest cancers, currently available therapies have limited success. 
Cancer-associated fibroblasts (CAFs) are pivotal cells in the stroma of gastric tumors posing a great risk for progression 
and chemoresistance. The poor prognostic signature for CAFs is not clear in gastric cancer, and drugs that target CAFs 
are lacking in the clinic. In this study, we aim to identify a poor prognostic gene signature for CAFs, targeting which 
may increase the therapeutic success in gastric cancer.

Methods:  We analyzed four GEO datasets with a network-based approach and validated key CAF markers in The 
Cancer Genome Atlas (TCGA) and The Asian Cancer Research Group (ACRG) cohorts. We implemented stepwise 
multivariate Cox regression guided by a pan-cancer analysis in TCGA to identify a poor prognostic gene signature for 
CAF infiltration in gastric cancer. Lastly, we conducted a database search for drugs targeting the signature genes.

Results:  Our study revealed the COL1A1, COL1A2, COL3A1, COL5A1, FN1, and SPARC​ as the key CAF markers in gastric 
cancer. Analysis of the TCGA and ACRG cohorts validated their upregulation and poor prognostic significance. The 
stepwise multivariate Cox regression elucidated COL1A1 and COL5A1, together with ITGA4, Emilin1, and TSPAN9 as 
poor prognostic signature genes for CAF infiltration. The search on drug databases revealed collagenase clostridium 
histolyticum, ocriplasmin, halofuginone, natalizumab, firategrast, and BIO-1211 as the potential drugs for further 
investigation.

Conclusions:  Our study demonstrated the central role of extracellular matrix components secreted and remodeled 
by CAFs in gastric cancer. The gene signature we identified in this study carries high potential as a predictive tool 
for poor prognosis in gastric cancer patients. Elucidating the mechanisms by which the signature genes contribute 
to poor patient outcomes can lead to the discovery of more potent molecular-targeted agents and increase the 
therapeutic success in gastric cancer.
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Background
Gastric cancer is the fifth most common cancer 
worldwide and the fourth leading cause of cancer-
related deaths, the GLOBOCAN 2020 statistics 
report. More than one million people were diagnosed 
with gastric cancer, and more than 750,000 deaths 
occurred due to gastric cancer in 2020 [1]. Stomach 
adenocarcinomas (STAD) constitute almost 95% of 
all gastric cancer cases. The mainstay of treatment in 
localized stomach adenocarcinoma is gastrectomy 
with total lymphadenectomy and chemotherapy [2]. 
However, the tumors are commonly metastatic at the 
time of diagnosis. At this stage, complete resection is 
impossible, and currently available chemotherapeutics 
fail due to chemoresistance [2, 3].

Molecular-targeted agents against tumor-specific 
biomarkers and immunotherapy increased the 
treatment efficacy in certain cancers such as breast 
cancer, lung cancer, and melanoma [4]. However, 
similar success is not achieved in gastric cancer yet. 
Currently, molecular-targeted agents, nivolumab 
(anti-PD-1), pembrolizumab (anti-PD-1), ramucirumab 
(anti-VEGFR2), and trastuzumab (anti-HER2), are 
approved in gastric cancer treatment. Unfortunately, 
they have limited efficacy on the overall survival of a 
limited group of advanced-stage patients with target 
positivity [5].

The tumor microenvironment is a great challenge 
for the treatment of cancer. Dynamic interactions 
with the extracellular matrix (ECM) and cellular 
components in the tumor microenvironment potentiate 
the aggressiveness of cancer cells and limit their 
response to anti-cancer agents [6]. Cancer-associated 
fibroblasts (CAFs) are critical components in the 
cellular compartment of the tumor microenvironment 
that assemble and remodel the ECM. They originate 
from activated fibroblasts and the endothelial or 
epithelial cells undergoing epithelial-mesenchymal 
transition (EMT). They secrete various ECM proteins 
and soluble mediators that potentiate pro-tumorigenic 
signaling pathways via activation of transmembrane 
receptors – mainly integrins. Moreover, CAFs remodel 
the ECM to form a protective barrier against immune 
surveillance and the diffusion of anti-cancer agents [7]. 
CAF infiltration is associated with a dismal prognosis 
in gastric cancer [8, 9]. CAFs were identified as the 
greatest risk factor in tumor microenvironment 
phenotype with the poorest overall survival in gastric 

cancer patients [10]. Therefore, addressing CAFs is 
essential for the treatment of gastric cancer. However, 
the poor prognostic markers for CAF infiltration in 
gastric cancer are not clear and drugs that target CAF-
mediated processes are lacking in the clinic.

In this study, we aim to identify the poor prognostic 
gene signature for CAF infiltration targeting which may 
increase the therapeutic efficacy in a large group of 
gastric cancer patients. We comprehensively analyzed 
four gastric cancer GEO gene expression datasets using 
a network-based approach and identified key markers 
for CAF infiltration. After validation of the markers in 
The Cancer Genome Atlas (TCGA) and Asian Cancer 
Research Group (ACRG) cohorts, we elucidated a poor 
prognostic gene signature for CAF infiltration in gastric 
cancer using stepwise multivariate Cox regression. 
Lastly, we compiled the list of currently available drugs 
that may have a therapeutic potential in gastric cancer 
by targeting the signature genes we identified (Fig.  1 
summarizes the steps followed in the study).

Methods
Data collection and identification of differentially 
expressed genes in gastric cancer
We analyzed four GEO expression profiling datasets 
(GSE13911, GSE29272, GSE79973, GSE118916) [11–
14], which used Affymetrix Human Genome or Gene 
Expression Arrays for profiling (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/). All four datasets bear a comparable 
number of samples from gastric cancer tissues and non-
cancerous gastric tissues. Additional file 1: Table S1 lists 
the number of tissue samples and the profiling platforms 
in each dataset. In total, we analyzed 200 non-tumor 
gastric and 207 gastric tumor samples. To identify 
differentially expressed genes (DEGs) in gastric tumors 
compared to non-cancerous stomach samples, we used 
the GEO2R web tool (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
geo2r/). We applied log transformation and Benjamini & 
Hochberg’s (False discovery rate) method to adjust the 
p-values (p-value significance cut-off = 0.01). The genes 
were filtered based on their log2-fold change (logFC) 
values. We accepted the genes with the log FC value >1 
as the upregulated genes and with the log FC value < −1 
as the downregulated genes. After identifying the DEGs 
in each dataset, we performed Venn Analysis to find 
DEGs common to all four datasets using the jvenn (an 
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Fig. 1  The workflow in the study. GSE13911, GSE29272, GSE79973, and GSE118916 denote four expression profiling datasets from the GEO 
database. ACGR: Asian Cancer Research Group, CAF: cancer-associated fibroblast, DAVID: The Database for Annotation, Visualization, and Integrated 
Discovery, DEG: differentially expressed genes, GC: Gastric cancer, GEPIA2: Gene Expression Profiling Interactive Analysis 2, GTEx: Genotype-Tissue 
Expression Project, KEGG: Kyoto Encyclopedia of Genes and Genomes, PPI: protein-protein interaction, STRING: The Search Tool for the Retrieval of 
Interacting Genes/Proteins, TCGA: The Cancer Genome Atlas, TIMER2.0: Tumor Immune Estimation Resource 2.0, UALCAN: University of Alabama 
Cancer Database
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interactive Venn diagram viewer) (http://​jvenn.​toulo​use.​
inra.​fr/​app/​index.​html).

Functional annotation and enrichment analysis
To perform functional enrichment and annotation 
clustering analysis of the DEGs, we used The Database 
for Annotation, Visualization, and Integrated Discovery 
(DAVID) (Version 6.8) [15] (https://​david.​ncifc​rf.​gov/). 
To understand the cellular compartments (GO-CC), 
molecular functions (GO-MF), and biological processes 
(GO-BP) at which the DEGs enriched, we performed 
gene ontology (GO) analysis. To understand the pathways 
at which the DEGs operate, we performed the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis [16]. The cut-off value for significance was 
chosen as p < 0.05. We analyzed gene lists for upregulated 
genes, downregulated genes, and all DEGs separately.

To compare the gene identities and gene ontologies 
enriched in different lists, we used Metascape [17] 
(https://​metas​cape.​org). To dissect the similarities and 
dissimilarities between gene lists, we analyzed the Circos 
plots, clustering dendrograms, network layouts for 
enriched gene ontologies, the proportion of the genes 
from different lists that fall into the same gene ontologies, 
and enrichment p-values.

Protein‑protein interaction network analysis
To identify the central CAF markers and assess their 
potential connections and interactions with the protein 
products of other DEGs in gastric cancer, we constructed 
the protein-protein interaction (PPI) network of 
the DEGs using The Search Tool for the Retrieval of 
Interacting Genes/Proteins (STRING Version 11.0) 
[18] (https://​string-​db.​org/). We utilized the minimum 
required interaction score as high confidence (0.7). We 
analyzed the resulting PPI network in Cytoscape (Version 
3.8.2) to infer the topological parameters of each node 
[19] (https://​cytos​cape.​org/). To investigate the network 
modules, we used Molecular Complex Detection 
(MCODE) plugin at Cytoscape. To construct a local 
network for key CAF markers and their first neighbors, 
we used the Cytohubba plugin at Cytoscape [20, 21]. To 
investigate the interactors of ITGA4 we searched inBio 
Discover™ by Intomics A/S (https://​inbio-​disco​ver.​
com/) (Intomics A/S has not endorsed the results of the 
published article) [22].

Gene expression profiling
To confirm the differential expression of the CAF 
markers in gastric cancer, we comparatively analyzed 
the gene expression profiles of 34 non-cancerous gastric 
tissues and 415 stomach adenocarcinoma samples in 

the TCGA dataset using the UALCAN (University of 
Alabama Cancer Database) (http://​ualcan.​path.​uab.​edu/) 
[23]. We also investigated the differential expression of 
the CAF markers by tumor grade and stage (the unpaired 
t-test was used for statistical analysis). To validate the 
results from the UALCAN, we analyzed The Genotype-
Tissue Expression Project (GTEx) data on GEPIA2 [24] 
(http://​gepia2.​cancer-​pku.​cn).

To investigate the differential expression of 
CAF markers in diffuse vs. intestinal subtypes and 
mesenchymal vs. epithelial phenotypes of gastric 
adenocarcinoma, we analyzed the ACRG cohort 
on GEO2R (GSE66229) [25]. We used the same set 
of parameters to identify DEGs in GSE66229 as for 
the datasets GSE13911, GSE29272, GSE79973, and 
GSE118916. Then we analyzed the expression profile 
graphs of all patients for the six CAF markers. To 
investigate the differential expression of CAF markers 
in other cancers we analyzed the TCGA data on Tumor 
Immune Estimation Resource 2.0 (TIMER2.0) [26] 
(https://​timer.​cistr​ome.​org). Then, we extracted the pan-
cancer expression profile graphs for CAF markers.

Survival analysis
To understand the impact of the CAF markers on the 
survival of gastric cancer patients, we performed the 
Kaplan-Meier (KM) survival analysis of TCGA stomach 
adenocarcinoma samples on TIMER 2.0. The stomach 
adenocarcinoma samples split into high or low expression 
groups based on the median expression level for each 
gene. Additionally, KM-Survival Curve for COL1A2 was 
extracted from the UALCAN to assess its prognostic role 
in gastric cancer. We generated the heatmaps that show 
the z-scores for each gene in distinct cancers using the 
“gene outcome” module in TIMER 2.0. We constituted 
the KM-survival curves for CAF infiltration that integrate 
gene expression data with the “immune association” tool 
in TIMER 2.0, which utilizes the log-rank test. Then we 
extracted the hazard ratios (HR), z-scores, and p-values 
from the multivariate Cox proportional hazard regression 
models built on TIMER 2.0.

Gene correlation analysis
We investigated the correlation between the individual 
gene expression and CAF infiltration in different cancers 
by the “immune association” tool in TIMER 2.0. To 
examine the correlation between distinct genes, we used 
the “Gene Correlation” module in TIMER 2.0, which 
gives purity adjusted correlation coefficients calculated 
by partial spearman rank correlation. We extracted the 
correlation coefficients and the p-values from TIMER2.0. 
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to generate a gene correlation heatmap on the Bioinfo 
Intelligent Cloud (BIC) imageGP tool (http://​www.​
ehbio.​com/​Cloud_​Platf​orm/​front/#/). For hierarchical 
clustering of the heatmap, we selected the Spearman 
method on the imageGP.

Potential drug search
To identify potential drugs that interfere with the target 
genes or proteins, we searched the DrugBank (https://​
www.​drugb​ank.​com/) and the Drug-Gene Interaction 
database (DGIdb v4.2.0) [27] (https://​www.​dgidb.​org/).

Data visualization
To draw the bubble plots for enriched ontology terms, we 
used the BIC imageGP tool. To plot the gene expression 
profiles and hazards ratios for CAF infiltration and 
gene expression in different cancers, we used GraphPad 
Prism9.

Results
Identification of cancer‑associated fibroblast markers 
in gastric cancer
To identify the CAF markers in gastric cancer we 
first investigated the DEGs in gastric cancer vs. non-
cancerous gastric tissues. We analyzed GSE13911, 
GSE29272, GSE79973, and GSE118916 datasets which 
included microarray data for gastric tumors of various 
subtypes. To determine the most relevant markers, we 
applied strict criteria for the identification of the DEGs. 
We accepted genes with a log FC value of >1 or < −1 
and an adjusted p-value <0.01, rather than accepting 
all genes with a log FC different than zero and p-value 
<0.05 as DEGs. Figure  2a shows the volcano plots and 
the number of the DEGs we detected in each dataset. 
The four datasets shared 83 DEGs: 38 upregulated- and 
45 downregulated- genes (Fig.  2b-d; Additional file  1: 
Table S2).

To illuminate the biological functions and the 
pathways the DEGs enrich, we performed the functional 
annotation and enrichment analysis of 83 DEGs. The 
functional annotation clustering with the highest 
classification stringency in DAVID revealed 3 clusters 
(Table 1). The cluster with the highest enrichment score 

included the ECM-receptor interaction, focal adhesion, 
and PI3K-Akt signaling pathway.

Functional enrichment analysis of the upregulated 
genes indicated a key role in ECM organization, ECM 
remodeling, ECM-receptor interaction, and activation of 
pro-tumorigenic signaling pathways (Fig.  2e, Additional 
file 1: Table S3). The most enriched molecular functions 
were ECM structural constituent, platelet-derived 
growth factor binding, and integrin-binding. The top 
KEGG pathways related to the upregulated genes were 
ECM-receptor interaction, focal adhesion, and PI3K-
Akt signaling (Fig.  2g, Additional file  1: Table  S3). The 
downregulated genes enriched in metabolic processes 
and ion homeostasis (Fig.  2f-g, Additional file  1: 
Table S4). These findings pointed out the upregulation of 
the ECM organization and remodeling in gastric cancer 
and suggested the involvement of CAFs.

To determine the CAF markers upregulated in gastric 
cancer we comparatively analyzed the list of upregulated 
DEGs in gastric cancer with an extended list of CAF 
markers, in terms of identity and gene ontology in 
Metascape. The CAF markers list included 27 genes: 
18 commonly used CAF markers (ACTA2, COL5A1, 
COL16A1, EMILIN1, FAP, FOXF1, LOXL1, LUM, MMP2, 
MMP11, PDGFRA, PDGFRB, PDPN, S100A4, SLC16A4, 
SPARC, VIM, ZEB1) and 9 CAF-specific markers (ASPN, 
COL1A1, COL1A2, COL3A1, COL11A1, FN1, MFAP5, 
OGN, TNC). Eight out of 38 upregulated genes in gastric 
cancer (ASPN, COL1A1, COL1A2, COL3A1, COL5A1, 
FAP, FN1, and SPARC​) overlapped with the CAF markers 
list (Fig. 2h, circos plot on the left). Besides that, 28 out 
of 38 upregulated genes in gastric cancer and 23 out of 
27 CAF markers fell into the same ontology term that is 
statistically significantly enriched in both lists (Fig.  2h, 
circos plot on the right).

Protein‑protein interaction network analysis 
and identification of the key CAF markers
To identify the key CAF markers and investigate their 
interactions with the protein products of DEGs in 
gastric cancer, we constructed a PPI network in STRING 
(Fig.  3a). The analysis of this network on Cytoscape 
3.8.2. revealed a prominent hub composed almost 

(See figure on next page.)
Fig. 2  Identification and functional enrichment analysis of differentially expressed genes in gastric cancer. A Volcano plots of differentially 
expressed genes (DEGs) in four GEO datasets with the number of upregulated, downregulated genes and, the total number of DEGs detected in 
each dataset. Overlapping B DEGs, C upregulated genes, and D downregulated genes in four GEO datasets. Bubble plots of the most enriched GO 
terms for E upregulated genes, F downregulated genes, and G KEGG pathways for all DEGs (BP: GO-biological process, MF: GO-molecular function, 
and CC: GO-cellular compartment). H The circos plots show how genes from the CAF markers (27 genes, red outer arc) and upregulated genes in 
GC (38 genes, blue outer arc) lists overlap. On the inside, each arc represents a gene list, where each gene has a spot on the arc. The dark orange 
color represents the genes that appear in both lists and the light orange color represents genes that are unique to a single gene list. Purple lines 
(upper circos plot) link the same genes that are shared by the two lists. Blue lines (lower circos plot) link the different genes which fall into the same 
ontology term. The circos plots were prepared on Metas​cape.​org
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Fig. 2  (See legend on previous page.)
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totally of ECM components and CAF markers. The top 
six proteins with the highest degree in this hub were all 
CAF markers: COL3A1 (collagen type III alpha 1 chain), 
FN1 (fibronectin 1), COL1A2 (collagen type I alpha 2 
chain), COL1A1 (collagen type I alpha 1 chain), COL5A1 
(collagen type V alpha 1 chain), and SPARC (cysteine-
rich acidic matrix-associated protein) respectively 
(Fig.  3b). Table  2 shows the topological parameters for 
these markers. The topological parameters for the whole 
PPI network are listed in Additional file 1: Table S5. The 
components of the hub were all upregulated genes in 
gastric tumors, except for COL2A1 (collagen type II 
alpha 1 chain) (Additional file 2: Fig. S1). These findings 
strengthened the central role of CAF markers in gastric 
cancer.

Analysis of the network modules CAF markers involved
To identify the modules that the six key CAF markers 
function, we used the MCODE tool in Cytoscape. 
MCODE identified three modules. The upregulated 
ECM protein hub was represented by modules 1 and 2 in 
Fig. 3c. Five out of 6 CAF markers, COL1A1, COL1A2, 
COL3A1, COL5A1, and SPARC, were components of 
module 1, while the FN1 was in module 2.

Then we performed functional enrichment analysis 
to identify enriched KEGG pathways at each module. 
“ECM-receptor interaction” and “focal adhesion” were 
the common enriched KEGG pathways in modules 1 
and 2 (Additional file  1: Table  S6). “PI3K-Akt signaling 

pathway” was the third enriched pathway in module 1. 
Hence the module analysis strengthened the connection 
of the six CAF markers: COL1A1, COL1A2, COL3A1, 
COL5A1, FN1 and, SPARC​, with the 3 KEGG pathways: 
ECM-receptor interaction, focal adhesion and, PI3K-Akt 
signaling pathway in gastric cancer.

COL1A1, COL1A2, COL3A1, COL5A1, and FN1 
are abundant structural proteins at the ECM. COL1A1 
and COL1A2 are produced mainly by fibroblasts and 
together constitute the type I collagen in the connective 
tissue. COL3A1 and COL5A1 are the alpha-1 chains of 
type III and V collagen, which are found in connective 
tissue together with type I collagen [28, 29]. FN1 is a 
glycoprotein involved in cell adhesion, wound healing, 
and metastasis. Besides their structural role, these 
proteins bind to the integrins on the cell membrane, and 
through focal adhesion kinases, they activate intracellular 
signaling pathways such as PI3K-Akt and MAPK 
pathways [30]. SPARC encodes the cysteine-rich acidic 
matrix-associated protein that is an essential protein for 
ECM remodeling. It binds to collagens and fibronectin; 
and regulates the interactions of cells with the ECM [31].

We analyzed the first neighbors of these CAF 
markers in our PPI network using the Cytohubba tool 
in Cytoscape. All these CAF markers highly interacted 
with other structural ECM components: BGN (biglycan), 
THBS1/2 (thrombospondin 1/2), and VCAN (versican), 
or ECM remodeling enzymes like SERPINH1 (serpin 

Table 1  Functional annotation clustering of 83 differentially expressed genes in gastric cancer. Analysis was performed with the 
highest classification stringency in DAVID (ECM: Extracellular Matrix, GOTERM: Gene Ontology Term, GOTERM BP: GO-biological 
process, GOTERM MF: GO-molecular function, and GOTERM CC: GO-cellular compartment, KEGG Pathway: Pathways listed in Kyoto 
Encyclopedia of Genes and Genomes)

Annotation Cluster 1 Enrichment Score: 7.26 Count Genes P-Value Benjamini
KEGG Pathway ECM-receptor interaction 12 COL1A1, COL1A2, COL2A1, COL3A1, COL4A1, 

COL5A1, COL5A2, COL6A3, FN1, SPP1, THBS1, 
THBS2

2.2E-11 1.6E-9

KEGG Pathway Focal adhesion 12 2.2.E-7 5.2E-6

KEGG Pathway PI3K-Akt signaling pathway 12 3.4E-5 4.0E-4

Annotation Cluster 2 Enrichment Score: 6.68 Count P-Value Benjamini
GOTERM BP DIRECT Negative regulation of growth 6 MT1E, MT1F, MT1G,

MT1H, MT1M, MT1X
2.4E-8 3.1E-6

GOTERM BP DIRECT Cellular response to zinc ion 6 2.4E-8 3.1E-6

KEGG Pathway Mineral absorption 6 1.6E-5 2.3E-4

Annotation Cluster 3 Enrichment Score: 1.25 Count P-Value Benjamini
GOTERM MF DIRECT Oxygen binding 3 CYP2C18, CYP2C9, CYP3A5 2.0E-2 2.4E-1

GOTERM MF DIRECT Oxidoreductase activity, acting on paired 
donors with incorporation or reduction of 
molecular oxygen

3 2.9E-2 2.9E-1

GOTERM MF DIRECT Monooxygenase activity 3 2.9E-2 2.9E-1

GOTERM CC DIRECT Organelle membrane 3 5.9E-2 3.2E-1

KEGG Pathway Retinol metabolism 3 8.1E-2 4.8E-1

GOTERM MF DIRECT Heme binding 3 1.3E-1 6.7E-1

GOTERM MF DIRECT Iron ion binding 3 1.6E-1 7.8E-1
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Fig. 3  Protein-protein interaction (PPI) network of 83 differentially expresses genes in gastric cancer. A PPI network graph constructed in STRING. 
(Line colors indicate the type of interaction evidence; edges indicate functional and physical protein associations. Minimum required interaction 
score: high confidence (0.7). Disconnected nodes are hidden in the network). B Degree sorted circular network graph constructed in Cytoscape. 
Black arrows show the two genes with the highest degree in the network. The degrees of the nodes decrease counterclockwise. C Modules in the 
protein-protein interaction network of 83 differentially expressed genes in gastric cancer. Module analysis was performed using the MCODE tool in 
Cytoscape. The scores, number of nodes, and edges for each module are listed in the D Neighbors of the six CAF markers COL1A1 (orange), COL1A2 
(orange), COL3A1 (red), COL5A1 (yellow), FN1(red), and SPARC​ (yellow). The network was constructed using the Cytohubba tool in Cytoscape (Color 
grade from red to yellow indicates the descending order of node degrees in the network)
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family H member 1), SULF1 (sulfatase 1), and TIMP1 
(tissue inhibitor matrix metalloproteinase 1) (Fig. 3d).

The correlation of the six CAF markers with CAF infiltration 
and other CAF markers in gastric cancer
To validate the six key CAF markers we detected with a 
network-based analysis, we investigated their correlation 
with CAF infiltration and other CAF markers in gastric 
cancer. Correlation analysis in TIMER2.0 revealed 
a statistically significant correlation for all six CAF 
markers with CAF infiltration in the TCGA stomach 
adenocarcinoma dataset (Fig.  4a-f ). The correlation 
of these markers with the CAF infiltration was even 
higher than that of poor prognostic CAF signature genes 
recently identified in gastric cancer: THBS1, THBS2, 
INHBA (inhibin A), CXCL12 (C-X-C motif chemokine 
ligand 12), TGFB2 (transforming growth factor-beta 2), 
VEGFB (vascular endothelial growth factor B), COL10A1 
(collagen type X alpha 1 chain), AREG (amphiregulin) 
and EFNA5 (ephrin A5) (Additional file 2: Fig. S2) [8, 32, 
33]. These findings validated the central role of COL1A1, 
COL1A2, COL3A1, COL5A1, and FN1 as CAF markers in 
gastric cancer.

Then we investigated the correlation of the six key 
CAF markers with the total list of CAF markers at the 
gene expression level in TCGA stomach adenocarcinoma 
samples (Fig.  4g). We also added CXCL12, INHBA, 
THBS1, and THBS2 to the correlation analysis since 
they are suggested as CAF markers associated with 
an aggressive phenotype in gastric cancer [32–34]. In 
hierarchical clustering analysis of the correlation matrix, 
the six CAF markers were highly correlated and clustered 
with COL11A1 (collagen type XI alpha1 chain), FAP 

(fibroblast activation protein), INHBA, MMP11 (matrix 
metalloproteinase 11), S100A4 (S100 calcium-binding 
protein A4) and THBS2 (Fig. 4g).

Verifying the differential expression and prognostic impact 
of the six CAF markers in gastric cancer
To validate the differential expression of the six CAF 
markers in gastric cancer, we analyzed the TCGA 
data in UALCAN. The expression of all six markers 
was significantly higher in stomach adenocarcinoma 
samples, compatible with our results (Fig.  5a). The 
significant upregulation of these markers in gastric 
cancer was also verified on GEPIA2 using gastric 
cancer data from the GTEx dataset (data not shown).

To investigate whether the six CAF markers are 
involved in gastric cancer progression, we analyzed 
their differential expression by tumor stage and grade 
on UALCAN using the TCGA data. For COL1A2, 
COL3A1, COL5A1, FN1, and SPARC​, there was no 
significant upregulation in stage 1 patients compared 
to healthy controls (Fig. 5b). However, their expression 
was significantly higher in stage 2, 3, and 4 samples 
than in the stage 1 samples. Only for COL1A1, the 
expression was high starting from stage 1. After stage 2, 
the increase in COL1A1 expression became much more 
prominent. These findings suggest that COL1A1 may be 
involved in both tumorigenesis and tumor progression. 
On the other hand, COL1A2, COL3A1, COL5A1, FN1, 
and SPARC​ may be more involved in tumor progression 
from stage 1 to stage 2, at which the tumor cells gain 
the ability to invade surrounding tissues.

The expression of COL1A1, COL1A2, COL5A1, and 
SPARC​ was significantly high starting from grade 1 

Table 2  Topological parameters for the six central CAF markers

Gene Symbol Gene Degree Closeness of 
Centrality

Clustering 
Coefficient

Average Shortest 
Path Length

Neighborhood 
Connectivity

COL3A1 collagen type III alpha 1 chain 16 0.71 0.52 1.41 10.12

FN1 fibronectin 1 16 0.69 0.43 1.44 9.68

COL1A2 collagen type I alpha 2 chain 15 0.68 0.59 1.48 10.80

COL1A1 collagen type I alpha 1 chain 15 0.68 0.62 1.48 11.26

COL5A1 collagen type V alpha 1 chain 13 0.64 0.76 1.56 12.15

SPARC​ secreted protein acidic and cysteine rich 13 0.64 0.58 1.56 11.38

(See figure on next page.)
Fig. 4  Correlation of the six key CAF markers with the CAF infiltration and other CAF markers. The correlation of A COL1A1, B COL1A2, 
C COL3A1, D COL5A1, E FN1, F SPARC​ with CAF infiltration in gastric cancer (TIDE algorithm in TIMER2.0. was used to infer the CAF infiltration levels 
in TCGA stomach adenocarcinoma samples). G Correlation heatmap for the six key CAF markers in gastric cancer (GC) with an extended list of 
other CAF markers. Correlation data was extracted from TIMER2.0 using the “gene correlation” module. Heatmap was created in imageGP using 
hierarchical clustering. The six key CAF markers in GC are shown with black arrows. Genes are classified as CAF-specific markers (red), CAF markers 
(blue), and GC-CAF markers (CAF markers identified in GC) (lilac)
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(Fig. 5c). The medians of expression for these markers 
gradually increased in grade 2 and 3 samples. For 
COL3A1 and FN1, the upregulation in grade 1 disease 
compared to healthy gastric tissue was not statistically 
significant due to the high variance in grade 1. However, 
their expression was significantly higher in grade 2 and 
grade 3 compared to grade 1 disease and normal tissue. 
These findings suggest that all six CAF markers may be 
associated with a poorly differentiated phenotype in 
gastric cancer.

Then we investigated the impact of upregulated 
COL1A1, COL1A2, COL3A1, COL5A1, FN1, and SPARC​ 
on patient survival with KM-survival analysis (Fig.  5d). 
High expression of COL1A1, COL3A1, COL5A1, FN1, 
and SPARC​ was significantly associated with poor 
survival in gastric cancer patients (p < 0.05). Although 
the survival curves for COL1A2 high vs. low expression 
samples were different, the difference was not significant 
enough to suggest that the high expression of COL1A2 
is associated with poor survival (p = 0.0618). Despite 
that, the KM-survival curves for COL1A2 high vs. low/
medium expression samples from the TCGA database 
were statistically different (p = 0.029) (Additional file  2: 
Fig. S3). These findings support that COL1A1, COL1A2, 
COL3A1, COL5A1, FN1, and SPARC​ are associated with 
poor prognosis in gastric cancer.

The differential expression of the six CAF markers in gastric 
cancer subtypes
Gastric adenocarcinoma is a heterogeneous disease with 
two main histopathological subtypes: the intestinal-type 
and diffuse-type gastric adenocarcinoma. The intestinal 
type is characterized by organized glandular structures 
and responds better to chemotherapy. On the other 
hand, diffuse type is characterized by an undifferentiated 
phenotype and its response to chemotherapy is dismal 
[35]. Recent studies for the molecular characterization 
of gastric tumors also demonstrated that gastric tumors 
with a mesenchymal phenotype have a worse prognosis 
and poor response to chemotherapy compared to that 
with an epithelial phenotype [25]. Since CAF infiltration 
is associated with EMT in several cancers and CAFs 
can develop from mesenchymal cells [36–38], we asked 
whether the six key CAF markers are more dominant 

in gastric tumors with a mesenchymal phenotype. Our 
analysis in the ACGR cohort revealed that expression of all 
the six CAF markers was higher in gastric tumors with a 
mesenchymal phenotype compared with that of epithelial 
phenotype (Fig.  6). However, the expression profile of 
these markers did not significantly differ between the 
diffuse vs. intestinal subtypes (Additional file  2: Fig. S4). 
Although diffuse-type gastric adenocarcinoma is more 
associated with a mesenchymal phenotype compared 
with the intestinal-type [35], it exhibits inter-patient 
variability in terms of the mesenchymal markers [25]. 
Therefore, mesenchymal phenotype seems to be a better 
indicator for the expression of six CAF markers, hence the 
CAF infiltration.

Pan‑cancer analysis of the six CAF markers at the TCGA 
database
CAFs are the predominant cellular components in 
the microenvironment of various tumors, especially 
with a high stroma [39]. To understand whether the 
six CAF markers we identified in gastric cancer are 
also upregulated in other cancers we performed a pan-
cancer analysis of these markers in the TCGA dataset. 
Although each of the markers was upregulated in more 
than half of the cancers, there were five cancer types 
besides stomach adenocarcinoma in which all the six 
markers were upregulated: colon adenocarcinoma 
(COAD), glioblastoma (GBM), head and neck squamous 
carcinoma (HNSC), kidney renal cell carcinoma (KIRC) 
and thyroid carcinoma (THCA) (Fig.  7). Despite that, 
high expression of all the six markers was not associated 
with poor prognosis in these cancers (Fig.  8a). CAF 
infiltration was not even associated with a poor prognosis 
in colon adenocarcinoma and head and neck squamous 
carcinoma among these cancers in the TCGA dataset 
(Fig. 8b).

CAFs display a heterogenous gene expression profile 
in the stroma of distinct cancers. Hence, they play anti-
tumor or tumor-promoting roles depending on the tumor 
type [7]. Although the six CAF markers were upregulated 
in colon adenocarcinoma, glioblastoma, head and neck 
squamous carcinoma, kidney renal cell carcinoma, 
and thyroid carcinoma, the overall CAF secretome or 
inner cellular machinery that responds to the six CAF 

Fig. 5  Differential expression and prognostic significance of the six key CAF markers in gastric cancer. A Differential expression of the CAF 
markers in normal tissues vs. primary stomach adenocarcinoma tissues. B Differential expression of the CAF markers by tumor stage in primary 
stomach adenocarcinoma (N: normal tissue, S1: stage1, S2: stage2, S3: stage3, S4: stage4). C Differential expression of CAF markers by tumor grade 
in stomach adenocarcinoma (N: normal tissue, G1:grade1, G2: grade2, G3: grade3). D Kaplan-Meier survival analysis of CAF markers in stomach 
adenocarcinoma. TCGA data which include 34 normal gastric tissues, and 415 primary stomach adenocarcinoma tissues were used for analysis (* 
p < 0.05, ** p < 0.01, *** p < 0.001). A-C Analysis was performed on the UALCAN. The numbers of samples in each group in the TCGA dataset are given 
in parenthesis at the bottom of the figure. D Analysis was performed on TIMER 2.0

(See figure on next page.)
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markers may not end up with a poor prognostic response 
in these tumors. Therefore, the six CAF markers we 
identified in gastric cancer may not necessarily indicate 
a poor prognostic impact on CAF infiltration in these 
tumors. With further analysis, we identified four other 
cancers in which all six markers and CAF infiltration 
were associated with poor prognosis: adrenocortical 
carcinoma (ACC), bladder urothelial carcinoma 
(BLCA), kidney renal papillary cell carcinoma (KIRP), 
and mesothelioma (MESO) (Fig.  8a). We comparatively 
analyzed these cancers with gastric cancer to establish a 
poor prognostic CAF gene signature with high specificity 
to gastric cancer.

Prognostic impact of the six CAF markers on gastric tumors 
with CAF infiltration
CAF infiltration by itself is associated with a hazard ratio 
of 5.24 in stomach adenocarcinoma in the KM-survival 
analysis of TCGA data (Table 3). Moreover, the outcome 
of CAF infiltration worsens with the increasing tumor 
stage in gastric cancer (Additional file  2: Fig. S5). We 
investigated whether high expression of the six CAF 
markers further worsens the prognosis in gastric tumors 
with CAF infiltration. We performed Cox proportional 
hazard regression analysis that considers both gene 
expression profiles and CAF infiltration in the TCGA 
stomach adenocarcinoma samples.

Out of the six CAF markers, the expression of COL1A1, 
COL1A2, COL3A1, or COL5A1 increased the z-score and 
hazards ratio for CAF infiltration (Table  3). The high 
COL5A1 expression led to the highest increase in the risk 
for poor survival (z = 2.666, HR = 8.584). The high FN1 
or SPARC expression did not increase the z-score and 
hazards ratio for CAF infiltration.

After that, we investigated whether the high expression 
of dual combinations of COL1A1, COL1A2, COL3A1, or 
COL5A1 exacerbates the outcome of CAF infiltration in 
stomach adenocarcinoma (Table  3). Concomitant high 
expression of COL1A1 and COL5A1 increased the hazard 
ratio most for CAF infiltration in TCGA samples (z = 2.924, 
HR = 11.654). The hazard ratio of CAF infiltration with 
this dual gene combination was even higher than that 
with the quadruple combination of collagen subunits. 
We also investigated the impact of CAF markers highly 
clustered with COL1A1 and COL5A1 in correlation 
analysis, namely THBS2, FAP, INHBA, S100A4, COL11A1, 

or MMP11, on the outcome of CAF infiltration in stomach 
adenocarcinoma. Except for MMP11, all slightly increased 
the hazard ratio for CAF infiltration (Additional file  1: 
Table S7).

Recently, Liu et al. suggested TGFB2, VEGFB, COL10A1, 
AREG and EFNA5; and  Grunberg et  al. suggested THBS1, 
THBS2, and INHBA as poor prognostic signatures for 
CAF infiltration in gastric cancer [8, 32]. To compare the 
prognostic significance of these two gene signatures with that 
of COL1A1 and COL5A1, we investigated the Cox regression 
models for these two signatures. The z-scores and hazard 
ratios for both signatures were lower than those for COL1A1 
and COL5A1 (Additional file  1: Table  S8). These findings 
suggested a high potential for COL1A1 and COL5A1 as a 
poor prognostic signature in CAF infiltrated gastric tumors.

Prognostic significance of COL1A1 and COL5A1 for CAF 
infiltration in other cancers
At the next step, we asked whether COL1A1 and COL5A1 
increase the poor prognostic impact of CAF infiltration in 
four cancers (adrenocortical carcinoma, bladder urothelial 
carcinoma, kidney renal papillary cell carcinoma, and 
mesothelioma) with a poor outcome profile for the six 
CAF markers and CAF infiltration like gastric cancer. 
Interestingly, the addition of COL1A1 and COL5A1 to 
the CAF Cox model led to a decreased risk score for CAF 
infiltration in adrenocortical carcinoma, kidney renal 
papillary cell carcinoma, and mesothelioma (Fig. 8c).

Identifying the players for the opposing roles of COL1A1 
and COL5A1 in different cancers could reveal new insights 
into the field. To predict possible players, we extracted the list 
of genes that correlate with the expression of COL1A1 and 
COL5A1 in adrenocortical carcinoma, kidney renal papillary 
cell carcinoma, and mesothelioma. We identified 25 genes 
that are highly correlated (rho ≥ 0.5) with both COL1A1 and 
COL5A1 in all three cancers (Fig. 8d). Then we comparatively 
analyzed this list with the list of genes upregulated in gastric 
cancer. The two lists shared seven genes (Fig. 8e, upper circos 
plot). The 18 genes common to the three cancers fell into the 
same gene ontology as the 27 genes upregulated in gastric 
cancer (Fig.  8e, lower circos plot). Despite these overlaps, 
more than ten ontologies are differentially enriched in the 
list of upregulated genes in gastric cancer (Fig. 8f). Among 
these, “integrin α4β1 pathway” and “peptide crosslinking” 
were striking, since they were the two ontologies that are 
also enriched at the upregulated gene list in gastric cancer 

(See figure on next page.)
Fig. 6  The differential expression of six CAF markers in gastric cancers with mesenchymal vs. epithelial phenotype. The differential expression of 
COL1A1, COL1A2, COL3A1, COL5A1, FN1, and SPARC​ in gastric cancers with mesenchymal vs. epithelial phenotype and normal gastric tissues from 
corresponding patients (abbreviated as N-MP: “Normal tissue-MP” for patients with mesenchymal phenotype gastric cancer and N-EP: “Normal 
tissue-EP” for patients with epithelial phenotype gastric cancer) in the Asian Cancer Research Group gastric cancer dataset (GSE66229). Analysis was 
performed on GEO2R
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compared to the CAF markers list (Fig. 9a). Network layouts 
for enriched ontology clusters given in Fig.  9b-d better 
demonstrate that the most striking difference for upregulated 
genes in gastric cancer was the enrichment of the “integrin 
α4β1 pathway” compared with the CAF markers list. These 
observations emphasized the role of the “integrin α4β1 
pathway” together with CAF infiltration in gastric cancer 
and proposed the integrin α4β1 signaling as a poor prognostic 
factor for CAF infiltration specifically in gastric cancer.

Contribution of Integrin α4β1 pathway to the poor 
prognostic impact of COL1A1, COL5A1, and CAF infiltration 
in stomach adenocarcinoma
Integrins are heterodimeric transmembrane proteins 
that are involved in cell-cell or cell-ECM adhesions. They 
bind ECM components, mainly collagen, and fibronectin, 
activate intracellular signaling pathways, and regulate 
cell survival, proliferation, migration, and differentiation. 
Integrin α4β1 is a heterodimer of integrin α4 (ITGA4) and 
integrin β1 (ITGB1). ITGB1 couples with a large variety 
of α integrin subunits [40]. However, ITGA4 couples with 
integrin β1 or β7 subunits [41, 42].

The integrin α4β1, also known as very late antigen-4 
(VLA-4), is expressed on various immune cells, mediating 
the migration of leukocytes to the inflammatory sites via 
interaction with VCAM-1 (vascular cell adhesion protein 1) 
[41]. Additionally, it binds to ECM components and takes 
part in fibronectin assembly [43]. Increased expression 
of α4β1 integrin is associated with tumor progression and 
chemoresistance in cancer. The interaction of integrin 
α4β1 on the tumor cell membrane with the VCAM-1 on 
vascular endothelial cells is involved in metastasis [41]. The 
interaction of α4β1 integrin with fibronectin suppressed 
apoptosis via FAK-mediated suppression of p53, and 
PI3K/Akt mediated upregulation of Bcl-2 in myeloma 
cells. Increased integrin α4β1 expression was associated 
with increased binding of melanoma cells to collagen I 
and collagen IV, and invasion through fibronectin [44]. 
Moreover, α4 integrin was suggested to affect a drug 
efflux mechanism independent of its coupling with β1 
integrin [45]. However, the mechanisms by which integrin 
α4β1 heterodimer or α4 integrin monomer contribute to 
invasion, metastasis, and chemoresistance in cancer are not 
exactly known.

To understand whether the integrin α4β1 potentiates 
the poor prognostic impact of CAFs, we analyzed the 

Cox regression model for CAF infiltration that considers 
the expression of ITGA4, ITGB1, or both in addition to 
COL1A1 and COL5A1. The addition of ITGA4 to the 
model increased the hazard ratio and z-score in stomach 
adenocarcinoma (z = 2.963, HR = 12.247) (Table  4). 
However, only ITGB1 or ITGA4 and ITGB1 slightly 
decreased the hazard ratio and z-score, which may be due 
to a less selective coupling of ITGB1 with several integrin 
α subtypes (Additional file  1: Table  S9). These findings 
supported that ITGA4 may worsen the poor prognostic 
impact of CAFs in gastric cancer.

ITGA4 interacts with signaling molecules, receptors, 
and kinases that take part in ECM organization, 
integrin signaling, and cell-matrix adhesion (Additional 
file  2: Fig. S6A-B). Among the integrin α4β1 partners 
FN1, osteopontin (secreted phosphoprotein1: SPP1), 
THBS1, and EMILIN-1 (Elastin microfibril interface-
located protein 1) are ECM proteins; JAM2 (junctional 
adhesion molecule 2), JAM3 (junctional adhesion 
molecule 3), MADCAM1 (mucosal vascular addressin 
cell adhesion molecule 1), and VCAM1 are membrane-
bound proteins. Their interaction with integrin α4β1 
makes them potential players for the poor prognostic 
impact of ITGA4 [43, 46–49]. We asked whether FN1, 
one of the six CAF markers we detected in network 
analysis, strengthens the poor prognostic effect of 
ITGA4 on CAF infiltration. However, the addition of 
FN1 to the COL1A1, COL5A1, and ITG4 Cox regression 
model decreased the poor prognostic impact of CAF in 
stomach adenocarcinoma (Additional file  1: Table  S10). 
THBS1 acted similarly and decreased the hazard ratio. 
JAM2, JAM3, MADCAM1, SPP1, and VCAM1 slightly 
increased the hazard ratio. On the other hand, EMILIN1 
substantially increased the poor prognostic impact of 
CAFs in the COL1A1, COL5A1, and ITG4 model, raising 
the hazard ratio from 12.247 to 28.315 (Table 4).

The EMILIN-1 is a member of the elastin microfibrillar 
interface proteins (EMILINs) family, expressed as a 
homotrimer at the ECM [50]. Since fibroblasts are the 
major sources of EMILIN-1 at the ECM, it is accepted as a 
fibroblast marker [51]. The interaction of EMILIN-1 with 
integrin α4β1 is involved in cell adhesion and migration 
[52]. The increase in the poor prognostic impact of 
CAFs in stomach adenocarcinoma with the addition of 
EMILIN1 as a covariate to the Cox model was surprising 
since EMILIN-1 is known as a tumor suppressor that 

Fig. 7  Pan-cancer expression profiles of the six key CAF markers in the TCGA dataset. Pan-cancer differential expression profiles of COL1A1, 
COL1A2, COL3A1, COL5A1, FN1, and SPARC​ in the TCGA dataset (* p < 0.05, ** p < 0.01, *** p < 0.001). Analysis was performed on TIMER 2.0. Stomach 
adenocarcinoma (STAD) is highlighted red and five other cancers (COAD: colon adenocarcinoma, GBM: glioblastoma, HNSC: head and neck 
squamous carcinoma, KIRC: kidney renal cell carcinoma, and THCA: thyroid carcinoma) at which all the six CAF markers were upregulated are 
highlighted blue in the legends. For a full list of TCGA cancer type abbreviations please refer to https://​gdc.​cancer.​gov/​resou​rces-​tcga-​users/​
tcga-​code-​tables/​tcga-​study-​abbre​viati​ons

(See figure on next page.)

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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exerts anti-proliferative action via integrin α4β1 in cell 
and in  vivo models [50, 53]. Despite that, some reports 
suggest a pro-tumorigenic role for EMILIN-1 in ovarian 
serous tumors and osteosarcoma [54, 55].

A recent study reported that the action of EMILIN-1 
to inhibit the MAPK pathway and suppress proliferation 
in gastric cancer cells might depend on Tetraspanin9 
(TSPAN9) [56], which is a member of the tetraspanin 
family membrane receptors with four transmembrane 
domains. These receptors are involved in signal 
transduction, cell adhesion, invasion, and migration. 
TSPAN9 is alluded to have anti-cancer effects in gastric 
cancer, suppressing proliferation, invasion, and migration 
in gastric cancer cell lines [57, 58]. Despite that, adding 
TSPAN9 to the COL1A1, COL5A1, ITGA4, and EMILIN1 
Cox model further increased the hazard ratio to 36.813 
for CAF infiltration in stomach adenocarcinoma samples 
(Fig. 10a, Table 4). However, the hazard ratios remained 
zero with the stepwise addition of ITGA4, EMILIN1, and 
TSPAN9 to the Cox model in adrenocortical carcinoma, 
kidney renal papillary cell carcinoma, and mesothelioma 
(Table  4). All this data suggested COL1A1, COL5A1, 
ITGA4, EMILIN1, and TSPAN9 as a poor prognostic 
CAF signature with high specificity to stomach 
adenocarcinoma.

We further investigated the expression profiles of 
the signature genes and their correlation with CAF 
infiltration (Fig.  10b-e). Mesothelioma and stomach 
adenocarcinoma displayed a higher expression profile 
for the COL1A1, COL5A1, ITGA4, and EMILIN1, in 
comparison to adrenocortical carcinoma and kidney 
renal papillary cell carcinoma. The expression of 
TSPAN9 was similar in all four cancers (Fig.  10b). 
Correlation between the COL1A1 or COL5A1 
expressions and CAF infiltration was strong in 
all four cancers (rho  >  0.5). ITGA4 expression 
poorly correlated with the CAF infiltration, but 
the correlation was slightly higher in kidney renal 
papillary cell carcinoma and stomach adenocarcinoma. 
Strikingly, the correlation of EMILIN1 and TSPAN9 
with CAF infiltration was quite strong in stomach 

adenocarcinoma compared to a poorer correlation in 
the other three cancers (Fig. 10c).

Further investigation revealed that the expression of 
ITGA4 increases with stage in stomach adenocarcinoma 
(Fig.  10d). Although there was a significant decrease 
in EMILIN1 and TSPAN9 levels in stage 1 compared 
to healthy stomach tissue, their expression increased 
again at stage 2, reaching the level of or above that of 
normal tissues (Fig.  10e-f ). A similar pattern was not 
observed for adrenocortical carcinoma, kidney renal 
papillary cell carcinoma, and mesothelioma (Additional 
file 2: Fig. S7).

The KM-survival analysis did not indicate a prognostic 
role for ITGA4, EMILIN1, or TSPAN9 in stomach 
adenocarcinoma per se (Additional file  2: Fig. S8A-C). 
However, their hazard ratios increased with the stage 
(Additional file 2: Fig. S8D-F). This was in parallel to the 
increase in the poor prognostic impact of CAF infiltration 
by stage in stomach adenocarcinoma (Additional file  2: 
Fig. S5), suggesting a stage and CAF dependent role for 
ITGA4, EMILIN1, and TSPAN9.

Search on drugs that target the poor prognostic CAF 
signature
Lastly, we searched for currently available drugs that 
target the five signature genes COL1A1, COL5A1, ITGA4, 
EMILIN1, and TSPAN9. The drugs that target EMILIN1, 
and TSPAN9 are not currently available. But our search 
on DrugBank and DGIB revealed three agents which 
target COL1A1 and COL5A1: collagenase clostridium 
histolyticum, halofuginone, and ocriplasmin; and three 
agents which target ITGA4: natalizumab, firategrast, and 
BIO-1211 (Fig. 11).

Collagenase clostridium histolyticum and ocriplasmin 
are enzymes that cleave COL1A1 and COL5A1. 
They also have proteolytic activity on COL3A1 and 
FN1, respectively [59, 60]. Collagenase clostridium 
histolyticum is used on skin ulcers to hasten wound 
healing and Dupuytrens’ disease to resolve contractures 
by digesting collagen [61, 62]. Intra-tumoral or 
intravenous injection of collagenase increased the 

(See figure on next page.)
Fig. 8  Prognostic impact of the six key CAF markers and the CAF infiltration in TCGA cancers. Heatmap of risk scores for A the expression of COL1A1, 
COL1A2, COL3A1, COL5A1, FN1, and SPARC​, B the cancer-associated fibroblast (CAF) infiltration, C the expression of COL1A1 and COL5A1 plus CAF 
infiltration in different cancers at TCGA dataset. A-C z-score > 0 (p < 0.05) indicates increased risk and z-score < 0 (p < 0.05) indicates decreased risk. 
ACC: adrenocortical carcinoma, BLCA: bladder urothelial carcinoma, KIRP: kidney renal papillary cell carcinoma, MESO: mesothelioma, and STAD: 
stomach adenocarcinoma. Data was extracted from TIMER 2.0. D Venn analysis of genes highly correlated (r ≥ 0.5) with COL1A1 and COL5A1 in TCGA 
samples of ACC, KIRP, and MESO. E The circos plots that show how genes from the input gene lists- 25 common genes detected by Venn analysis at 
(D) (red outer circle) vs. 38 upregulated genes in gastric cancer (blue outer circle)- overlap. The dark orange color at the inner circle represents the 
genes that appear in both lists and the light orange color represents genes that are unique to that gene list. Purple lines (upper circos plot) link the 
same genes that are shared by the two lists. Blue lines (lower circos plot) link the different genes which fall into the same ontology term. F Enriched 
ontology clusters (GO/KEGG terms, canonical pathways) for 25 common genes correlated with COL1A1 and COL5A1 in ACC, KIRP, and MESO (I) 
vs. 38 upregulated genes in GC (II). E-F Analysis was performed on Metas​cape.​org. For a full list of TCGA cancer type abbreviations please refer to 
https://​gdc.​cancer.​gov/​resou​rces-​tcga-​users/​tcga-​code-​tables/​tcga-​study-​abbre​viati​ons

http://metascape.org
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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diffusion of large drug molecules in tumor models 
[63]. Intraperitoneal administration of collagenase was 
reported to increase the efficacy of chemotherapy by 
cleaving the tumor stroma in a rat model of colorectal 
cancer peritoneal metastasis [64]. Ocriplasmin is used 
to remove adhesions in symptomatic vitreomacular 
adhesion [60]. Like our study, another bioinformatics 
study suggested ocriplasmin as a potential anti-cancer 
agent [65]. But, to the best of our knowledge, ocriplasmin 
has not been tested in cancer before.

Halofuginone is an alkaloid that suppresses the 
expression of the COL1A1 gene, cell migration, and ECM 
formation. Besides its’ antifibrotic and anti-angiogenetic 
actions, halofuginone shows antiproliferative effects by 
inhibiting TGFβ/Smad3 signaling [66, 67]. Halofuginone, 
showed an apoptotic effect in prostate cancer and Wilms’ 
tumor cells by inhibiting the transformation of fibroblasts 
to myofibroblasts [68], which carry similar features to 
CAFs [7]. Halofuginone also acted synergistically with 
gemcitabine and suppressed tumorigenesis in a mouse 
pancreatic cancer model by reducing the number of 
stromal myofibroblasts and generation of ECM [69].

Integrin α4β1 is a significant therapeutic target in 
chronic inflammatory diseases and cancer. Natalizumab, 
the monoclonal antibody against integrin α4 subtype, 

was approved in multiple sclerosis and inflammatory 
bowel disease. However, its long-term use is associated 
with progressive multifocal leukoencephalopathy [49]. 
Although abrilumab and vedolizumab are listed as 
integrin α4 targeting agents, their action is specific to 
integrin α4β7 heterodimer [70, 71]. Besides monoclonal 
antibodies, small molecule inhibitors that target integrin 
α4 such as firategrast and BIO-1211 are available [72, 73]. 
To the best of our knowledge, these agents have not been 
tested for their therapeutic efficacy in cancer yet.

Discussion
In this study, we performed a comprehensive 
bioinformatic analysis to identify poor prognostic 
CAF markers targeting which may have a therapeutic 
potential in gastric cancer patients. Our network-
based approach revealed an upregulated ECM protein 
hub where the CAF markers COL1A1, COL1A2, 
COL3A1, COL5A1, FN1, and SPARC​ were the most 
central genes. High expression of all these CAF 
markers was associated with high CAF infiltration, 
tumor progression, mesenchymal phenotype, and 
decreased survival in gastric cancer patients. Based 
on the comparative pan-cancer analysis of these key 
CAF markers and a comprehensive literature search we 
identified COL1A1, COL5A1, ITGA4, EMILIN1, and 
TSPAN9 as the signature genes, which potentiated the 
poor prognostic impact of CAF infiltration specifically 
in stomach adenocarcinoma. Our findings emphasize 
the key role of the tumor microenvironment and CAFs 
in gastric cancer.

Tumor cells dynamically interact with their 
microenvironment which consists of an ECM 
compartment and a cellular compartment. CAFs 
are pivotal cellular components in the tumor 
microenvironment. They secrete numerous ECM 
proteins, mainly fibrous collagens (type I, III, and V 
collagens) and fibronectin. They also remodel the ECM 
through matrix metalloproteinases (MMPs) which cleave 
the ECM components, and the lysyl oxidase (LOX) family 
enzymes which crosslink the collagens. The dynamic 
remodeling of ECM by CAFs facilitates cancer cell 
migration and invasion [7, 29]. Additionally, CAFs induce 
ECM stiffness in the tumor microenvironment, which 
is associated with chemoresistance and poor survival in 
many cancers [7, 29].

CAFs are mostly renowned for their pro-tumorigenic 
role. However, they can also exhibit an anti-tumorigenic 
role in a tumor-dependent manner. Whether they 
exhibit a pro-tumorigenic or an anti-tumorigenic role 
is highly determined by their secretome [74]. Therefore, 
identifying the poor prognostic signature of CAFs is of 
critical importance to develop anti-CAF strategies and 

Table 3  Parameters of the multivariate Cox proportional 
regression model for six key CAF markers and CAFs. TCGA data 
for stomach adenocarcinoma samples were analyzed in the 
TIMER2.0 immune association - outcome module using the TIDE 
algorithm for the allocation of samples to the high vs. low CAF 
infiltration groups. Likelihood ratio and Score log-rank tests were 
performed (CAF: cancer-associated fibroblast, CI: confidence 
interval, HR: hazard ratio)

Variate/s HR of CAF 
infiltration

95% CI z-score p-value

CAF 5.240 2.004–13.702 3.377 0.001

CAF, COL1A1 5.430 1.392–21.179 2.437 0.015

CAF, COL1A2 5.631 1.218–26.033 2.212 0.027

CAF, COL3A1 5.916 1.078–32.465 2.047 0.041

CAF, COL5A1 8.584 1.767–41.695 2.666 0.008

CAF, FN1 4.247 0.956–18.880 1.900 0.057

CAF, SPARC​ 3.042 0.599–0.878 1.342 0.180

CAF, COL1A1, COL1A2 5.789 1.164–28.802 2.145 0.032

CAF, COL1A1, COL3A1 6.167 1.034–36.775 1.997 0.046

CAF, COL1A1, COL5A1 11.654 2.247–60.438 2.924 0.003

CAF, COL1A2, COL3A1 5.968 1.074–33.168 2.041 0.041

CAF, COL1A2, COL5A1 7.701 1.550–38.253 2.496 0.013

CAF, COL3A1, COL5A1 6.339 1.151–34.913 2.121 0.034

CAF, COL1A1, 
COL1A2, COL3A1, 
COL5A1

10.176 1.532–67.610 2.401 0.016
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Fig. 9  Enriched ontology clusters for the cancer-associated fibroblast markers and upregulated genes in gastric cancer. A Dendrogram of the 
enriched ontology clusters (GO/KEGG terms, canonical pathways) for the CAF markers and upregulated genes in GC. B Network representation 
of enriched terms for a combined list of the CAF markers and upregulated genes in gastric cancer (GC). Each term is represented by a circle node, 
where its size is proportional to the number of the input genes that fall into that term. The nodes are presented as pie sectors where each pie sector 
is proportional to the number of hits originating from the CAF markers list (red) and upregulated genes in GC (blue). C The gene ontology terms 
for the same network nodes in B where each color represents different cluster identities given in the label. D Representation of the same network 
nodes in B and C colored by p-value, as shown in the color scale. B-D The black arrows show the nodes that fall into the Integrin α4β1 pathway 
in GC upregulated genes list. Only one node that falls into the Integrin α4β1 pathway shown with the red arrow was common in both the CAF 
markers list and the GC upregulated genes list. The data was analyzed, and the network layouts were prepared in Metas​cape.​org

http://metascape.org
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select the patient populations that will benefit from these 
modalities. Our study and others’ findings demonstrated 
a poor prognostic role for CAFs in gastric cancer [8, 
9] (Table  3 and Additional file  2: Fig. S5). Zeng et  al. 
computationally analyzed the cell infiltration pattern 
in the tumor microenvironment of 1524 gastric cancer 
patients. The fibroblast infiltration was the greatest 
risk factor in tumor microenvironment phenotype 
with the poorest overall survival [10]. Despite that, 
the poor prognostic signature for CAFs is not clear in 
gastric cancer, and drugs that target CAF-specific pro-
tumorigenic processes are not available in the clinic. 
Hence, in this study, we aimed to address these points.

To identify a poor prognostic signature for CAF 
infiltration in gastric cancer, we first identified the key 
CAF markers with a network-based approach in gastric 
cancer. We identified ECM components COL1A1, 
COL1A2, COL3A1, COL5A1, FN1, and SPARC​ as the 
pivotal CAF markers in gastric cancer, which were 
separately reported as biomarkers of gastric cancer in 
different studies [75–78]. We further validated their 
differential expression and poor prognostic significance 
in gastric cancer by analyzing the TCGA, GTEx, and 
ACRG cohorts. Additionally, we demonstrated that the 

high expression of these six CAF markers is associated 
with mesenchymal phenotype gastric cancer, which 
has a poorer prognosis and response to chemotherapy 
than the gastric tumors with the epithelial phenotype 
(Fig.  6). The higher content of stroma in mesenchymal 
phenotype gastric cancers and the role of EMT in CAF 
generation may explain this association. Interestingly, 
we could not observe a similar association in the diffuse 
histopathological subtype of gastric cancer which is 
more related to a mesenchymal phenotype compared 
with the intestinal histopathological type. However, Oh. 
Et al. suggested that the mesenchymal phenotype gastric 
cancers are a subset of diffuse gastric cancers [25]. Hence 
the heterogeneity of diffuse gastric cancers in terms of a 
mesenchymal or epithelial phenotype may explain this 
discrepancy.

In the next step, we performed pan-cancer profiling 
of the six key CAF markers. Although we identified 
five different cancers in which all the six CAF markers 
were upregulated, these markers or CAF infiltration 
did not exhibit poor prognostic effect in these cancers. 
These observations suggested that the six CAF markers 
we identified may have more critical roles in the poor 
prognostic impact of CAFs in gastric cancer. Then, 

Table 4  Parameters of the stepwise multivariate Cox proportional regression model for cancer-associated fibroblasts and signature 
genes. TCGA data for stomach adenocarcinoma, adrenocortical carcinoma, kidney renal papillary cell carcinoma, and mesothelioma 
were analyzed in the TIMER2.0 immune association - outcome module using the TIDE algorithm for the allocation of samples to the 
high vs. low CAF infiltration groups. Likelihood ratio and Score log-rank tests were performed (CAF: cancer-associated fibroblast, CI: 
confidence interval, HR: hazard ratio)

Variate/s HR of CAF infiltration 95% CI z-score p-value

Stomach Adenocarcinoma
CAF, COL1A1, COL5A1 11.654 2.247–60.438 2.924 0.003

CAF, COL1A1, COL5A1, ITGA4 12.247 2.335–64.240 2.963 0.003

CAF, COL1A1, COL5A1, ITGA4, EMILIN1 28.315 4.143–193.524 3.409 0.001

CAF, COL1A1, COL5A1, ITGA4, EMILIN1, TSPAN9 36.813 5.007–270.645 3.543 0.000

Adrenocortical Carcinoma
CAF, COL1A1, COL5A1 0.011 0.000–10.094 −1.297 0.195

CAF, COL1A1, COL5A1, ITGA4 0.011 0.000–11.744 −1.270 0.204

CAF, COL1A1, COL5A1, ITGA4, EMILIN1 0.007 0.000–9.801 −1.341 0.180

CAF, COL1A1, COL5A1, ITGA4, EMILIN1, TSPAN9 0.014 0.000–23.333 −1.126 0.260

Kidney Renal Papillary Cell Carcinoma
CAF, COL1A1, COL5A1 0.002 0.000–0.223 −2.566 0.010

CAF, COL1A1, COL5A1, ITGA4 0.002 0.000–0.241 −2.535 0.011

CAF, COL1A1, COL5A1, ITGA4, EMILIN1 0.002 0.000–0.287 −2.427 0.015

CAF, COL1A1, COL5A1, ITGA4, EMILIN1, TSPAN9 0.002 0.000–0.515 −2.197 0.028

Mesothelioma
CAF, COL1A1, COL5A1 0.000 0.000–0.128 −2.513 0.012

CAF, COL1A1, COL5A1, ITGA4 0.000 0.000–0.166 −2.443 0.015

CAF, COL1A1, COL5A1, ITGA4, EMILIN1 0.000 0.000–0.737 −2.036 0.042

CAF, COL1A1, COL5A1, ITGA4, EMILIN1, TSPAN9 0.001 0.000–0.133 −2.834 0.005
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we searched for other cancers in which all the six CAF 
markers and CAF infiltration are poor prognostic. We 
established a poor prognostic gene signature based on 
the comparative analysis of gastric cancer with these 
tumors, namely adrenocortical carcinoma, kidney renal 
papillary cell carcinoma, and mesothelioma.

Among the six CAF markers, we identified COL1A1 and 
COL5A1 as the two markers which potentiated the poor 
prognostic impact of CAF infiltration most in gastric cancer 
(Table  3). The opposite effect of this dual gene signature 
in adrenocortical carcinoma, kidney renal papillary cell 
carcinoma, and mesothelioma (Fig.  8e) led us to identify 
ITGA4, EMILIN11, and TSPAN9 as interactors that 

Fig. 10  Prognostic impact and the expression profile of the cancer-associated fibroblast signature genes. A The hazard ratios of CAF infiltration 
for different gene expression profiles in STAD. C1: COL1A1, C5: COL5A1, I4: ITGA4, E1: EMILIN1, F1: FN1 and T9: TSPAN9. Bars indicate 95% confidence 
intervals. Data was extracted from TIMER2.0. B Gene expression profile for COL1A1, COL5A1, ITGA4, EMILIN1, and TSPAN9 in ACC, KIRP, MESO, and 
STAD. Symbols show the medians for transcripts per million (TPM) in each cancer at the TCGA dataset. Data was extracted from UALCAN. C 
Correlation between CAF infiltration and the expression of COL1A1, COL5A1, ITGA4, EMILIN1, and TSPAN9 in ACC, KIRP, MESO, and STAD. Data was 
extracted from TIMER2.0. using the TIDE algorithm. Differential expression of D ITGA4, E EMILIN1, and F TSPAN9 by tumor stage in primary STAD. The 
TCGA data, which includes 34 normal tissues and 415 primary stomach adenocarcinoma tissues, was used for analysis. Analysis was performed on 
UALCAN (unpaired t-test, * p < 0.05, ** p < 0.01, *** p < 0.001). (ACC: adrenocortical carcinoma, BLCA: bladder urothelial carcinoma, KIRP: kidney renal 
papillary cell carcinoma, MESO: mesothelioma, and STAD: stomach adenocarcinoma)

Fig. 11  Currently available drugs that target COL1A1, COL5A1, and ITGA4. Drugs (shown with blue squares) listed in DrugBank and Drug-gene 
interaction database that target COL1A1, COL5A1, or ITGA4 (shown with orange circles). Among the ITGA4 targeting drugs, the action of abrilumab, 
and vedolizumab, which are shown in light blue, are specific to integrin α4β7 rather than integrin α4β1. Natalizumab, firategrast, and BIO-1211 
target integrin α4
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potentiate the poor prognostic effect of CAFs specifically 
in gastric cancer. To the best of our knowledge, this is the 
first time the ITGA4, EMILIN1, and TSPAN9 are put forth 
as poor prognostic signature genes for CAF infiltration in 
gastric cancer.

Recently, Liu et  al. suggested TGFB2, VEGFB, 
COL10A1, AREG, and EFNA5; and  Grunberg et  al. 
suggested THBS1, THBS2, and INHBA as poor 
prognostic signatures for CAF infiltration in gastric 
cancer [8, 32]. But the z-score and hazard ratio for  the 
dual COL1A1 and COL5A1 gene signature we identified 
was higher compared to both signatures (Table  4, 
Additional file  1: Fig. S8). The hazard ratio of CAF 
infiltration in COL1A1, COL5A1, ITGA4, EMILIN1, and 
TSPAN9 signature was even higher (Table 4), presenting 
a 36.8 times higher risk of death in gastric tumors with 
high CAF infiltration. One possible advantage of THBS1, 
THBS2, and INHBA signature maybe its predictive ability 
in liquid biopsies since the signature genes are secreted 
through extracellular vesicles [32]. Further studies are 
needed to assess and compare the predictive potential of 
all these signatures in different biopsy specimens.

The delineation of ITGA4 as a poor prognostic 
factor was not surprising since increased expression 
of integrin α4β1 is associated with tumor progression 
and ECM components secreted by CAFs bind integrins 
to activate pro-tumorigenic pathways [41, 79, 80]. 
However, the poor prognostic effect of EMILIN11 and 
TSPAN9 was surprising since EMILIN-1 is regarded 
as a tumor suppressor which acts synergistically with 
TSPAN9. Knockout of EMILIN11 or suppression of 
EMILIN-1 - integrin α4β1 interaction was associated with 
decreased expression of the tumor suppressor PTEN, and 
increased activity of PI3K/Akt and ERK1/2 pathways, 
leading to hyperproliferation of dermal fibroblasts 
and keratinocytes, increased skin carcinogenesis and 
lymph node metastasis [50, 53]. Knocking out EMILIN1 
or transgenic expression of an EMILIN1 mutant 
with impaired binding to integrin α4β1 increased the 
susceptibility of mice to develop colon cancer [81]. 
Based on these findings EMILIN1 was proposed as a 
tumor suppressor. However, EMILIN1 overexpression 
was detected in serous ovarian carcinoma, soft tissue 
osteosarcoma, and low-grade glioma (LGG) which are 
malignant tumors with high recurrence rates [54, 55, 82]. 
This suggests a tissue-dependent anti-tumorigenic or 
pro-tumorigenic role for EMILIN-1.

Recently, EMILIN-1 was suggested to increase TSPAN9 
expression in gastric cancer cell lines and form a complex 
with TSPAN9 to synergistically inhibit FAK/Ras/Erk 
pathway and suppress invasion and migration. Since 
overexpression of only EMILIN1 did not induce a similar 

anti-tumor response in gastric cancer cell lines, it was 
suggested that the anti-tumor effect of EMILIN-1 may be 
dependent on TSPAN9 [56]. Therefore, we tested whether 
the addition of TSPAN9 to the CO1A1, COL5A1, ITGA4, 
and EMILIN1 Cox model can decrease the poor prognostic 
impact of CAF infiltration in gastric cancer. Unexpectedly, 
the hazard ratio and risk score for the CAF infiltration 
increased further in stomach adenocarcinoma but 
remained zero in adrenocortical carcinoma, kidney renal 
papillary cell carcinoma, and mesothelioma (Table 4).

Although some studies suggest an anti-cancer 
role for TSPAN9  [57, 58], high TSPAN9 expression 
was associated with resistance to 5-fluorouracil via 
suppressing autophagy in  gastric cancer cell lines  [83]. 
Expression of TSPAN9 was significantly lower in gastric 
cancer tissue compared to adjacent normal gastric tissue 
in a cohort of 105 gastric cancer samples. However, the 
same cohort reported high TSPAN9 expression as a poor 
prognostic factor for survival [84]. Therefore, whether 
EMILIN1 and TSPAN9 exert an anti-tumor effect or pro-
tumorigenic effect in gastric cancer is not clear yet.

Our investigation of TCGA stomach adenocarcinoma 
data does not suggest either a poor or a good prognostic 
role for EMILIN1 or TSPAN9 per se (Additional file  2: 
Fig. S8B-C). Despite that, the EMILIN1 and TSPAN9 
displayed a stage-dependent increase in expression 
(Fig.  8f ), and their hazard ratios increased by stage in 
parallel to the stage-dependent increase in the hazard 
ratio of CAFs (Additional file  2: Fig. S8E-F). Moreover, 
the stepwise addition of these two genes as covariates 
to the CO1A1, COL5A1, and ITGA4 multivariate Cox 
model tremendously increased the hazard ratio for 
the poor prognostic impact of CAF infiltration, which 
suggested a stage and CAF dependent role for EMILIN1 
and TSPAN9 in gastric cancer (Table  4). This may 
explain why these two genes display anti-tumor effects 
in monoculture gastric cancer cell lines but display poor 
prognostic effects in the gastric cancer patient cohort 
by Feng et al. [84] and TCGA stomach adenocarcinoma 
cohort we analyzed in this study.

It may be speculated that the ECM remodeling 
enzymes secreted from CAFs may cleave EMILIN-1 and 
prevent its anti-tumor action together with TSPAN9 
despite their high expression in the tumor tissue. 
Accordingly, proteolytic cleavage of EMILIN-1 by MMPs 
or neutrophil elastase was suggested as a mechanism 
for pro-tumorigenic effect in some tumors with high 
EMILIN1 expression [48, 85, 86]. For ECM proteins, it is 
also not unusual to serve different functions in cleaved 
forms vs. multimeric forms [87]. A similar mechanism 
may explain the context-dependent role of EMILIN-1 
and TSPAN9 in gastric cancer. Although there is no 
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evidence in the literature yet for multimerization of 
EMILIN-1, this may also be a possible mechanism for 
its context-dependent action, since our analysis pointed 
out “protein-crosslinking” as an enriched biological 
process in gastric cancer. Elucidation of these molecular 
and cellular mechanisms may present EMILIN-1 and 
TSPAN9 as new therapeutic targets in gastric cancer. 
This will be addressed in our future studies.

To build the poor prognostic gene signature for 
CAF infiltration, we analyzed the TCGA stomach 
adenocarcinoma data in TIMER 2.0. TIMER 2.0 
implements four different algorithms, namely EPIC, 
MCP-Counter (Microenvironment Cell Populations-
counter), Xcell, and TIDE (Tumor Immune Dysfunction 
and Exclusion) to predict the relative proportions of 
different cell populations in tumor samples [88–91]. 
All these algorithms device reference gene expression 
profiles for each cell type, established from the RNA-seq 
profiles of circulating immune cells and non-cancerous 
cells that infiltrate the tumors. One limitation to the 
study may be that only the TIDE algorithm predicted a 
poor prognostic impact for CAF infiltration in COL1A1, 
COL5A1, ITGA4, EMILIN1, and TSPAN9 multivariate 
Cox model in gastric cancer. One reason may be that the 
reference gene expression profiles for CAFs in all four 
algorithms are different, which leads to differences in 
the allocation of samples to high vs. low CAF infiltration 
groups. Dissecting these differences in detail may 
improve the power of these algorithms to predict the 
abundance of CAFs in tumor samples. Moreover, mostly 
melanoma samples are used to establish reference gene 
expression profiles for tumor-infiltrating cells. These 
reference gene expression profiles may not exactly reflect 
the gene expression pattern for CAFs in gastric cancer 
or other cancers. Besides intertumoral heterogeneity, 
intra-tumoral heterogeneity in CAFs further complicates 
the picture [7]. Building tumor and subclone-specific 
reference gene expression profiles for CAFs may 
better illuminate the prognostic role of CAFs and their 
interactor genes in cancer. Such an approach may also 
reveal new molecular targets to prevent CAF infiltration 
in cancer.

Among the signature genes we identified in this study, 
targeting the COL1A1, COL5A1 and ITGA4 may have 
a therapeutic potential in gastric tumors with high CAF 
infiltration. Our search in drug databases brings out 
collagenase clostridium histolyticum, halofuginone, 
and ocriplasmin as agents that act on COL1A1 and 
COL5A1. Their anti-cancer action should be validated 
first in gastric cancer cell models and in  vivo studies. 
Among these three, halofuginone seems to be the closest 
candidate for use as an anti-cancer agent in gastric 
cancer since it showed promising anti-cancer effects in 

other cancers. It may also prevent the formation of CAFs 
[68, 69]. Moreover, collagenase clostridium histolyticum 
and ocriplasmin carry risks, since cleavage of collagens 
may lead to a release of several growth factors that 
induce tumor progression. Additionally, their systemic 
use can be problematic in cancer due to the risk of organ 
and vascular toxicity [63]. Active targeting of the gastric 
tumors via nanocarriers or local administration may 
allow their use in gastric cancer. But still, there may be 
destructive effects on healthy gastric tissue limiting 
the doses that could be used in patients safely. All these 
points should be addressed in future studies.

Integrin α4β1 also has potential as a therapeutic 
target in cancer since it has a key role in metastasis, 
chemoresistance, angiogenesis, and lymphangiogenesis 
[41]. Despite that, agents targeting integrin α4β1 have not 
entered the clinical trials for cancer. The concerns about 
the risk of cancer development with targeting integrin 
α4β1 may be the reason since this action inhibits the 
migration of lymphocytes. However, the comparative 
analysis did not reveal an increased risk of cancer with 
natalizumab [92]. Uncovering the signaling mechanisms 
by which integrin α4β1 contributes to cancer may lead 
to the development of new strategies for targeting 
integrin α4β1 without raising the concerns about cancer 
development.

Conclusion
In this study, we identified the six key CAF markers 
namely COL1A1, COL1A2, COL3A1, COL5A1, FN1, and 
SPARC​ in gastric cancer that can be used as predictors 
of CAF infiltration and prognostic biomarkers in gastric 
cancer. With further analysis, we revealed COL1A1, 
COL5A1, ITGA4, EMILIN1, and TSPAN9 as a poor 
prognostic gene signature for CAF infiltration, with high 
specificity to stomach adenocarcinoma. This signature 
could be translated to the clinic with further studies as a 
predictive tool for poor prognosis. Testing the candidate 
drugs, we identified in this study, with further in vitro 
and in vivo studies may present them as potential drugs 
for the treatment of gastric cancer. More importantly, 
investigating the mechanisms by which the signature genes 
strengthen the poor prognostic impact of CAFs may put 
forth new molecular targets for the effective treatment of 
gastric cancer. These points will be addressed in our future 
studies.
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Parameters of the multivariate Cox proportional regression model for CAF 
with integrin α4β1 subunits. Table S10. Parameters of the multivariate Cox 
Proportional regression model for CAF with ITGA4 partners as covariates.

Additional file 2: Figure S1. The protein-protein interaction network of 
the upregulated genes in gastric cancer. Disconnected nodes are hidden 
in the network. Figure S2. Correlation of the poor prognostic genes with 
cancer-associated fibroblast infiltration in gastric cancer. Correlation of 
the THBS1, THBS2, INHBA, CXCL12, TGFB, VEGFB, COL10A1, AREG, or EFNA5 
expression with the cancer-associated fibroblast infiltration in stomach 
adenocarcinoma (STAD). TIDE algorithm was used to analyze TCGA STAD 

data in TIMER2.0. Figure S3. KM-Survival Curve for COL1A2 in stomach 
adenocarcinoma. Analysis was performed on UALCAN using TCGA data. 
Figure S4. The differential expression of six CAF markers in diffuse vs. 
intestinal subtypes of gastric cancer. The differential expression of A 
COL1A1, B COL1A2, C COL3A1, D COL5A1, E FN1, and F SPARC​ in diffuse 
vs. intestinal subtypes of gastric cancer and normal gastric tissues from 
corresponding patients (Abbreviated as “Normal tissue-Dif” for patients 
with diffuse gastric cancer and “Normal tissue-Int” for patients with 
intestinal gastric cancer) in the Asian Cancer Research Group gastric cancer 
dataset (GSE66229). Analysis was performed on GEO2R. Figure S5. The 
hazard ratio for CAF infiltration with respect to tumor stage in stomach 
adenocarcinoma. Bars indicate a 95% confidence interval for hazard ratios. 
TIDE algorithm was used to allocate TCGA stomach adenocarcinoma 
samples to high vs. low CAF infiltration groups in TIMER2.0. (* p < 0.05, 
*** p < 0.001). Figure S6. The interacting partners of ITGA4. Network 
representation for interacting partners of ITGA4 with respect to A protein 
types and B biological processes involved. To visualize the interacting 
partners of ITGA4, inBio Discover™ by Intomics A/S was used (https://​
inbio-​disco​ver.​com/) (Intomics A/S has not endorsed the results of 
the published article). Figure S7. The differential expression of cancer-
associated fibroblast poor prognostic signature genes in other cancers. 
Differential expression of A-C COL1A1, D-F COL5A1, G-I ITGA4, K-M EMILIN1, 
and N-P TSPAN9 with respect to tumor stage in adrenocortical carcinoma 
(ACC), kidney renal papillary cell carcinoma (KIRP), and mesothelioma 
(MESO). TCGA data was analyzed on UALCAN (unpaired t-test, * p < 0.05, ** 
p < 0.01, *** p < 0.001). Figure S8. The prognostic impact of ITGA4, EMILIN1, 
and TSPAN9 in gastric cancer. Kaplan-Meier survival curves for A ITGA4, B 
EMILIN1, and C TSPAN9 in gastric cancer. The increase in the hazard ratio 
in the Cox proportional regression model for D ITGA4, E EMILIN1, and F 
TSPAN9 by stage in gastric cancer. Bars indicate the 95% confidence interval 
for hazard ratios. TCGA stomach adenocarcinoma samples were analyzed in 
TIMER2.0. (* p < 0.05, ** p < 0.01, *** p < 0.001).
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