Skip to main content
. 2022 Jun 19;22(12):4622. doi: 10.3390/s22124622

Table A2.

Summary of reviewed articles.

Art Year Est AP rPoint fMap fmRoom mAlg sAlg mError oError sType
[23] 2020 pMap 520 993 UJIIndoorLoc N KNN, LR, SVM, RF RMSE = 1.87 m RSSI
[55] 2020 exp 6 112 460 m2 Y capsnet 0.68 m RSSI
[31] 2020 exp 8 133 512 m2 N Deep Fuzzy Forest 1.36 m RMSE = 1.79 m RSSI
[52] 2020 exp 1 32 50 m2 N CNN 1.77 m CSI
exp 1 24 40 m2 N CNN 1.16 m CSI
exp 1 66 49 m2 N CNN 2.54 m CSI
[97] 2020 exp 6 50 60 m2 N RF Bernoulli distribution RMSE = 2.50 m RSSI
[98] 2020 exp 25 240 315 m2 N RF Co-forest 2.44 m RSSI
exp 5 N/A NULL N RF 4.44 m RSSI
[24] 2020 pMap 7 1000 Rajen Bhatt Y MLP Accuracy = 94.4% RSSI
[25] 2020 pMap 520 993 UJIIndoorLoc Y CNN Accuracy = 88% RSSI
[99] 2020 exp 195 300 800 m2 N DNN HMM 1.22 m RMSE = 1.43 m RSSI
[32] 2020 exp 3 56 87.75 m2 N DNN LC 0.78 m std = 1.96 m CSI
[28] 2020 exp 4 236 1148 m2 Y BPNN GA-PSO 0.22 m RSSI
[26] 2020 exp 10 102 568.4 m2 Y LSTM LF-D 1.48 m RSSI
exp 30 353 2750 m2 Y LSTM 1.75 m RSSI
[27] 2020 pMap N/A N/A Cramariuc Y SEQ2SEQ LSTM 5.5 m RSSI
pMap. N/A N/A Cramariuc Y SEQ2SEQ 3.08 m RSSI
[100] 2020 pMap N/A N/A IPIN2016 Y CNN, LSTM 4.93 m RSSI
pMap N/A N/A IPIN2016 Y CNN, LSTM 5.4 m RSSI
pMap 520 993 UJI Library Y CNN, LSTM 3.2 m RSSI
pMap 520 993 UJI Library Y CNN, LSTM 4.98 m RSSI
[56] 2020 exp 5 22 293 m2 Y DNN Accuracy = 95.45% in 3.65 × 3.65 m RSSI
[29] 2020 exp N/A 157 5500 m2 Y RNN DL 3.05 m std = 2.818 m RSSI
pMap 520 993 UJIIndoorLoc Y RNN 4.92 m std = 3.719 m RSSI
sim 4 00 1681 m2 Y RNN DL 2.42 m–2.92 m RSSI
[101] 2020 sim 54 54 10,000 m 2 N MLP 3.35 m RSSI
[9] 2020 exp 3 7 25 m2 Y DNN RESNET 0.11 m RMSE = 0.08 m SNR
[102] 2020 pMap N/A 40 UJI Library N CNN SVR 2.15 m RSSI
[66] 2019 exp 3 30 540 m2 N DBN cross entropy and the mean squared NULL RSSI
[34] 2019 exp 2 59 125 m2 Y SVM 0.7 m RSSI
[57] 2019 exp N/A 206 NULL Y DNN Stacked AutoEncoder Accuracy = 85% RSSI
[35] 2019 exp 1 100 100 m2 N SVM 1.9 m std = 0.07 m CSI
[103] 2019 exp N/A N/A NULL NULL CNN RMSE = 0.31 m RSSI
[104] 2019 exp 1 N/A 63 m2 Y SVM 96.4% RSSI
exp 1 N/A 63 m2 Y MLP 96.5% RSSI
[53] 2019 exp N/A N/A NULL NULL SVM RMSE = 0.42 m CSI
[58] 2019 exp 16 83 305 m2 Y DNN 2 m RSSI
[59] 2019 pMap 520 993 UJIIndoorLoc Y CNN Accuracy = 95.92% RSSI
pMap 309 3951 Tampere Y CNN Accuracy = 94.13% RSSI
[105] 2019 exp 6 300 300 m2 N MEA-BP 0.72 m RSSI
[67] 2019 exp 50 N/A NULL NULL ELM NULL RSSI
[61] 2019 exp 256 74 1664 m2 Y CNN Accuracy = 95.4% in 4 m RSSI
[62] 2019 exp 54 180 1209 m2 Y RDF Accuracy = 89% at room level RSSI
[64] 2019 exp 256 74 300 m2 Y CNN 1.46 m Accuracy = 94% std = 2.24 m RSSI

art: Article; mAlg: Main algorithm used; est: Experimental or pMapulated study; sAlg: Other algorithms used in the study; AP: APs used; mError: Mean Error; rPoint: Reference Points used in offline phase; oError: Other metrics reported in the study; fMap: Size of experimental room or radio-map used; sType: Signal type used; fmRoom: Rooms used in exp/pMap.