Table 7.
Error matrix for accuracy assessment of LULC classification based on deep learning (Rousset et al. [47]).
| a | b | c | d | e | f | g | h | i | j | k | l | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Urban areas (a) | 720 | 320 | 0 | 90 | 10 | 20 | 10 | 0 | 10 | 0 | 0 | 0 |
| Industrial Areas (b) | 30 | 430 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Worksites and mines (c) | 0 | 0 | 860 | 20 | 150 | 0 | 10 | 20 | 270 | 690 | 20 | 50 |
| Road Networks (d) | 50 | 180 | 10 | 580 | 70 | 0 | 0 | 0 | 0 | 20 | 0 | 40 |
| Trails (e) | 10 | 10 | 20 | 30 | 80 | 0 | 0 | 10 | 20 | 10 | 0 | 10 |
| Forests (f) | 60 | 30 | 0 | 60 | 70 | 770 | 190 | 20 | 50 | 10 | 40 | 30 |
| Medium-density Vegetation (g) | 90 | 20 | 30 | 70 | 250 | 170 | 690 | 460 | 270 | 30 | 10 | 50 |
| Low-density vegetation (h) | 40 | 10 | 30 | 40 | 160 | 20 | 80 | 470 | 90 | 60 | 0 | 30 |
| Bare rocks (i) | 0 | 0 | 0 | 10 | 40 | 0 | 10 | 10 | 120 | 0 | 0 | 10 |
| Bare soil (j) | 0 | 0 | 20 | 50 | 40 | 0 | 0 | 10 | 20 | 140 | 0 | 40 |
| Water surfaces (k) | 0 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 10 | 0 | 880 | 10 |
| Engravements (l) | 0 | 0 | 30 | 50 | 130 | 10 | 10 | 0 | 140 | 40 | 50 | 370 |
| Column total | ||||||||||||
| Overall accuracy | 0.52 | |||||||||||
| Kappa | 0.48 | |||||||||||