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Abstract: The dynamic development of new technologies enables the optimal computer technique
choice to improve the required quality in today’s manufacturing industries. One of the methods of
improving the determining process is machine learning. This paper compares different intelligent
system methods to identify the tool wear during the turning of gray cast-iron EN-GJL-250 using
carbide cutting inserts. During these studies, the experimental investigation was conducted with
three various cutting speeds vc (216, 314, and 433 m/min) and the exact value of depth of cut ap

and federate f. Furthermore, based on the vibration acceleration signals, appropriate measures were
developed that were correlated with the tool condition. In this work, machine learning methods
were used to predict tool condition; therefore, two tool classes were proposed, namely usable and
unsuitable, and tool corner wear VBc = 0.3 mm was assumed as a wear criterium. The diagnostic
measures based on acceleration vibration signals were selected as input to the models. Additionally,
the assessment of significant features in the division into usable and unsuitable class was caried out.
Finally, this study evaluated chosen methods (classification and regression tree, induced fuzzy rules,
and artificial neural network) and selected the most effective model.

Keywords: machine learning; tool wear identification; diagnostic system

1. Introduction

The interest in computer technics is evident in advanced approaches to engineering
issues. Furthermore, to apply intelligent systems is to improve the determined process,
achieving the required quality. According to the Fourth Industrial Revolution concepts, the
intelligent systems correlated with computer algorithms, leading to improved efficiency
of technological processes, reducing costs, or keeping downtime to an absolute minimum.
The sophisticated methods and informatics tools are used as assistance systems in shaping
materials by machining [1–3]. More and more satisfactory results are noticeable due to
artificial intelligence (AI) application, where the algorithms are related with “learning”
nonlinear dependencies between input and output data. For example, one of the primary
AI applications in machining is tool wear or surface roughness prediction based on phenom-
ena occurring in machining, such as cutting forces, vibrations, or acoustic emission [4–8].
The correlation between those quantities with tool wear allows tool identification in real
time and simultaneously eliminates optional downtimes. One of the subsets of artificial
intelligence is machine learning. Its straightforward structure allows for the design of clear
rules to obtain an independent expert system. Classical regression models are ineffective in
some engineering issues, and the correlation coefficient is too low to implement diagnostic
inference. A more complex model, such as machine learning, is therefore valid in solving
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complicated issues. The dynamic development of new technologies, including material
engineering, enables the optimal material choice that fulfills high requirements. For exam-
ple, the aviation industry nowadays relies on materials with improved properties, such as
nanocomposites and superalloys. As a result, more and more elements are made of non-
ferrous materials, alloys based on aluminum, nickel, or copper. The fact remains that most
foundries specialize in producing casts made of iron alloys. However, cast iron’s demands
on their mechanical properties still find usage in areas such as the automotive or railway
industries. Of the many types of cast iron, gray iron is used the most [9]. This material offers
a good cast-ability, competitive strength-to-cost ratio, and high machinability. However, the
possibility of gray cast-iron applications in challenging areas demands the characteristic
morphology of the graphite phase. The matrix of gray cast iron consists of a soft ferrite
phase and lamellar pearlite phase [10,11]. However, mechanical properties depend on the
chemical composition, the type of matrix and form of graphite (flake, compacted, nodular),
or heat and cooling cycle [12,13]. Furthermore, due to the specific distribution of graphite
in gray iron microstructure, the tool wear mechanism during machining has been a research
topic in recent years [14–17]. In work [18], Guizhao Tu et al. investigated tool wear behavior
during high-speed dry turning of gray cast iron with Sialon tools. They compared two
Sialon inserts: one of them with higher Vickers hardness (sample A) and the other with
higher fracture toughness (sample B). They noticed that value of flank wear width (VB)
of sample A increased faster in lower cutting speed (300 m/min) than sample B, but in
higher cutting conditions, the sample A tool life was longer. The authors also recognized
that the dominant wear mechanism changed with increasing cutting speed from abrasion
to adhesion. Paolo Fiorini et al. explored the influence of the protective built-up layer
(BUL) formation in PCBN tools on GG25 gray cast-iron turning [19]. In this work, the
authors observed BUL mainly consisting of Mn and S, formed in lower (250 m/min) and
higher cutting speed (750 m/min). They also noticed that this protective layer forms over
an area on the rake and flank face in lower cutting speed, but its location on the tool is
coupled with cutting temperature and chip length. Moreover, at 750 m/min speed, they
observed a higher protecting layer in maximum temperature area and reduced wear rates,
and the crater wear was only detected in lower cutting speed. The built-up layer could
be the key to tool protection and tool life increase in gray cast-iron machining. Due to
interests growth in intelligent systems in engineering issues, most works nowadays focus
on applied computer techniques to improve machining, which is directly connected with
tool condition monitoring systems (TCMs) [20–22]. In order to identify tool wear, various
kinds of machine learning models, such as decision trees (DT), artificial neural network
(ANN), support vector machine (SVM), or hidden Markov model (HMM), are applied to
create an effective diagnostic system [23–25]. In [26] work, Aissa Laouissi et al. investigated
the optimization procedure during gray cast-iron turning with artificial neural network ap-
proach (ANN), the response surface methodology (RSM), and genetic algorithm (GA). They
developed a surface roughness, cutting force, and cutting power prediction model based on
cutting parameters (used as inputs to the model). The ANN models provide better results
(5.89% error) than the RSM model (14.73% error) for surface roughness prediction. The ap-
plication of genetic algorithm optimization also enabled finding the best cutting parameters
to lead to better surface quality and a minimum cutting force (vc = 299.525–512.571 m/min,
f = 0.8–0.121 mm/rev, ap = 0.251–0.586 mm). Other studies are focused on prediction using
cutting parameters and vibration signals. such as in ref. [27]. In this research, Johnny
Herwan et al. proposed a surface roughness prediction model based on ANN during
dry gray cast-iron turning. They obtained surface roughness prediction with an average
error below 8%. However, computer techniques are also used to predict the mechanical
properties of engineering materials. For example, Masato Shirai et al. [28] used the deep
neural network (DNN) to predict mechanical properties of gray cast iron based on chemical
compositions, including trace elements. This work developed the adequate tensile strength
and Brinell hardness prediction model with 5.12% mean absolute error for tensile strength
and 4.18% for hardness. The obtained results of several authors confirmed the validity
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of intelligent systems in engineering issues. This kind of computer technique supports
optimization of the machining process.

The following study investigates the tool identification model during the turning of gray
cast-iron EN-GJL-250 using carbide cutting inserts. During these studies, the experimental
investigation was conducted with three various cutting speeds vc (216, 314, and 433 m/min)
and the exact value of depth of cut ap and federate f. Further, a tool wear prediction model
was developed based on machine learning and vibration acceleration signals.

2. Materials and Methods

The experimental study of grey cast-iron EN-GJL-250 turning was carried out on TUR
560E manual lathe with three different cutting speeds vc. During the investigation, the
cutting tool with cemented carbide inserts (DNMG 15 06 08-WF 3210, Sandvik Coromant,
Sandviken, Sweden) was used in the machining process. The triaxial piezoelectric charge
accelerometer (type 4321 Brüel and Kjær, Nærum, Denmark) was selected to measure
vibrations in three independent directions (X,Y,Z) and attached to a tool holder with a screw
joint. This accelerometer is suited to measure up 10,000 Hz, with sensitivity 1 pC/ms−2.
During each turning pass in which the vibration acceleration were measured, these signals
obtained during the research were applied to build a diagnostic system. Simultaneously,
with the measurement of the vibrations, the tool corner wear VBC was inspected using a
workshop microscope (scale interval 0.01 mm). Based on “Analyzer” software (developed
by Maciej Tabaszewki in Poznan, Poland), the vibration charts in time and frequency
domain were used to select the diagnostic measures. Figure 1 shows the scheme of the
experimental apparatus setup.
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Figure 1. Scheme of experimental set up.

The cutting speed vc was one variable parameter in the tests. The research plan of an
experiment is shown in Table 1.

Table 1. Research plan of grey cast-iron turning.

Cutting Speed
vc (m/min)

Spindle Speed
n (rev/min)

Feed
f (mm)

Cutting Depth
ap (mm)

216 265
314 425 0.1 0.2
433 530
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The tool corner wear indicator VBC was measured every few minutes during each test.
Each tool wear measurement corresponded to the vibration acceleration signals in three
directions (main Ac, feed Af, and axial direction Ap). The signals from the accelerometer
were transferred to the measuring vibration amplifier NEXUS and then to the analog-to-
digital converter A/C and the desktop. The “Analyzer” software was applied to determine
the diagnosis measures of vibration accelerations. The data from the turning process were
the foundation for developing a diagnostic system. Figure 2 depicts VBC the tool corner
wearing in various cutting conditions.
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Figure 2. Tool corner wear VBC after turning with various cutting speed.

Figure 3 shows tool wear VBC values in function of cutting time tc separately for
wedge corners 1 and 2. The flow of these functions are similar until tc = 230 min; then, the
difference between corner 1 and 2 is significant. This is a typical phenomenon in the tool
wear process because a random factor determines the changes. The other graphs show
tool wear as a function of time for cutting speeds 314 and 433 m/min (Figures 4 and 5). In
such conditions, three repetitions were carried out for these cutting speeds. As the figures
depict, the increase in cutting speed contributes to increased tool wear process intensity,
directly affecting the tool life of inserts. Analyzed data related to a series of two tool life
tests for feed f = 0.1 mm/rev. It is largely known that cutting speed affects the tool life and
feed f value (at a slower rate). Experimental study of tool life tests was carried out for feed
0.05 and 0.2 mm/rev as analogous to feed f = 0.1 mm/rev.
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Figure 3. Tool wear VBC as a function of cutting time tc (vc = 210 m/min).
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The tool wear criterion was determined in order to indicate the tool life. In addition,
the selection of tool wear criterion is not apparent, including even a possibility to indicate
several criteria in industrial conditions. The establishment of criteria depends on many
factors, primarily on machining form (roughing, finishing), the machining strategy, or the
machining process. The geometric criteria are the most accurate and reliable in laboratory
conditions. In contrast, the technological and physical criteria that prevail in the industry
conditions are set on an ongoing basis according to users’ needs.

As a result of these studies, it was decided to determine the geometric criterion for the
VBC indicator:

the tool wear criterion − VBc < 0.3 mm

When the tool corner wear of the insert exceeds the 0.3 mm value, it is recognized as
unfit and requires replacement. Otherwise, the wedge is classified as capable of further work.

The tool life for individual inserts was determined based on an established geometric
criterion, and summary results are shown in a double-logarithmic system, specifying
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Taylor’s tool life formula (Figure 6). The relation between tool life T and cutting speed vc is
essential from a practical point of view. It is also possible to select a relevant cutting speed
for a productive lifecycle, assuming a tool life.
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It is recognized that cutting speed increases generate a decrease in the value of tool life.
However, on the other hand, the efficiency of the machining process is improved. Therefore,
it is necessary to obtain the cutting speed in which the tool life and cutting performance
will be acceptable.

Using the Formula (1), the cutting time of the tool (tool life T) until the tool wear
criterion exceeds for particular cutting speed vc [29]:

T =
1× 1012

v4.1
c

(min). (1)

The determined Taylor’s tool life formulas (T = f (vc,f )) are useful for cutting time
prediction and cutting parameters’ correction.

For experimental cutting speeds, recording the vibration acceleration signals was
carried out. Each registered signal was related to a particular tool wear value. The relation-
ship between the vibration acceleration amplitude and the tool wear Ai_RMS = f (VBC) was
developed. Graphic presentation of data for cutting speed vc = 433 m/min is presented
in Figures 7 and 8. The root means square value (RMS) of vibration acceleration was
calculated from the entire frequency band (fa = 0–20,000 Hz) and placed on the Y-axis.

The values of determination coefficient R2 and the trend line indicated a lack of corre-
lation between the analyzed data. Therefore, the diagnostic measures were determined in a
specific frequency band, which indicates the main correlation to tool wear VBC. Examples
of amplitude-frequency characteristics for three analyzed directions (main Ac, feed Af,
and axial direction Ap) are shown in Figures 9–11. When the diagnostic measures were
designated, the next step was preparing the relevant dataset. Then, based on an appropriate
dataset, learning machining to tool wear monitoring following the vibration acceleration
signals can be conducted.
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vc = 433 m/min; edge 1).
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The vibration acceleration signals were synchronously sampled in three perpendicular
directions in frequency analysis, approx. 25 kHz. The signals were registered for a few
seconds, and the total length of the registered time depends on the cutting speed vc. Then,
the thus obtained data were divided into brief time sections, which were further processed,
and teaching data were selected. In making a diagnostic decision model, two tool classes
were proposed: usable and unsuitable, and tool corner wear VBc = 0.3 mm was assumed as
a wear criterion. Table 2 summarizes the information on the available registrations obtained
in cutting tests.

Table 2. Summary of registration and participation of each state class.

Cutting Speed
vc

Number of
Tested Tools

Total Number of
Complete

Registrations

Number of
Teaching
Examples

Registration Related
to the Usable

Condition

Registration Related
to the Unsuitable

Condition

216 2 230 4921 76.5% 23.5%
314 3 243 5200 74% 26%
433 3 105 2246 58% 42%

In total, 578 registrations and 12,367 teaching examples were obtained. Most of them
are examples concerning the usable condition. The tool life is undoubtedly longer than for
vc = 40 m/min at low cutting speeds. Due to the duration of the experiment, the number of
examples related to the unsuitable state is relatively lower. Figure 12 depicts the algorithm
for processing the obtained registrations.
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In the first phase of the research, the analysis of spectrum amplitude connected
with minor tool wear (below the tool wear criterion) and extensive tool wear (above the
0.2 mm value) was carried out. Based on comparison analysis, the “active” bands were
selected. In these bands, the RMS values and the nature of the spectrum showed significant
differences for the two tool states. Some “active” bands were only specific to an individual
cutting speed and certain to all cutting speeds. The signal measures and parameters
characterizing the amplitude spectra were determined in the next step. The values in the
entire available band and the filtered signal in the selected bands were determined for the
time domain signal.

The following diagnostic measures were determined: root mean square (RMS) value,
average absolute value, peak signal value, square root amplitude, clearance factor, crest
factor, form factor, impulse factor, kurtosis factor, abscissa of signal square, or value
of samples exceeding tool criterium concerning root mean square value. Specific new
diagnostic measures were identified regarding amplitude spectrum in selected bands. The
slenderness ratio (of the spectrum) in the particular band was designated. Based on this
ratio, the relevant spectral line in the narrowband can be distinguished from the band
without notable frequency. A root mean square value is equally distributed throughout the
entire band in such a case. The slenderness ratio was determined as follows:

WS =
w′rms

2

wrms2 . (2)

where: w′rms. —root mean square value in a narrow window around the maximum of the
spectrum in a particular band; wrms. —root mean square value in this window. The RMS val-
ues are calculated directly from the frequency spectrum (square of the amplitude spectrum).

Higher values than 1 indicate the significant spectrum component concerning the
overall RMS level in the band. For values lower than 1, this component does not exist.

Moreover, the spectrum symmetry ratio in the particular band was designated:

WSy =
w′Lrms

2

wRrms2 . (3)

where: w′Lrms. —root mean square value in a narrow window to the left of the maximum
spectrum in a particular band; wRrms. —root mean square value in a narrow window to
the right of the maximum spectrum in a particular band. The RMS values are calculated
directly from the frequency spectrum.
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As other relevant measures, the frequency coordinate of the spectrum gravity center
and the standard deviation of root mean square arrow band were proposed. The main
feature of this measure was a regular distribution of individual spectral harmonic compo-
nents in a narrow band. A total of 350 measures was obtained considering the number of
identified bands and three measurement directions.

A classification tree process does not require the pre-selection of features before
learning. However, to reduce the number of data and streamline the tree formulation, the
evaluation of the diagnostic characteristics was carried out. It also impacted the reduction
of features area due to the application of other classification methods.

The principal component analysis (PCA) was not carried out in the current research to
obtain easy-to-interpret decision rules. Firstly, the features pre-selection was conducted
by comparing the measures of the features separately and visually for the usable and
unsuitable conditions. It was established that the lack of noticeable differences in subsets
indicated the slight suitability of a particular measure in the classification process. In the
next step, the Fisher criterion was applied according to the formula [30]:

FE( f ) =
∑C

j=1 nj
(
µij − µi

)2

∑C
j=1 njσ

2
ij

(4)

where: µi—average value of feature f ; nj—the number of examples in the class, with index
j; µij and σij—average value and variance of feature f for class j; C—the number of classes.

This measure is used to evaluate the features that are simultaneously close to the
similar value and different in both classes. Moreover, based on the Fisher criterion, the
ranking of the features can be determined. An arbitrary limit was adopted in the analysis
of the obtained values, and 72 features with relatively high scores were selected. These
measures represented feature vector elements in the classification tree. As already indicated,
the proper selection of features using a specific quality division measure was specified
in the tree-building algorithm. Therefore, it was not necessary to take additional steps
to limit the number of features. However, applicating other classification methods, the
supplementary selection had to be applied due to having too many features compared to
the number of the example. In such a case, the created feature space is not densely filled
with examples.

In the next step, a direct measure based on information gain was used, and 15 main
measures were selected. Fuzzy rules were induced according to the following algorithm:

• Divide the data set into intervals and subordinate them to membership functions
using triangular functions;

• Generate rules for a obtain training example considering the entire memberships of a
obtain attribute value in a fuzzy set. Thereby, as many rules are generated as there are
learning examples;

• Define the statistical weight of each rule by finding the product of the rule’s predecessors;
• Sort rules by the statistical weight. Remove repeating rules from the set for rules matching

the same class. Remove rules with a lower statistical weight for incompatible rules;
• Limit the number of rules by eliminating rules of low statistical weight (the arbitrary

limit is 0.7).

In the next step, the classification of the test examples using an ordered set of rules
was carried out. Table 3 shows the mean results (obtained by 10-fold cross-validation
method) of the basic classifier assessments in the form of a tree and direct rule induction.
Additionally, the results were compared with the results obtained using a multilayer neural
network for pattern recognition with the output softmax layer. Many network structures
were tested. The presented results concern the structure with the lowest mean error. In this
table, the cutting parameter vc, which was one of the attributes of the training examples,
was included in this analysis. Finally, Figure 13 depicts a comparison of cumulative error
(a), sensitiveness, and specificity (b) for each method in a diagram form.
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Table 3. Final results of three classification methods (considering the cutting parameter vc).

Method Cumulative Error % Sensitiveness % Specificity %

Classification Tree CART 1.82 96.27 98.85
Induced Fuzzy Rules 4.03 91.36 97.56

Artificial Neural Network 3.24 92.93 98.11
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In Table 4, the final results without including the cutting speed vc as the output
parameter was presented. It was found that considering this parameter as information
required for the proper operation of the supervision system may be susceptible to errors
in industrial conditions. Therefore, it was decided to check whether the obtained results
would be acceptable without information about vc available for the classifier. Figure 14
depicts a comparison of cumulative error (a), sensitiveness, and specificity (b) for each
method in a diagram form (without the cutting parameter vc).

Table 4. Final results of three classification methods (without the cutting parameter vc).

Method Cumulative Error % Sensitiveness % Specificity %

Classification Tree CART 2.06 95.68 98.72
Induced Fuzzy Rules 6.49 86.21 96.04

Artificial Neural Network 3.67 91.67 97.93
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3. Discussion

The best results were obtained using neural networks for two hidden layers and 15 and
20 sigmoidal neurons in the layers, including the cutting parameter vc as output. However,
in the case without considering the cutting speed vc, the application of 10 and 12 neurons
in hidden layers showed encouraging results.

In the analysis of the results in Tables 3 and 4, the absence of the cutting parameter
vc as output increased cumulative errors. In use of the CART method, the error increased
only slightly. The analysis of the obtained tree indicated which features were used by the
algorithm for its construction. These features are assessed as significant in the division
into particular classes. Finally, 39 parameters were selected. The most frequently recurring
parameters in the time domain are: form factor, root mean square value, average value, and
square root amplitude in different frequency bands (between 5000 and 7000 Hz, from 2500
to 6000 Hz and from 20 to 2000 Hz). Most of the measures apply to the Z measurement
direction. However, some necessary measures are simultaneously related to X and Y
directions. The omission of these measures resulted in an increase in error by approx. 0.4%.
Therefore, all three measurement directions were considered in building the diagnostic
system. The primary measure determined in the frequency domain was the root mean
square value in a narrow window around the maximum frequency in different frequency
bands. A considerable error was obtained using the induced fuzzy rules; thus, this method
seems adverse.

4. Conclusions

Based on the experimental results, the authors proposed easy intelligent systems for
identifying tool wear during turning gray cast-iron EN-GJL-250 using carbide cutting
inserts. Due to the ineffective classical regression model and the low correlation coefficient
based on vibration acceleration signals, the classification and regression tree, induced fuzzy
rules, and artificial neural network were applied. The analyses of the presented research
allow us to draw the following conclusions:

• The analysis of the relationship between the vibration acceleration amplitude and the
tool wear identified a lack of correlation between the analyzed data. Low coefficient
R2 values indicate using more complex models than regression.

• The CART model proved to be the most reliable and practical diagnostic supervision
system to classify usable/unsuitable tools. Based on this model, the cumulative error
was the lowest, especially in analysis without the cutting parameter vc (2.06%), which
seems acceptable for industrial needs.

• The ANN model also had satisfactory results, particularly considering the cutting
parameter vc (3.24%). However, considering this parameter as information required for
the proper operation of the diagnostic system may be susceptible to errors in industrial
conditions.

• Based on the CART method, the most frequently recurring parameters were also
selected: from factor, root mean square value, average value and square root amplitude
in different frequency bands in the time domain, and root mean square value in a
narrow window around the maximum frequency in different frequency bands in the
frequency domain. These signal features have a significant impact on identifying the
cutting-edge condition.

• To sum up, using the intelligent system to identify the tool wear during gray cast-
iron turning is a relevant prediction tool. In addition, developed models based on
input parameters such as cutting speed and vibration acceleration are significant to
identifying tool wear’s condition during turning.
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