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Abstract 

Cathepsin L is an important cysteine protease, but its function in T. spiralis remains unclear. The aim of this research 
was to explore the biological characteristics of T. spiralis cathepsin L (TsCatL) and its role in T. spiralis-host interac-
tions. Bioinformatic analysis revealed the presence of the cysteine protease active site residues Gln, Cys, His and Asn 
in mature TsCatL, as well as specific motifs of cathepsin L similar to ERFNIN and GYLND in the prepeptide of TsCatL. 
Molecular docking of mature TsCatL and E64 revealed hydrophobic effects and hydrogen bonding interactions. Two 
domains of TsCatL (TsCatL2) were cloned and expressed, and recombinant TsCatL2 (rTsCatL2) was autocatalytically 
cleaved under acidic conditions to form mature TsCatL. TsCatL was transcribed and expressed in larvae and adults and 
located in the stichosome, gut and embryo. Enzyme kinetic tests showed that rTsCatL2 degraded the substrate Z-Phe-
Arg-AMC under acidic conditions, which was inhibited by E64 and PMSF and enhanced by EDTA, L-cysteine and DTT. 
The kinetic parameters of rTsCatL2 were a Km value of 48.82 μM and Vmax of 374.4 nM/min at pH 4.5, 37 °C and 5 mM 
DTT. In addition, it was shown that rTsCatL2 degraded haemoglobin, serum albumin, immunoglobulins (mouse IgG, 
human IgG and IgM) and extracellular matrix components (fibronectin, collagen I and laminin). The proteolytic activity 
of rTsCatL2 was host specific and significantly inhibited by E64. rTsCatL2 possesses the natural activity of a sulfhydryl-
containing cysteine protease, and TsCatL is an important digestive enzyme that seems to be important for the nutri-
ent acquisition, immune evasion and invasion of Trichinella in the host.
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Introduction
Trichinellosis, a worldwide foodborne zoonotic parasi-
tosis, is caused by the tissue-dwelling nematode Trich-
inella spp. [1]. Human trichinellosis is primarily caused 
by the consumption of undercooked meat containing 
Trichinella spiralis muscle larvae (MLs). Outbreaks of 
human trichinellosis have been discovered in 55 coun-
tries worldwide [2]. A total of 65  818 cases of human 
trichinellosis were reported from 1986 to 2009 [3]. Trich-
inellosis is defined as an emerging or a re-emerging 

zoonotic parasitic disease, specifically in developing 
countries [4, 5]. When meat contaminated with T. spiralis 
MLs is ingested, the MLs are released from the capsule 
by the action of digestive juices. The larvae are acti-
vated to the intestinal infective larvae (IILs) form when 
peristalsis of the gastrointestinal tract reaches the small 
intestine, where they then invade the intestinal mucosa 
and develop into adult worms (AWs) within 48  h. Fer-
tilized females produce newborn larvae (NBLs), which 
invade small veins or lymphatic vessels to reach all parts 
of the body, and larvae that reach the skeletal muscle 
continue to develop into MLs. The process of develop-
ment and survival of the worms involves complex host-
parasite interactions [6, 7]. Proteases of T. spiralis are 
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indispensable in establishing parasitism and evading the 
host’s immune killing [8, 9]. Serine protease and aspar-
tate protease promote the invasion of T. spiralis into the 
intestinal epithelium [10, 11]. Trichinella serine protease 
inhibitor can trigger anti-inflammatory mechanisms and 
regulate alternative activation of macrophages [12].

Cathepsin L, an important cysteine protease, is crucial 
for the parasite [13, 14]. Cathepsin L can participate in 
nutrient uptake by catabolizing host proteins into absorb-
able peptides [15], facilitating parasite migration within 
the host by cleaving host proteins such as fibronectin, 
laminin and natural collagen [16, 17], inactivating host 
immune defences by cleaving immunoglobulins, and 
inhibiting Th1-cell immune responses in infected experi-
mental animals, allowing the parasites to evade host 
immune responses [18]. Cathepsin L has been considered 
an important target for the prevention of parasitic infec-
tions and has been extensively studied in Schistosoma 
hepatica, Schistosoma mansoni, and Taenia solium, but 
limited studies have been conducted on T. spiralis cath-
epsin L [14, 19]. A previous study indicated that T. spi-
ralis cathepsin L promotes larval invasion of hosts and 
is associated with worm development and female fertil-
ity [20]. Clarifying the function of cathepsin L is crucial 
for comprehending the biology of T. spiralis and will also 
provide a basis for the development of antitrichinellosis 
drugs and vaccines.

Previous research revealed an unstudied cysteine pro-
tease named T. spiralis cathepsin L (TsCatL) (GenBank 
no. KRY31298.1) in T. spiralis MLs and IILs by LC–MS/
MS [21]. Since the function of this protein has not been 
investigated, in our study, we aimed to express TsCatL 
in  vitro, characterize the biochemical properties of this 
protein, and explore the T. spiralis-host interactions.

Materials and methods
Parasites and animals
T. spiralis (ISS534) were passaged and maintained in 
BALB/c mice. SPF BALB/c mice were purchased from 
the Experimental Animal Center of Henan Province.

Worm collection and protein preparation
MLs were collected from the muscle of mice infected 
with T. spiralis for approximately 42 days by the artificial 
digestion method [22]. The procedure was as follows: 1 g 
of mouse tissue corresponded to 30 mL of manual diges-
tion (1% pepsin, 0.7% hydrochloric acid, 0.9% NaCl), 
which was shaken for 3~5  h at 43  °C. Thirty mice were 
gavaged with 3000, 1000 and 500 MLs in 3 groups and 
killed at 6 h, 48 h and 6 days post-infection to collect IILs, 

2-d AWs and 6-d AWs from the intestine, respectively 
[23, 24]. The detailed collection procedure was to dis-
sect the small intestine longitudinally and then cut it into 
small segments of 2–3 cm and incubate those segments 
in saline at 37  °C for 1–2 h. The worms in the intestine 
would voluntarily burrow out of the small intestine. NBLs 
were collected by incubating 6-d AWs in RPMI-1640 for 
24  h. The worms were repeatedly freeze–thawed three 
times in liquid nitrogen-ice water, ground for 1 min with 
a high-speed grinder, sonicated for 10 min, and then cen-
trifuged at 12 000 × g for 30 min at 4 °C. The supernatant 
was the natural crude protein [25].

TsCatL sequence analysis
Based on the amino acid sequence of TsCatL, the cDNA 
sequence of this protein was found in the Trichinella 
genome sequence. The physicochemical properties of 
TsCatL were analysed using the ProtParam tool [26]. The 
structural domains of TsCatL were predicted utilizing 
SMART [27, 28]. The amino acid sequences of TsCatL 
structural domains were compared to the sequences 
of cathepsin L from other organisms through Clustal 
OmegaX [29]. A sequence logo was used to display the 
consensus sequences of cathepsin Ls by the Weblog 3 
tool [30, 31]. The evolutionary relationships of TsCatL 
were assessed by constructing a phylogenetic tree based 
on the neighbour-joining method using MEGA 7 [32]. 
The GenBank accession numbers of cathepsin L were 
as follows: Trichinella spiralis (KRY31298.1), Trich-
inella patagoniensis (KRY14446.1), Trichinella murrelli 
(KRX43986.1), Trichinella pseudospiralis (KRX91582.1), 
Trichinella nativa (KRZ61475.1), Trichinella nelsoni 
(KRX23179.1), Trichinella T8 (KRZ88876.1), Trichinella 
britovi (KRY58680.1), Trichinella T6 (KRX80302.1), 
Trichinella T9 (KRX65498.1), Trichinella zimbabwen-
sis (KRZ06301.1), Haemonchus contortus (AAF86584.1), 
Caenorhabditis elegans (CAB07275.1), Trichinella pap-
uae (KRZ70556.1), Fasciola hepatica (AAB41670.2, 
AAC47721.1, AAF76330.1), Fasciola gigantica 
(AAD23996.1), Taenia solium (AAS00027.1), Echino-
coccus multilocularis (BAF02517.1), Taenia pisiformis 
(AEG19548.1), Mus musculus (AAD32136), and Homo 
sapiens (AAH12612). The tree was rooted by Homo sapi-
ens and Mus musculus.

Molecular modelling and evaluation
The online software SWISS-MODEL was applied to 
construct 3D molecular models of TsCatL and mature 
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TsCatL, and the images were processed using the tertiary 
structure visualization software VMD. The constructed 
3D molecular models were assessed and validated by 
applying the molecular structure model evaluation soft-
ware Verify 3D, ERRAT, PROCHECK, PROVE and 
WHATCHECK integrated with SAVES V 6.0 [33–38].

Molecular docking
Semiflexible docking with mature TsCatL to the small 
molecule E64 was performed using AutoDock Vina 
software [39]. The docking result of E64 in the active 
pocket of mature TsCatL protease was demonstrated in 
two dimensions by protein–ligand interaction profiler 
software [40] and in three dimensions using PyMOL.

Cloning of the TsCatL2 gene
The cDNA of T. spiralis AWs was selected as the tem-
plate for PCR amplification of the two TsCatL domains 
(TsCatL2). Specific primers for TsCatL2, including 
BamH I and Hind III sequences (underlined), were 
designed with Primer 5 (5′CGC GGA TCC​ TGG ATT 
ATT TAC AAA GAA ATA TAC GG-3′ and 5′-CCC 
AAG CTT​ TCA TAT AAT CGG ATA GCT GGC 
GAA T-3′). The recombinant pMAL-c2x/TsCatL2 
was transformed into Rosetta-gami B (DE3) cells [41]. 
The expression of rTsCatL2 was induced at 25  °C and 
1.0 mM IPTG for 6 h. The rTsCatL2 protein was puri-
fied using amylose resin and detected by SDS–PAGE 
[42].

Production of a mouse polyclonal antibody
Ten BALB/c mice were immunized by subcutaneous 
injection of 20  μg of rTsCatL2 mixed with MONTA-
NIDE™ ISA 61 VG 1:1 (v/v), with one booster immu-
nization three weeks later [43, 44]. After another 
two-week interval, polyclonal antibodies against 
rTsCatL2 were obtained by collecting blood from mice.

SDS–PAGE and western blotting
The natural crude proteins from T. spiralis MLs, IILs, 
AWs, NBLs and rTsCatL2 were separated by SDS–
PAGE [45]. Then, they were transferred onto nitro-
cellulose membranes and blocked with 5% skim milk. 
The strips of membrane containing rTsCatL2 were 
incubated with infection serum, anti-rTsCatL2 mouse 
serum, or normal serum at a 1:100 dilution. After 
incubation with HRP-conjugated goat anti-mouse IgG 
(1:5000 dilution; Sangon Biotech, China), the coloura-
tion was processed with DAB (Solarbio, China) [24]. 
The strips containing T. spiralis different stage proteins 

were probed with the anti-rTsCatL2 antibody and pro-
cessed with a chemiluminescent kit (Meilunbio, China) 
[11].

Quantitative real‑time PCR
The cDNAs of MLs, IILs, AWs, and NBLs were pre-
pared according to previous references [9, 46]. Specific 
primers were designed by Primer 5 (5′-TAC​GGA​AAA​
ACG​TAT​GCA​AATG-3′; 5′-CAA​ATT​CTC​CAT​GAG​
TCA​AAT​CGG​-3′). GAPDH (GenBank: AF452239) was 
selected as the internal reference gene, as previously 
reported [23, 42]. The specific primers for GAPDH 
were as follows: 5′-AG ATG​CTC​CTATG TTG​GTT​
ATGGG-3′; 5′-GTC​TTT​TGG​GTT​GCC​GTT​GTAG-3′. 
qPCR was performed using SYBR Green qPCR Master 
Mix (TargetMol, China) on an Applied Biosystems 7500 
qPCR machine. Subsequently, the relative transcript 
levels of TsCatL were analysed using the comparative 
Ct (2−ΔΔCt) method [46].

Immunolocalization
A portion of intact parasites was fixed in prechilled ace-
tone to detect whether TsCatL was expressed on the sur-
face of Trichinella. In addition, another portion of worms 
was fixed in 4% formaldehyde and used to make paraf-
fin sections to observe the localization of TsCatL in the 
worm tissue. All the samples were blocked with 5% goat 
serum, incubated at 4  °C overnight with anti-rTsCatL2 
serum diluted at 1:100, and then incubated with FITC-
conjugated goat anti-mouse IgG (1:100; Proteintech, 
USA). The paraffin sections were dyed with DAPI for 
5  min and observed under a fluorescence microscope 
[47]. Preimmune serum and infection serum served as 
the negative control and positive control, respectively.

Enzyme activity assay
The substrate Z-Phe-Arg-AMC (Sangon, Shanghai) was 
used to test the enzymatic activity of rTsCatL2 [48]. 
First, 2 μg/mL rTsCatL2 and 5 μM substrate were prein-
cubated in 50 μL of assay buffer for 30 min, followed by 
mixing for 30 min under different conditions, and finally 
reaction termination solution (pH 4.5 HAc-NaAc buffer 
containing 0.1 M sodium chloroacetate) was added. The 
fluorescence intensity was analysed by using spectropho-
tofluorometry (Synergy H1, BioTek, USA) at an excita-
tion wavelength of 355 nm and an emission wavelength 
of 460  nm [48]. The effect of temperature on rTsCatL2 
activity was assayed at 35 ℃, 40 ℃, 45 ℃, 50 ℃, 55 ℃, 
60  ℃, 65  ℃ and 70  ℃. The optimal pH for rTsCatL2 
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activity was assayed using assay buffers with different pH 
values: 100  mM Gly-HCl buffer (pH 2.0–3.0), 100  mM 
HAc-NaAc (pH 3.5–5.5), 100  mM Na2HPO4-NaH2PO4 
(pH 6.0–7.5) and 100 mM Tris–HCl (pH 8.0). The effect 
of metal ions on the relative enzyme activity of rTsCatL2 
was assessed by adding different concentrations (0.1, 5, 
50 and 100  mM) of Mn2+, Cu2+, Mg2+, Ni2+ and Zn2+ 
to the assay buffer. Inhibitors (10 μM E64, 1 mM PMSF, 
1  mM AEBSF, 1  mM 1, 10-phenanthroline and 1  mM 
pepstatin A) and agonists (1  mM EDTA, 1  mM L-Cys 
and 1 mM DTT) were preincubated with rTsCatL2, and 
the effect on rTsCatL2 enzyme activity was assessed. The 
kinetic parameters of rTsCatL2 for Z-Phe-Arg-AMC 
were also determined.

Degradation of different proteins by rTsCatL2
The natural substrate proteins tested include haemoglo-
bin (Hb), serum albumin, immunoglobulin (Ig), fibronec-
tin, collagen I and laminin. Haemoglobin (Hb) from mice, 
humans, swines, bovines and chickens was acquired from 
fresh erythrocytes [49]. Bovine serum albumin (BSA), 
human serum albumin (HSA), human IgG, human IgM 
and mouse IgG, fibronectin, collagen I and laminin were 
purchased from Sigma. First, 20 μg of substrate proteins 
were incubated with 0.5  μg of rTsCatL2 in a pH 3–6 
buffer solution overnight, and then hydrolysates were 
detected by SDS–PAGE. Each protein was also incubated 
with 2  μg of MBP at 37  °C overnight as a control. The 
inhibitor (10  μM E64) was incubated with rTsCatL2 for 
30 min and then incubated with each protein overnight 
to detect protein degradation.

Statistical analysis
The data were statistically analysed by SPSS 21.0 and are 
expressed as the arithmetic mean ± standard deviation. 
Differences in TsCatL2 mRNA transcription were ana-
lysed by one-way ANOVA.

Results
Bioinformatic analysis of TsCatL
TsCatL consisted of 1356  bp and encoded 404 amino 
acid residues, with an MW of 45.59  kDa and an iso-
electric point of 8.27. SMART analysis showed that the 
TsCatL protein contained a transmembrane helix (amino 
acids 20–39) at the N-terminus, an inhibitor_I29 domain 
(amino acids 97–157) and a mature Pept_C1 domain 
(amino acids 188–403). The inhibitor_I29 domain is a 
prepeptide, the Pept_C1 domain is a mature peptide, 
and the two structural domains of T. spiralis cathepsin L 
were named TsCatL2 in this study (Figure  1). Sequence 
alignment showed that the amino acid sequence identity 
of TsCatL with other cathepsin L proteins was higher 
than 40%. TsCatL was predicted to be a typical cathepsin 
L-like cysteine peptidase with conserved cysteine pro-
tease active site residues (Gln, Cys, His and Asn), sub-
strate-binding pocket residues (Leu, Met, Ala, Leu, Gly 
and Phe) and a cathepsin L-specific motif (ERFNIN-like 
ERFNVN, GYLND and GCN/SGG) (Figure 2). A phylo-
genetic tree showed that the Trichinella genus has two 
clades, and TsCatL has the closest evolutionary relation-
ship with T. native, T8 and T. murrelli (Figure 3).

Molecular modelling and evaluation
The 3D structures of the inactive zymogen of TsCatL2 
and mature TsCatL were predicted using the crystal 
structure of human cathepsin L (PDB ID: 6JD0) as the 
template by SWISS-MODEL. The TsCatL2 and mature 
TsCatL 3D models were further tested by SAVES v5.0. 
In the 3D-1D profile, 85.06% of TsCatL2 residues and 
90% of mature TsCatL residues had a score of ≥ 0.2. The 
overall quality factors of TsCatL2 and mature TsCatL 
were 91.639 and 94.203, respectively, according to the 
ERRAT results. The Ramachandran plot revealed that all 
TsCatL2 and mature TsCatL residues were in the most 
favoured or disallowed regions (Additional files 1 and 

Figure 1  Domain organization of TsCatL. 
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2). Both models also passed the WHATCHECK, PROVE 
and PROCHECK assessments. In the TsCatL2 model, the 
propeptide (green colour) blocks the active sites and sub-
strate-binding pocket of the protease to prevent substrate 
exposure (Figures  4A, B). In the mature TsCatL model, 
the left domain contains three α-helix motifs, and the 
right domain primarily consists of β-folded sheets. The 
cleft containing the active sites is localized at the junction 
of the two domains (Figures 4C, D).

Molecular docking between mature TsCatL and E64
AutoDock Vina was used to calculate the affinity 
between mature TsCatL and E64 based on the efficient 
optimization algorithm of the scoring function and 
select 9 binding conformations. According to the bind-
ing affinity and binding site analysis, the lowest bind-
ing free energy (-5.4  kcal/mol) model was selected. In 
the mature TsCatL-E64 complex, E64 was located in a 
pocket formed by 7 amino acid residues (Cys, Gly, Leu, 

Figure 2  Multiple alignment and sequence logo identification of cathepsin L. Identical and similar residues are labelled with blue shading. 
Putative active site residues (Gln [Q], Cys [C], His [H] and Asn [N]) are labelled with red triangles. Substrate-binding pocket residues (Leu [L], Met [M], 
Ala [A], Leu [L], Gly [G] and Phe [F]) are labelled with black arrows, and the ERFNIN, GYLND and GCN/SGG motifs are labelled with yellow boxes.
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Ala, Leu, Asp and Phe) (Figure  5A). Using the online 
protein–ligand interaction profiler software to ana-
lyse the docking results, it was found that the mature 
TsCatL-E64 complex formed hydrophobic interac-
tions with Leu253 (~3.72  Å) and Phe302 (~3.68  Å) 
and hydrogen bonding with Gly159 (~3.33 Å), Leu253 
(~2.31  Å), and Asp254 (~2.21  Å) (Figure  5B). PyMOL 
analysis revealed hydrogen bonding interactions with 
Gly159 (~3.3 Å) and Leu253 (~2.3 Å) (Figures 5C, D).

Expression of rTsCatL2 and Western blot analysis
The 927-bp CDS of TsCatL2 was amplified, which 
encodes 308 amino acids from 97 to 404, including the 
inhibitor_I29 domain and Pept_C1 domain. The SDS–
PAGE results showed that the MW of rTsCatL2 was 
71  kDa (containing the 43  kDa MBP tag) after purifi-
cation (Figure  6A). The Western blot results showed 
that rTsCatL2 was identified by infection sera and anti-
rTsCatL2 sera but not by sera of normal mice (Figure 6B). 
After incubation at pH 5.0 for 30 min, rTsCatL2 formed 
mature TsCatL with an approximate molecular weight of 

27 kDa by autocatalytic cleavage (Figure 6C). Using anti-
rTsCatL2 serum, protein bands of 60 and 56  kDa were 
identified in T. spiralis MLs, IILs and 2-d AWs, but four 
protein bands (approximately 85, 49, 37, and 27  kDa) 
were identified in NBLs (Figures  7A, B). qPCR analysis 
indicated that the mRNA transcription of TsCatL was 
highest in IILs and lowest in NBLs (F = 126.483, P < 0.05) 
(Figure 7C).

Immunolocalization
Fluorescence detection of the whole worm indicated that 
intense green staining was marked on the cuticles of IILs, 
2-d AWs and embryos of 6-d AWs (Figure  8). Fluores-
cence detection of paraffin sections showed that TsCatL 
was primarily located in the stichosome and gut of MLs 
and IILs, as well as embryos of adult worms (Figure 9).

rTsCatL2 enzyme activity
The assay of rTsCatL2 enzyme activity was performed 
using the fluorescent substrate Z-Phe-Arg-AMC (Fig-
ure  10). The optimum temperature of rTsCatL2 activity 

Figure 3  Phylogenetic analysis of cathepsin L family proteins. 



Page 7 of 19Liu et al. Veterinary Research           (2022) 53:48 	

was 55  °C. rTsCatL2 exhibited enzymatic activity from 
pH 3 to 6.5, and the highest activity was pH 4.5 at 55 °C. 
Metal ions also affect the enzymatic activity of rTsCatL2. 
The activity was inhibited by Cu2+, Ni2+, and Zn2+ at 
concentrations of 0.1 mM, 5 mM, 50 mM and 100 mM 
and Mn2+ at concentrations of 5  mM, 50  mM and 
100 mM. Conversely, the enzymatic activity of rTsCatL2 
was enhanced by Mg2+ in a dose-dependent manner. 
In addition, the activity of rTsCatL2 was inhibited by 
E64 and PMSF and enhanced by EDTA, L-cysteine and 
DTT. However, pepstatin A had no effect on rTsCatL2 
hydrolysis activity. Furthermore, the maximum hydro-
lytic velocity (Vmax) of rTsCatL2 was 374.4  nM/min, 
with a Michaelis constant (km) value of 48.82 μM at pH 
4.5, 37  °C and 5  mM DTT. The Vmax of rTsCatL2 was 
572.9  nM/min, with a km value of 61.96  μM at pH 4.5, 
55 °C and 5 mM DTT.

Cleavage of different proteins by rTsCatL2
The enzymatic catalysis of rTsCatL2 against several 
natural substrate proteins, including haemoglobin 
(Hb), serum albumin, immunoglobulin (Ig), fibronec-
tin, collagen I and laminin, was assayed by SDS–PAGE. 
The results indicated that human, mouse, swine and 
bovine Hb were degraded by rTsCatL2 at pH 3.0–5.0, 
but degradation was not observed for chicken Hb (Fig-
ure  11). rTsCatL2 showed effective hydrolytic activ-
ity against BSA and HSA only at pH 4.0 (Figure  12). 
Furthermore, human IgG and mouse IgG were hydro-
lysed by rTsCatL2 at pH 5.0, with preferential cleavage 
of the heavy chain. Degradation of human IgM was 
detected at pH 3.0–5.0 (Figure  13). Figure  14 shows 
that rTsCatL2 could degrade fibronectin and col-
lagen I at pH 3.0–6.0, with degradation of laminin at 
pH 3.0–5.0. Moreover, the results showed that MBP 

Figure 4  Predicted three-dimensional structures of TsCatL2 and mature TsCatL. The propeptide (green colour) blocks the active sites and 
substrate-binding pocket of the protease to prevent substrate exposure. The active sites of TsCatL are marked in red, and the substrate binding 
pocket is marked in blue.
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had no degradation effect on any of the proteins (Fig-
ures 11F, 12C, 13D, 14D, E). The hydrolysis of natural 
proteins by rTsCatL2 was completely inhibited by the 
addition of E64 (Figure 15).

Discussion
Parasite cathepsin L, an important cysteine protease, is 
involved in the degradation of host proteins into absorb-
able nutrients and in the migration, development and 
immune evasion of the parasite in the host [13, 14]. Previ-
ous studies demonstrated that cathepsin L from Haemon-
chus contortus could degrade haemoglobin, fibrinogen, 
collagen, and IgG [50]. Schistosoma mansoni cathep-
sin L is localized in the gastrodermis and reproductive 
organs and is involved in the hydrolysis of Hb and the 
production of eggs [51, 52]. Fasciola hepatica cathepsin 
L was found to cleave IgG and block antibody-depend-
ent cytotoxicity in addition to its primary role in worm 

invasion of tissues and degradation of nutrients [53, 54]. 
In Echinococcus multilocularis, cathepsin L was found to 
degrade IgG, albumin and extracellular matrix molecules 
[55]. A previous study indicated that T. spiralis cathepsin 
L promotes larval invasion, but this recombinant cathep-
sin L lacks natural cathepsin activity and cannot hydro-
lyse host proteins [20]. There is very limited research on 
T. spiralis cathepsin L. Since no active cathepsin L of T. 
spiralis has been previously obtained, its roles remain 
unknown. In this study, we successfully expressed a novel 
cathepsin L and confirmed its biochemical function.

Bioinformatic analysis revealed that the TsCatL protein 
contains a transmembrane helix, inhibitor_I29 domain 
and Pept_C1 domain. TsCatL has highly conserved cath-
epsin L active site residues (Gln, Cys, His and Asn), as 
well as typical ERFNIN, GYLND and GCNGG motifs, 
which are important for its function [56, 57]. In the phy-
logenetic analysis, TsCatL was localized to nematodes, 

Figure 5  Stereo view of the interactions between mature TsCatL and E64. A The result of AutoDock Vina analysis; B two-dimensional display 
of the docking results produced by the protein–ligand interaction profiler. The grey dashed lines represent hydrophobic interactions, and the blue 
solid lines represent hydrogen bonds. C, D Docking results created with PyMOL. TsCatL Leu and Gly residues are further indicated in green stick 
representation, E64 is shown in yellow stick representation, and red dotted lines represent hydrogen bonds.
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Figure 6  Identification of rTsCatL2. A SDS–PAGE. Lane 1: recombinant bacterial pMAL-c2x-TsCatL2 lysate before induction; Lane 2: 
pMAL-c2x-TsCataL2 lysate after 1 mM IPTG induction at 25 °C; Lane 3: purified rTsCatL2 with MBP. B Western blotting analysis of rTsCatL2 
antigenicity. Lane 1: Serum of mice infected with T. spiralis; Lane 2: anti-rTsCatL2 serum; Lane 3: serum of normal mice. C Analysis of autocatalytic 
cleavage of rTsCatL2 at 37 °C for 30 min. Lane 1: pH 7.0; Lane 2: pH 5.0. Mature-TsCatL is indicated with a red arrow.

Figure 7  TsCatL expression and transcription in T. spiralis. A SDS–PAGE of T. spiralis soluble proteins; Lane 1: MLs, Lane 2: IILs, Lane 3: AWs, Lane 
4: NBLs. B Western blotting analysis of TsCatL in crude proteins. Lane 1: MLs, Lane 2: IILs, Lane 3: AWs, Lane 4: NBLs. The proteins were recognized by 
anti-rTsCatL2 serum. C TsCatL mRNA expression levels (*P < 0.001).
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which is consistent with the phylogenetic position of T. 
spiralis [58]. The 3D structures of TsCatL2 showed that 
the propeptide blocks the active sites of the protease, 
while the active sites of mature TsCatL are exposed. 
Molecular docking results of mature TsCatL and E64 
showed hydrophobic effects and hydrogen bonding inter-
actions, which are similar to those of T. spiralis cath-
epsins F and Schistosoma japonicum cathepsins B with 
E64 [59, 60].

Since full-length TsCatL expressed in E. coli has no 
enzymatic activity (results not shown) and the fold-
ing, coiling and disulfide bond formation of cathep-
sin L requires the help of the precursor peptide, the 

two structural domains of TsCatL were expressed in 
Rosetta-gamiB (DE3) cells, and the expressed protein 
was named TsCatL2. qPCR showed that the TsCatL gene 
was transcribed in the MLs, IILs, AWs and NBLs phases 
of T. spiralis, with the IILs phase showing the strong-
est expression and the NBLs phase showing the lowest. 
Western blotting showed that 60 and 56 kDa bands were 
recognized by anti-rTsCatL2 serum in MLs, IILs and 
AWs somatic proteins, but 4 bands were found in NBLs 
somatic proteins. The 60 kDa band likely corresponds to 
an inactive zymogen, and the 56 kDa band likely repre-
sents the mature active peptide. The SDS–PAGE results 

Figure 8  Immunofluorescence detection of TsCatL on the surface of T. spiralis. Intense green staining was detected on the cuticles of 6-h IILs, 
2-d AWs and embryos by anti-rTsCatL2 serum. Preimmune serum and anti-T. spiralis serum were used as negative and positive controls, respectively. 
Scale bars: 100 μm.
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also indicated that rTsCatL2 can autocatalytically cleave 
under acidic conditions to form mature TsCatL. The 
inhibitor_I29 domain of TsCatL is a prepeptide that is 
removed by self-hydrolysis under acidic conditions, and 
the Pept_C1 domain becomes the mature peptide with 
enzymatic activity. This result is consistent with previ-
ous findings that cathepsin L proenzymes can autocata-
lytically cleave under acidic conditions in  vitro [61–63]. 
Cysteine proteases usually exist as preproenzymes that 
can be self-hydrolysed under acidic conditions, remov-
ing the precursor peptide and transforming into an 
active mature enzyme [64]. The Western blot results of 
NBLs were inconsistent with those of other worm stages, 
probably because different cathepsins of T. spiralis are 
expressed as multigene families or are associated with 
posttranslational processing and modification of TsCatL 
[65, 66]. This result is  consistent with other T. spiralis 
cathepsin L and Schistosoma japonicum cathepsin B2 
proteins, which also indicated the presence of cathepsins 
with different molecular weights in natural worms [20, 

60]. The IFA results revealed that TsCatL was located in 
the stichosome, gut and embryo. The gut of the parasite 
is an acidic environment that favours cysteine protease 
achievement of enzymatic hydrolytic activity [67]. In S. 
mansoni, cathepsins L1 and L2 digest haemoglobin in 
the digestive tract, cathepsin L2 is located in the ovovitel-
loduct and uterus, and its function is related to egg pro-
duction [51, 52, 68]. These results suggested that TsCatL 
may be associated with the degradation of proteins into 
absorbable nutrients in the parasite gut and the develop-
ment of the embryo in utero.

The enzymatic activity of rTsCatL2 was analysed by 
degrading the substrate Z-Phe-Arg-AMC under dif-
ferent conditions. The results showed that rTsCatL2 
could cleave the substrate at pH 3.0–6.5, with the opti-
mum pH of 4.5 and the optimal temperature of 55  °C. 
The stability of propeptide-mature enzyme interactions 
depends on electrostatic interactions, which may be 
weakened at low pH conditions, promoting conversion 
to the mature peptide [69]. The ability of rTsCatL2 to 

Figure 9  Immunolocalization of TsCatL by IFA in paraffin sections of T. spiralis MLs, 6-h IILs and 6-d AWs. Worm sections were tested by IFA. 
Using anti-rTsCatL2 sera, fluorescence was detected in the stichosome and gut of MLs and 6-h IILs, in addition to around embryos of female adult 
worms. Preimmune serum and anti-T. spiralis serum were used as negative and positive controls, respectively. The cell nuclei of worms were stained 
blue with DAPI. Scale bars: 50 μm.
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hydrolyse proteins was inhibited by Cu2+, Mn2+, Ni2+, 
and Zn2+ and enhanced by Mg2+. Previous studies have 
shown that the enzyme activities of cysteine protease 
from Spirometra erinaceieuropaei were inhibited by Cu2+ 

and Zn2+ [48]. Nevertheless, further studies are required 
to analyse the influence of metal ions on the enzymatic 
catalysis capacity of cathepsin L. The enzymatic activity 
of rTsCatL2 was significantly inhibited by E64 and PMSF 

Figure 10  Enzymatic characteristics of rTsCatL2. A Different temperatures. B Different pH values at 55 °C. C Treatments with different metal ions. 
D Different inhibitors and activators. The concentration of E64 was 10 μM, and PMSF, AEBSF, 1,10-phenanthroline, pepstatin A, EDTA, L-cysteine and 
DTT were used all at 1 mM. E Michaelis–Menten curve and Lineweaver–Burk plot of rTsCatL2 at pH 4.5, 37 °C and 5 mM DTT. F Michaelis–Menten 
curve and Lineweaver–Burk plot of rTsCatL2 at pH 4.5, 55 °C and 5 mM DTT.
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Figure 11  Degradation of haemoglobin (Hb) from various hosts by rTsCatL2. A–E Degradation of human Hb (A), mouse Hb (B), swine Hb (C), 
bovine Hb (D) and chicken Hb (E) by rTsCatL2 at different pH values. Lanes 1, 3, 5 and 7: Hb; Lanes 2, 4, 6 and 8: Hb + rTsCatL2; (F) Effect of MBP on 
hydrolysis of human Hb (Lanes 1–2), mouse Hb (Lanes 3–4), swine Hb (Lanes 5–6), bovine Hb (Lanes 7–8) and chicken Hb (Lanes 9–10) at pH 4.0. 
Lanes 1, 3, 5, 7 and 9: Hb; Lanes 2, 4, 6, 8 and 10: Hb + MBP.

Figure 12  Degradation of bovine serum albumin (BSA) and human serum albumin (HSA). (A, B) Degradation of BSA (A) and HSA (B) by 
rTsCatL2 at different pH values. Lanes 1, 3, 5 and 7: serum albumin; Lanes 2, 4, 6 and 8: serum albumin + rTsCatL2. C Effect of MBP on hydrolysis at 
pH 4.0; Lane 1: BSA; Lane 2: BSA + MBP; Lane 3: HSA; Lane 4: HSA + MBP.
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and enhanced by EDTA, L-cysteine and DTT. E64 is a 
specific inhibitor of cysteine proteinases, PMSF inhibits 
serine protease and sulfhydryl protease activities, DTT is 
a reducing agent that prevents cross-linking of disulfide 
bonds, and L-cysteine is a sulfhydryl activator, which fur-
ther confirms that rTsCatL2 is a sulfhydryl-containing 
cysteine protease [70].

Since pH is important in promoting the denaturation 
of various protein substrates to unfold their structures 
and make them more readily hydrolysed, we analysed the 
degradation of natural substrate proteins by rTsCatL2 at 
different pH values [67, 71]. Human, swine, mouse, and 
bovine Hb were degraded by rTsCatL2 at pH 3.0–5.0, but 

degradation was not observed for chicken Hb. This result 
implies that the cleavage of Hb by rTsCatL2 is host spe-
cific. rTsCatL2 also degrades serum albumin, and diges-
tion of haemoglobin and serum albumin by rTsCatL2 
may be related to nutrient acquisition by T. spiralis [13, 
55, 72]. In addition, human IgG, human IgM and mouse 
IgG were also digested by rTsCatL2, which suggested 
that rTsCatL2 may help T. spiralis evade host immune 
attack by breaking down attached immunoglobulins. 
Cathepsin L, a protease associated with immune eva-
sion in parasites, was found to be able to digest IgG from 
Haemonchus contortus and Schistosoma japonicum [50, 
73]; cathepsin L1, L2 and L5 from Fasciola hepatica 

Figure 13  Degradation of immunoglobulin. A–C Hydrolysis of human IgG (A), human IgM (B) and mouse IgG (C) by rTsCatL2 at different pH 
values. Lanes 1, 3, 5 and 7: Ig; Lanes 2, 4, 6 and 8: Ig + rTsCatL2. D Effect of MBP on hydrolysis; Lane 1: human IgG; Lane 2: human IgG + MBP; Lane 3: 
human IgM; Lane 4: human IgM + MBP; Lane 5: mouse IgG; Lane 6: mouse IgG + MBP.
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can cleave IgG [53, 72]. Many reports have shown that 
cysteine proteases from parasites can degrade the extra-
cellular matrix [48, 60], and in the present study, the 
same function was found for Trichinella cathepsin L, 
as it degraded fibronectin, collagen I and laminin. This 
result suggests that cathepsin L may contribute to the 
invasion of Trichinella into the small intestinal epithe-
lium. The degradation of all the above protein substrates 
by rTsCatL2 could be completely inhibited by E64. This 
result indicates that the hydrolysis of various substrate 
proteins by rTsCatL2 can be completely inhibited by E64.

In conclusion, we expressed cathepsin L of T. spira-
lis and characterized it biochemically and functionally. 
rTsCatL2 has the natural enzymatic activity of a cysteine 
protease and can degrade Hb, serum albumin, immu-
noglobulins, fibronectin, collagen I and laminin under 
acidic conditions, and its enzymatic activity is host spe-
cific. Future research could be centred on the biologi-
cal functions of this TsCatL regarding the host-parasite 
interface in  vivo and could explore a vaccine or drug 
against T. spiralis infection.

Figure 14  Degradation of fibronectin, collagen I and laminin. A–C Hydrolysis of fibronectin (A), collagen I (B) and laminin (C) by rTsCatL2 at 
different pH values. Lanes 1, 3, 5 and 7: protein; Lanes 2, 4, 6 and 8: protein + rTsCatL2. D Effect of MBP on hydrolysis of fibronectin and collagen I; 
Lane 1: fibronectin; Lane 2: fibronectin + MBP; Lane 3: collagen I; Lane 4: collagen I + MBP; (E) Effect of MBP on hydrolysis of laminin. Lane 1: laminin; 
Lane 2: laminin + MBP.
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Figure 15  The effects of E64 on rTsCatL2 enzymatic activity. A Haemoglobin. M: protein marker, Lane 1: human Hb, Lane 2: 
rTsCatL2 + E64 + human Hb, Lane 3: mouse Hb, Lane 4: rTsCatL2 + E64 + mouse Hb, Lane 5: swine Hb, Lane 6: rTsCatL2 + E64 + swine 
Hb, Lane 7: bovine Hb, Lane 8: rTsCatL2 + E64 + bovine Hb; (B) BSA and HSA. Lane 1: BSA, Lane 2: rTsCatL2 + E64 + BSA, Lane 3: HSA, 
Lane 4: rTsCatL2 + E64 + HSA; (C) Immunoglobulin. Lane 1: human IgG, Lane 2: rTsCatL2 + E64 + human IgG, Lane 3: human IgM, Lane 4: 
rTsCatL2 + E64 + human IgM, Lane 5: mouse IgG, Lane 6: rTsCatL2 + E64 + mouse IgG; (D) fibronectin and collagen I. Lane 1: fibronectin, Lane 2: 
rTsCatL2 + E64 + fibronectin, Lane 3: collagen I, Lane 4: rTsCatL2 + E64 + collagen I; (E) laminin. Lane 1: laminin, Lane 2: rTsCatL2 + E64 + laminin.
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