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Abstract: In this study, a homemade uniaxial strain pressure cell was designed to be directly used
in the standard magnetometers whereby the magnetic properties of samples subjected to a uniaxial
strain and magnetic field were characterized. Its feasibility has been demonstrated by the uniaxial
strain control of the phase transition and magnetocaloric effect in Ni40Co10Mn40Sn10 (NCMS) alloys.
With the assistance of a uniaxial strain of ~0.5%, the cooling temperature span of NCMS alloys is
broadened by 2 K, and the refrigeration capacity under a 3 T magnetic field change increases from
246 to 277 J/kg. This research provides not only direct experimental assistance for the tuning of
phase transition by the uniaxial strain but also possibilities for studying the coupled caloric effect
in first-order phase transition materials under a combined uniaxial strain and magnetic field by the
thermodynamic analysis.

Keywords: magnetocaloric effect; uniaxial strain; Heusler alloys

1. Introduction

Solid-state refrigeration has received extensive attention as a substitute technology for
refrigeration through gas compression owing to its environmentally harmless and energy-
saving advantages [1–11]. Seeking a suitable refrigerant is one of the most important
problems faced in the application of solid-state refrigeration technology [12]. From the
discovery of Gd5(Si,Ge)4 [1], the magnetocaloric effect (MCE) of first-order phase transition
materials has gained a lot of attention as a prospective candidate material for magnetic
refrigeration. As the research further develops, various problems such as the narrow cooling
temperature span [13–15] and large hysteresis loss [16,17] in these materials gradually
emerge, limiting their application. Great efforts have been made to solve these problems by
doping [18,19] or introducing multi-field stimuli [20–22]. Interestingly, when multi-fields
are introduced, not only can the cooling temperature span be broadened, but also a multi-
caloric response will occur due to the interplay between structural and magnetic degrees of
freedom [23]. In recent years, multi-field stimuli have been widely used to control the phase
transition and caloric effect, especially elastocaloric effect (eCE) and MCE, in materials with
first-order phase transition [24,25].

Ni-Co-Mn-Sn Heusler alloys are a typical class of first-order phase transition materials
simultaneously exhibiting both ferromagnetic order and ferroelastic order. Thus, both stress
and magnetic field are able to induce the phase transition between ferromagnetic austenite
(A) at high temperature and weak magnetic martensite (M) at low temperature while the
transition direction under magnetic field and stress field is opposite. Consequently, both
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MCE and eCE exist in these materials and the sign of these two caloric responses is reverse.
By introducing a combined magnetic field and uniaxial stress, a multi-caloric effect (MCE
and eCE) covering a broad temperature span can be obtained in these alloys [24,26]. It is
noted that in previous studies the caloric effect under uniaxial pressure and the magnetic
field is usually characterized by direct measurement of adiabatic temperature change or
quasi-direct method of calorimetric measurements [24–27]. Nevertheless, the ideal adiabatic
condition is technically difficult to be fulfilled especially for the sample with a small size,
and it puts forward higher requirements for magnets to couple with uniaxial stress. It is
more accurate and easier to characterize MCE with standard magnetometers and both
caloric responses are strongly dependent on the temperature-dependent magnetization
curves of the materials. Thus, it is necessary to find a way to characterize the caloric effect
subjected to the coupled magnetic field and uniaxial stress by standard magnetometers.
Moreover, the direct measurement of magnetization under coupled magnetic field and
strain makes it possible to construct phase diagrams of magnetic, strain (stress), and
temperature evolution for first-order phase transition materials. From the above phase
diagrams, the coupled caloric effect can be obtained by the thermodynamic analysis [23].

In this context, we propose to design and fabricate a uniaxial strain pressure cell,
which can be directly used in the commercial Versa-lab magnetometers. Thus, magnetic
properties in materials under the combined magnetic field and uniaxial stress can be directly
measured. This makes it possible to construct phase diagrams of magnetic, pressure,
and temperature evolution for first-order phase transition materials, and then the multi-
caloric effect (especially coupled caloric effect) can be obtained by the thermodynamic
analysis. Moreover, by utilizing this pressure cell, the control of phase transition and
MCE in Ni40Co10Mn40Sn10 (NCMS) alloys was studied. The NCMS alloys’ refrigeration
temperature span can be effectively widened by the in situ uniaxial strain, which is highly
important for the use of materials with first-order phase transition.

2. Methods

Nominal compositional polycrystalline Ni40Co10Mn40Sn10 alloys were synthesized by
arc melting in the argon atmosphere, where pure Ni, Co, Mn, and Sn metals (more than
99.9%) were used. To compensate for the weight loss of Mn, additional Mn (5 wt%) was
added during arc melting. The obtained ingots were sealed in a quartz tube with high-
purity argon environment, then annealed for 96 h at 1123 K before being quenched into
ice water. The ingots were cut into pieces with a size of 2 × 2 × 4 mm3. X-ray diffraction
(XRD) utilizing Cu Kα radiation was measured to evaluate the crystal structure evolution
of the NCMS alloy from 300 K to 100 K during the cooling process by a Rigaku Smart Lab
diffractometer. The microstructure and elemental analysis measurements were carried
out by field-emission scanning electron microscope (SEM, ZEISS EVO 18, Oberkochen,
Germany) coupled with X-ray energy-dispersive spectroscopy (EDS). For this measure-
ment, the specimens were mechanically polished and chemically etched in a solution of
20 mL HCl + 5 g FeCl3 − 6H2O + 96 mL ethanol for approximately 45 s. The magnetic
characteristics of the sample were determined using Quantum Design Inc. (San Diego, CA,
USA) cryogen-free cryocooler-based physical property measurement equipment (model
Versa-Lab). The uniaxial strain was applied in situ by the homemade pressure cell as shown
in Figure 1.
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Figure 1. (a) The overall and exploded schematic diagram of a home-built uniaxial strain pressure
cell, where the dimensions and descriptions of each part are marked. (b) Schematic of the NCMS
sample, where its size and direction are marked. (c) Compressive stress-strain curves (red line)
measured with a low strain rate of 1.3 × 10−4 s−1 at 300 K and the arrows indicate the loading and
unloading process.

3. Results and Discussion

Figure 1a illustrates the schematic diagram of a homemade uniaxial pressure cell,
which can be directly used in the commercial physical property measurement system. To
avoid the influence of the magnetic signal in the pressure cell, brass was used to produce
the pressure cell. The shape of the pressure cell is designed to match the cylinder and the
size of the outer diameter for the pressure cell is limited to 6 mm, as schematically shown
in Figure 1a, owing to the size limitation of the VSM coil set (i.e., 6.3 mm) in our Versa-lab.
To make the size of the sample as close as possible to that indirect measurement of eCE,
the wall thickness of the pressure cell is minimized to 1.5 mm and the inner diameter is
3 mm with internal thread. The uniaxial strain can be applied to the sample by turning the
screw, as pointed out by the curved arrow in Figure 1a. To reduce the torsional strain of the
sample with the rotation of the screw, two smooth brass cylindrical gaskets with a diameter
of 2.5 mm are placed above and below the sample. Different from the direct measurement
of adiabatic temperature change at the universal testing machine with the stress being a
constant, the strain is a constant in this pressure cell during the magnetic measurements.
To test the feasibility of the homemade uniaxial pressure cell, NCMS alloys prepared by
arc melting were used. It is worth noting that the texture structure may be generated
with columnar grains along the direction of solidification due to the large temperature
gradient from the top to the bottom of the ingot in the arc melting process and such grain
distribution microstructure highly affects mechanical properties of the materials [28,29].
As shown in Figure 1b, the NCMS sample with a size of 2 × 2 × 4 mm3 was cut from
the button ingot along the solidification direction. Before the magnetic measurements,
we first carefully studied the crystal structure and microstructure of NCMS alloys. To
quantitatively determine the applied strain and stress, the cell length will be measured by
the spiral micrometer under conditions without sample, with samples under no strain, and
with samples under uniaxial strain. Then, the uniaxial strain is determined to be about
0.5% in the current study. The corresponding stress can be estimated from the stress-strain
curves at room temperature as shown in Figure 1c. It can be seen from the stress-strain
curves that in the loading process, the stress is about ~20 MPa under a uniaxial strain of
0.5%. It should be noted that the samples used for the measurement of the stress-strain
curve and magnetic properties have the same size, which can eliminate the size effect.

Figure 2a shows temperature-dependent XRD patterns of NCMS alloy during the
cooling process. From the XRD pattern at 300 K, one can see that the B2 cubic austenite
phase is dominant with a lattice parameter of a = 5.984 Å, while a small amount of martensite
phase coexists as indicated by the peak on the left side of the strongest austenite peak. As
the temperature decreases to 280 K, the intensity of the peaks associated with the austenite
phase decreases. The intensity of martensite peaks becomes stronger as the temperature
drops, while the (220)A peak of the austenite phase steadily diminishes. However, a minor
quantity of austenite phase remains at 100 K, as seen in the magnified picture of the XRD
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pattern at this temperature. According to the careful indexations in the inset of Figure 2a,
a six-layered modulated (6M) monoclinic structure can be confirmed in the martensite.
The crystal structure evolution shows that the manufactured NCMS alloy has a typical
martensitic transition.
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Figure 2. (a) In situ temperature-variable XRD patterns of NCMS alloy during the cooling process and
partial XRD peaks of the 6M martensite at 100 K are enlarged in the inset. Secondary electron scanning
electron microscopy (SEM) images of NCMS ingot in the (b) cross-section and (c) longitudinal section,
where the solidification direction is indicated by the blue arrow. (d) EDS mapping for NCMS alloy at
room temperature.

Figure 2b,c show the secondary electron scanning electron microscopy (SEM) image of
NCMS alloys in the cross and longitudinal sections as marked in Figure 1b, respectively. It is
clear to observe that the grain sizes and shapes are very different for the SEM images along
with different directions. The equiaxed crystal with a grain size of tens of microns occurs in
the cross-section while long strip grain appears in the longitudinal section with sizes of
hundreds of microns along the strip direction. This kind of long strip grain induced by the
temperature gradient in solidification will highly affect the mechanical properties of NCMS
alloys [28,29]. To study the elemental dispersion for NCMS alloy, the composition maps
are performed by EDS and the EDS mapping images of Mn, Ni, Co, and Sn elements are
shown in Figure 2d. The EDS analysis does not show measurable chemical inhomogeneity,
which confirms the homogeneity of composition in NCMS alloys.

To verify the martensitic transition in Ni40Co10Mn40Sn10 alloys and its modulation
by our homemade uniaxial pressure cell, the thermomagnetic curves under a magnetic
field of 0.01 T in the initial and uniaxial compressive strain state are measured and the
corresponding results are exhibited in Figure 3. Here, the strain determined by the spiral
micrometer is about 0.5%, and thus, the corresponding stress is estimated by the stress-
strain curves at room temperature to be about ~20 MPa, as shown in Figure 1c. Both the
M-T curves in the compressive state and the initial state show typical characteristics of
the magnetic transition from weak magnetic martensite to ferromagnetic austenite in the



Materials 2022, 15, 4331 5 of 9

heating process, indicated by a sudden jump of magnetization across the transition from
265 K to 280 K. The transition temperature is located at 272 K in the heating process in
the initial state and a thermal hysteresis about 14 K occurs for NCMS alloys, which can be
seen in the dM/dT-T curves as shown in Figure 3b. When a uniaxial compressive strain
was applied to the NCMS alloys, the magnetization decreases and the M-T curve moves
to a higher temperature. This confirms the effectiveness of our homemade uniaxial strain
cell in tuning the magnetic properties in situ. The reduction of magnetization and shift
of transition temperature can be ascribed to the volume and the atom’s distance change
under the compressive strain [30]. The Mn-Mn distance has a significant impact on the
magnetic characteristics of Heusler alloys. Under compressive strain, the Mn-Mn distance
in NCMS alloys is shortened, resulting in an increase in antiferromagnetic interactions. As
a result, under compressive strain, the magnetization drops. The compressive strain, like
hydrostatic pressure, reduces the volume and brings the atoms closer together, promoting
bonding and orbital hybridization in NCMS alloys [30]. As a result, more thermal energy
is required to cause the austenitic transition, resulting in a shift in temperature under
compressive strain. When a uniaxial strain is applied, the transition temperature shifts
about 2 K during the heating process and about 4 K during the cooling process. Such a
difference is similar to the phenomenon under the electric-field-induced strain state in the
ferromagnetic/ferroelectric composite [13], which may be caused by the combined effect
of temperature and strain. In the heating process, the compressive strain stabilizes the
martensite and the transition temperature shifts towards a higher temperature. On the
contrary, the increase in temperature promotes the austenite, and so this opposite effect
reduces the increase of transition temperature. On the other hand, during the cooling
process, both compressive strain and the decrease of temperature favor the martensite,
leading to the larger shift of transition temperature. After releasing the compressive strain,
the M-T curve is restored to the initial state, as shown in Figure 3. Moreover, the thermal
hysteresis can be decreased from 14 to 10 K by utilizing a compressive strain in the cooling
process while removing the compressive strain in the heating process. This fact suggests
that if a larger compressive strain is applied, the thermal hysteresis could be reduced by
controlling the compressive strain during the heating/cooling process. Although two
smooth polished cylinders were used in the cell to reduce the friction between the sample
and the screw, a torque may still occur, leading to a crack of the sample with a larger strain
applied. In addition, from the SEM image, we can see that long strip-like grains appear
in NCMS alloys along the direction of applying uniaxial strain. When a torque is exerted
on the sample, it is easy to crush along the grain boundary. If the sample and uniaxial
strain cell are improved, a larger strain may be applied so that the transition temperature
could shift to a higher temperature. Thus, a completely reversible phase transition could be
achieved.
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Figure 3. (a) Temperature-dependent magnetization curves in the cooling and heating process and
(b) the corresponding dM/dT-T curves in the heating process under a magnetic field of 0.01 T for
NCMS alloys in the initial state, compressive strain state, and after releasing the strain, respectively.
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The isothermal magnetization curves spanning the transition were obtained in the loop
mode to explore the effect of in situ uniaxial strain on the magnetocaloric effect of NCMS
alloys [31]. As a representative, the M-µ0H curves in the initial and uniaxial compressive
strain state at 266 K are exhibited in Figure 4a. The magnetic-field-induced metamagnetic
transition can be seen from the M-µ0H curves in the initial state. The shape of M-µ0H
curves remains unaltered when a uniaxial compressive strain is applied. However, the
magnetization reduces significantly and the critical magnetic field of the metamagnetic
transition increases under the compressive strain. The reduction of magnetization is caused
by the reduction of Mn-Mn distance, whereby the variation of the exchange interaction in
NCMS alloys is induced by the compressive strain. Meanwhile, as previously indicated,
compressive strain stabilizes weak magnetic martensite, necessitating a higher critical
magnetic field to induce the metamagnetic martensite-austenite transition. The obtained
M-µ0H curves were used to calculate the magnetic entropy change by the Maxwell relation-
ship [32] and the associated ∆S-T curves are displayed in Figure 4b. The accuracy of the
entropy changes determined from M-µ0H curves is about 20%. It can be seen that as the
magnetic field increases, the peak of ∆S-T curves broadens to the lower temperatures and
the peak value gradually increases, evolving into a platform. This behavior gives rise to the
magnetic-field-induced inverse martensitic transformation. With the magnetic field increas-
ing, the amount of martensitic phase transforming into austenitic phase gradually increases
so that the entropy changes. When the entropy change caused by the magnetic-field-driven
phase transition saturates, the entropy change stops rising, resulting in a platform in the
∆S-T curves at high magnetic fields. With a magnetic field change of 0–3 T, the peak values
of ∆S-T curves in the initial condition reached 19 J/kg K. While the peak value of ∆S-T
curve reduces to 18 J/kg K under the uniaxial strain condition at the same magnetic field
change, and the peak moves 2 K higher as shown in Figure 4c, which can be attributed
to fluctuation of the exchange interaction generated by the compressive strain. The full
width at half maximum (FWHM) of ∆S-T curves in both the initial and uniaxial strain
state reaches 15 K, while the cooling temperature span in the initial state (261–276 K) is
different from that in the uniaxial strain state (263–278 K) as indicated by the shadow areas
in Figure 4c. It can be seen from the above |∆S(T)| curves, the refrigeration temperature
span is broadened to 17 K by applying uniaxial strain above 273 K and removing the strain
below 273 K. Accordingly, the evaluated refrigeration capacity (RC) under a magnetic field
change of 3 T can be enhanced from 246 to 277 J/kg by coupling the uniaxial strain with
the magnetic field. Consequently, the phase transition and MCE in NCMS alloys can be
tuned and directly measured in the standard magnetometers with the magnetic field and
uniaxial strain applied simultaneously.
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Figure 4. (a) Isothermal magnetization curves at 266 K. (b) Temperature-dependent entropy change
under different magnetic fields for NCMS alloys in the initial state. (c) Comparison of the ∆S-T curves
under a magnetic field change of 0–3 T for the cases in the initial state, compressive strain state, and
releasing strain state, where the cooling temperature span is marked by the shadow area. The inset
shows the comparison of the magnetic-field-dependent entropy change for the above three cases.
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As the one most used in the present magnetic refrigeration prototype, the active
magnetic refrigerator (AMR) cycle is a promising refrigeration cycle with high energy
efficiency [33,34], while a temperature gradient will be generated in the material bed from
the hot to cold ends. Figure 5a exhibits the schematic diagram of AMR, including a hot
sink, a cold sink, and a refrigerant’s bed (e.g., NCMS). There are usually four stages in a
complete AMR cycle, namely, magnetization, hot blow, demagnetization, and cold blow.
In the hot/cold blow process, a temperature gradient in the materials bed between the
hot sink and the cold sink is established as shown in Figure 5a. Refrigerants at different
positions work at different temperatures (T0 for refrigerate A, T1 for refrigerate B, T2
for refrigerate C, T3 for refrigerate D) so that not all of them can work in the optimal
temperature, which results in a decrease of the cooling performance. Although refrigerates
with different phase transition temperatures can be used, the cost of material preparation
will have a substantial increase. In addition, the working temperature of refrigerates will
change with the temperature change of the hot and cold end. It is difficult to control the
working temperature of every position. If a uniaxial strain could assist in the AMR cycle,
only one material is needed and the phase transition temperature of this material can be
continuously adjusted to the optimal temperature by tuning the uniaxial strain. Hence, the
cooling performance can be enhanced and the cost of material preparation can be saved.
For example, T0 is the optimal temperature for NCMS alloys in the initial state and the
temperature of the refrigerants in the material bed varies from T0 to T3. If suitable uniaxial
strains (ε0, ε1, ε2, and ε3) are applied to different refrigerants (A, B, C, D), the temperature
of each refrigerant could be optimized to be in line with the increasing temperatures in the
material bed as shown in Figure 5b. As a result, the cooling performance of the AMR cycle
could be improved with the assistance of uniaxial strains.
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Figure 5. (a) The schematic diagram of the temperature gradient in the material bed, where the
temperature gradient is displayed, where T indicate the temperature of the refrigerates and A, B,
C, D indicate refrigerants at four different positions in the material bed. (b) The optimal working
temperature of refrigerants tuned by the uniaxial strain.

4. Conclusions

In conclusion, we have manufactured a uniaxial pressure cell, which can be directly
used in the standard magnetometers. Thus, the magnetic properties under the combination
of uniaxial strain and magnetic field can be directly characterized by the standard mag-
netometers. This is highly important for the research on the interplay between structural
and magnetic degrees of freedom and the coupling effect in the first-order phase transition
materials. The feasibility of this cell was demonstrated in the regulation of the phase
transition and magnetocaloric effect in NCMS alloy. The cooling temperature span of
Ni40Co10Mn40Sn10 alloys can be broadened by 2 K and the evaluated RC values under a
magnetic field change of 3 T are enhanced from 246 to 277 J/kg with the assistance of a
uniaxial strain of about 0.5%. This research provides not only direct experimental assistance
for the tuning of phase transition by the uniaxial strain but also possibilities for research
on the coupling effect under the combination of uniaxial strain and magnetic field in the
first-order phase transition materials.
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