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Abstract: The Internet of Things (IoT) has become one of the most important concepts in various
aspects of our modern life in recent years. However, the most critical challenge for the world-wide
use of the IoT is to address its security issues. One of the most important tasks to address the security
challenges in the IoT is to detect intrusion in the network. Although the machine/deep learning-
based solutions have been repeatedly used to detect network intrusion through recent years, there
is still considerable potential to improve the accuracy and performance of the classifier (intrusion
detector). In this paper, we develop a novel training algorithm to better tune the parameters of the
used deep architecture. To specifically do so, we first introduce a novel neighborhood search-based
particle swarm optimization (NSBPSO) algorithm to improve the exploitation/exploration of the
PSO algorithm. Next, we use the advantage of NSBPSO to optimally train the deep architecture as
our network intrusion detector in order to obtain better accuracy and performance. For evaluating
the performance of the proposed classifier, we use two network intrusion detection datasets named
UNSW-NB15 and Bot-IoT to rate the accuracy and performance of the proposed classifier.

Keywords: IoT; network intrusion detection; deep learning; optimal network training

1. Introduction

The Internet of Things (IoT), as a new communication/control platform, connects
everything/everybody to the Internet, where the behavior of connected nodes in the IoT
can be monitored to or their operation can be controlled by a (group of) server(s) [1–3].
IoT-connected nodes can range from simple sensors in various environments to critical
components in different applications and communicate with each other on a predefined
(Internet-based) network [4]. With the global activation of the IoT, there will be a funda-
mental change in various aspects of human life, including industry, culture, education,
trade, transportation, etc. Therefore, the IoT is one of the most important technologies
being developed in the world today [5–8].

In general, there are several challenges facing the IoT in order for it to be practically
implemented and move from the research and development to the productivity stage [9–13].
These challenges include but are not limited to: (a) large-scale: in any communication
networks, there are different parameters that may lead to a decrease in the network perfor-
mance, e.g., scalability, device heterogeneity, variety of network interactions, and network
mobility rate [14]; (b) lack of infrastructure: in the IoT, the connected devices need to
discover each other through a certain infrastructure [15]; and (c) commercialization: the
International Telecommunication Union (ITU) has described the IoT-commercialization
process as an important challenge and reported it as follows: “Many centers such as stan-
dard development organizations, research centers, service providers, network operators
need to work together and each change many of its own rules and regulations” [16].
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However, the most important and critical challenge that the IoT is facing, and will
always face, is security. Security itself can be defined/considered in different aspects such
as the kind of security requirements and threat models, the studied layer in the network,
and the type of cryptographic primitives that can be used [17–25]. The same as most
consumer technologies, IoT has not been considered with security in mind in the first
place, leading security to be emerging as an important obstacle in the adoption of different
networks and services.

Among all security mechanisms, intrusion detection [26–28] is one of the most im-
portant security mechanisms, which can be studied in all of four IoT architecture layers
as depicted in Figure 1 [29]. The network intrusion detection system (NIDS) is known
as a promising solution to detect the intrusion of malicious behaviors in IoT networks.
The NIDS is mainly provided by the network layer in the IoT, which plays as a spine in
order to connect various IoT devices. The adversarial threats in the network layer can
be classified in four main categories including probing, denial of service (DoS), user to
root (U2R), and remote to local (R2L) [30–36]. Another categorization for the NIDS is
based on the scheme’s ability in detecting the intrusion, based on which it is divided
into two main categories named signature-based intrusion detection and anomaly-based
intrusion detection [37–39]. A more general classification can include the host intrusion
detection (HID) and network intrusion detection (NID) [40–42], which have their own
advantages and drawbacks.
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1.1. Rekated Works

Through recent years, many schemes have been introduced for NID to better classify
different attacks/threats in the network’s normal traffic. The traditional detection schemes
have often employed statistical approaches, for example, distance measuring [43], the
Hidden Markov Model (HMM) [44], Bayes theory [45], cluster analysis [46], and signal
processing [47]; however, these methods have gradually given way to machine learning-
based approaches. Thaseen et al. [48] introduced an approach using the support vector
machine (SVM) and principal component analysis (PCA). They could improve the accuracy
and training-time cost for some attacks in the network, e.g., U2R and R2L, by automatically
tuning the optimization parameters and optimizing SVM’s kernels and parameters.

There are other well-known machine learning-based methods for detecting the attacks
in IoT networks, including the multi-layer perceptron neural network (MLP NN), Random
Forest (RF), and Naive Bayes (NB) [49–53], though, it has been shown that the performances
of MLP, RF, NB, and other traditional machine learning-based approaches are not sufficient,
especially when the number of traffic data is big, mostly because of their shallow learning
essence. As a result of the growth in using deep learning in various ranges of applications,
many efforts have been also done to propose an efficient and accurate NIDS based on
deep learning.
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Yin et al. [54] have introduced a NIDS using a recurrent neural network (RNN).
In comparison with former machine learning-based approaches, their scheme could obtain
better classification accuracy and a higher detection rate. He et al. [55] have introduced
a NIDS using the long short-term memory (LSTM) and multimodal deep auto-encoder
for obtaining better accuracy. Garg et al. [56] have introduced an IoT NIDS based on
the grey wolf optimizer (GWO) and the deep convolutional neural network (DCNN).
The authors in [56] have shown that their proposed model could achieve a higher detection
rate with minimized features on three network intrusion datasets. Xu et al. [57] proposed
employing a log-cosh conditional variational auto-encoder (CVAE) in order to catch the
complicated propagation of the observed data and produce new data with pre-specified
classes, leading to the creation of a more efficient way to produce various intrusion data for
disbalanced classes.

Deep learning-based approaches could have improved the accuracy of the NIDS,
though there were still some important features that needed to be improved, including
achieving a higher detection rate and decreasing the computational cost. One important
thing to do on these scores, which has been rarely considered in the literature, is to optimally
train the fully connected neural network in the deep architecture [58–63]. Due to the fact
that better training the fully connected neural network leads to better classification accuracy,
the used classifier can be designed in a more lightweight manner (in an equal detection
rate), and thus less data will be required to train the network.

1.2. Paper Contributions

According to the drawbacks of the mentioned NID models, the most important contri-
butions of this paper are summarized as follows:

• We improve a novel meta-heuristic algorithm named NSBPSO, in which new concepts
such as employed bees, onlooker bees, and the multi-parent crossover of bees are
introduced to better the exploitation and exploration abilities of the PSO algorithm.

• We optimally improve the performance of the DCNN as our NIDS by updating its
optimization parameters using the NSBPSO algorithm.

• We evaluate the performance of the proposed evolutionary deep learning-based IDS
by comparing it with other IoT intrusion detectors in the literature using the UNSW-
NB15 [64] and Bot-IoT [65] datasets.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 elaborates the proposed
NSBPSO algorithm. Section 3 explains the proposed NIDS for the IoT, including the used
datasets and the way of training the intrusion detector (DCNN) by the proposed NSBPSO
algorithm. Section 4 evaluates the performance of the proposed evolutionary deep learning-
based IDS by comparing it with other IoT intrusion detectors in the literature using the
UNSW-NB15 [64] and Bot-IoT [65] datasets, and, finally, we conclude the paper in Section 5.

2. The Proposed NSBPSO Algorithm

Particle Swarm Optimization (PSO) is one of the most important meta-heuristic al-
gorithms that was introduced by Kennedy and Eberhart in 1995. This algorithm was
inspired by the social behavior of animals such as fish and birds. PSO is suitable for
discrete and continuous problems and has performed very well in various engineering
optimization problems.

In the PSO algorithm, solutions are mapped to particles, and each particle is assigned
an initial velocity. The fitness function is used to calculate the next velocity of the particles
in the search space. Particle velocity consists of three main movements: (a) the percentage
of the previous movement, (b) the motion toward the best personal experience, and (c) the
motion toward the best experience of other particles. Figure 2 indicates an overview of
particle velocity motions in the PSO algorithm. Equations (1) and (2) represent the velocity
and position of the particles, respectively.
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Vid(t + 1) = αVid(t) + βrand(0,ϕ1)(Pid(t)− Xid(t)) + βrand(0,ϕ2)
(

Pgd(t)− Xid(t)
)

(1)

Xid(t + 1) = Xid(t) + Vid(t + 1) (2)

where Vid(t) = the current velocity of particle in dimension, d, Vid(t + 1) = the new veloc-
ity of particle in dimension, d, Xid(t) = the current position of particle in dimension, d,
Xid(t + 1) = the new position of particle in dimension d; βrand(0,ϕ1) = a random number
between zero and ϕ1, βrand(0,ϕ2) = a random number between zero and ϕ2, α = the
inertial coefficient, Pid(t) = the best personal experience of particles in dimension d, and
Pgd(t) = the best global experience of particles in dimension d.
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This paper shows that standard PSO has two main drawbacks: (I) insufficient abil-
ity to explore and exploit solutions, and (II) getting stuck in local minimums. PSO has
no operator to make sudden changes, which leads to getting stuck in local minimums.
The PSO algorithm improves its position by considering the best personal and global ex-
perience. If the initial populations are far from the best solution, PSO can rarely converge.
Another weakness of PSO is that this algorithm is highly dependent on the distribution
of initial particles in the search space. If a considerable number of particles are trapped
in local minimums, PSO can slightly prevent particles from being trapped in local mini-
mums. However, PSO converges faster if the particles change suddenly. In this paper, to
improve the PSO algorithm, employed bees, onlooker bees, and the multi-parent crossover
of bees are used to amplify exploitation and exploration. The proposed algorithm is called
neighborhood search-based particle swarm optimization (NSBPSO).

In the proposed NSBPSO algorithm, by considering several particles as the employed
bees (global bests), different parts of the search space can be examined simultaneously.
Therefore, it helps the algorithm to avoid being trapped in the local minimums. In the artifi-
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cial bee colony (ABC) algorithm, the onlooker bees are obtained by a neighborhood search
around the employed bees. If the onlooker bees are more efficient than the employed bees,
they will be replaced by the employed bees and the employed bees will be updated. In the
proposed NSBPSO algorithm, after selecting the employed bees, a number of onlooker
bees are sent to search around them. Updated employed bees are then compared to the
global best, and the global best is updated. In NSBPSO, onlooker bees play the role of
exploiting good solutions. Figure 3 shows the example of the production of onlooker bees
(a neighborhood search around employed bees).
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In standard PSO, the particle diversity gradually decreases as the particles move
towards the personal best and global best. In this paper, due to the exploratory nature of the
crossover operator, a multi-parent crossover is proposed to achieve highly varied solutions.
In this operator, instead of using two employed bees, all employed bees participate in
the crossover to create new solutions. When we use several best particles (as employed
bees) to produce the new solutions, the obtained child bears less similarity to its parent,
meaning that the solutions are diverse in the search space. Therefore, the multi-parent
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crossover operator improves the algorithm exploration. Figure 4 shows the example of the
multi-parent crossover operator of the NSBPSO algorithm.
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Therefore, Equation (1) is updated as follows and two new vectors are added to im-
prove the PSO performance. Motion towards the best onlooker bee (from the neighborhood
search operator) improves the algorithm’s exploitation. Motion to the best employed bee
from the multi-parent crossover operator improves the algorithm’s exploration. Figure 5
shows the flowchart of the proposed NSBPSO algorithm.

Vid(t + 1) = αVid(t) + βrand(0,ϕ1)(Pid(t)− Xid(t)) + βrand(0,ϕ2)
(

Pgd(t)− Xid(t)
)

+βrand(0,ϕ3)(Pod(t)− Xid(t)) + βrand(0,ϕ4)(Ped(t)− Xid(t))
(3)

where βrand(0,ϕ3) = a random number between zero and ϕ3, βrand(0,ϕ4) = a random
number between zero and ϕ4, Pod(t) = the best onlooker bee from neighborhood search
operator in dimension d, and Ped(t) = the best employed bee from the multi-parent
crossover operator in dimension d.
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3. The Proposed IoT IDS Using the NSBPSO-Based Deep Architecture

In this section, we explain the proposed NIDS for the IoT, which mainly consists
of the DCNN. The overall schematic of the proposed classifier is depicted in Figure 5.
According to this figure, the input data passes through some convolution and pooling
layers. After that, we use a fully connected MLP to classify the datasets. The fully connected
MLP is trained by the proposed NSBPSO in order to achieve a higher classification and
detection rate. More details will be discussed in the following subsections.

3.1. Datasets

We explain two network intrusion detection datasets named UNSW-NB15 [64] and
Bot-IoT [65] in this section.

3.1.1. UNSW-NB15 Dataset

The raw network packets of the UNSW-NB15 dataset has been obtained from the IXIA
Perfect-Storm tool in the Cyber Range Lab of the Australian Centre for Cyber Security in
order to produce a hybrid of synthetic contemporary attack behaviors and real modern
normal activities. UNSW-NB15 dominates the defects of the KDD99 dataset (for instance,
no modern attacks, etc.) and has inchmeal become the most favorite dataset in the area
of IoT intrusion detection in recent years. In the training dataset, the number of records
is 175,341, whereas this number in the testing dataset decreases to 82,332. There are nine
kinds of attacks in the UNSW-NB15 dataset named Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode, and Worms.

3.1.2. Bot-IoT Dataset

This is the latest IoT network intrusion detection dataset. The network environment
in this dataset combined the normal and botnet traffic. In other words, Bot-IoT includes
normal IoT network traffic as well as four different attacks named DoS, distributed DoS
(DDoS), Reconnaissance, and Theft. Many IoT scenarios exist in Bot-IoT’s testbed, such
as a weather station, a smart fridge, motion-activated lights, a remote-controlled garage
door, and a smart thermostat. A huge number of traffic records exist in the raw CSV file
of the Bot-IoT dataset, so we only use some parts of the traffic records for our simulations
and experiments. In the training dataset, the number of terrific records is 364,562, whereas
this number in the testing dataset decreases to 243,043. Table 1 shows more details of
these datasets.



Sensors 2022, 22, 4459 8 of 17

Table 1. Summary of the UNSW-NB15 [64] and Bot-IoT [65] datasets. Reprinted with permission
from Ref. [52]. Copyright 2021 IEEE.

Dataset Category Training Dataset Testing Dataset

UNSW-NB15

Normal 56,000 37,000

Fuzzers 18,184 6062

Analysis 2000 677

Backdoors 1746 583

DoS 12,264 4089

Exploits 33,393 11,132

Generic 40,000 18,871

Recon. 10,491 3496

Shell 1133 378

Worms 130 44

Total 175,341 82,332

Bot-IoT

Normal 286 191

DoS 146,293 97,529

DDos 163,287 108,858

Recon. 54,649 36,433

Theft 47 32

Total 364,562 243,043

3.2. Training Deep Architecture Using the NSBPSO Algorithm

In this paper, the NSBPSO algorithm is used to train deep learning, called the NSBPSO
deep convolutional neural network (NSBPSO-DCNN). In the proposed algorithm, NSBPSO
optimizes the weights and biases of the fully connected MLP in the DCNN. For NSBPSO
modeling, one of the main tasks is to define a solution in the form of a particle. Figure 6
shows the definition of a particle in NSBPSO. The fitness function of proposed approach
can be calculated as Equation (4).

Mean Square Error (MSE) =
1
k

k

∑
i=1

(Oi − Di)
2 (4)

where, k = the total number of samples, Oi = system output, and Di = desire.
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4. Simulation Results on the NID Datasets

In this section, the results of various hybrid deep architectures for intrusion detection
in IoT systems are evaluated. The performance of the proposed NSBPSO algorithm is also
evaluated in comparison with some widely-used and competitive metaheuristic algorithms,
including the particle swarm optimization (PSO) algorithm, the artificial bee colony (ABC)
algorithm, the iterated greedy algorithm (IG) [66], the improved crow search algorithm
(I-CSA) [67], and the black widow optimization (BWO) algorithm [68]. All algorithms have
been coded in MATLAB, and the calibration parameters of the algorithms have been shown
in Table 2.
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Table 2. The parameters settings of the algorithms.

Algorithm Parameter Value

NSBPSO

The inertial movement rate (α) 0.08

The movement toward the best personal experience rate (Φ1) 0.56

The movement toward the best global experience rate (Φ2) 0.84

The movement toward the best onlooker bee from the neighborhood search rate (Φ3) 0.61

The movement toward the best employed bee from the multi-parent crossover rate (Φ4) 0.59

Population size 100

Iteration 300

I-CSA

Flight length (fl) 2

Awareness probability (AP) 0.1

Population size 100

Iteration 300

IG

T 0.4

d 4

Number of scout bees (population size) 100

Iteration 300

BWO

Procreate rate (PP) 0.62

Mutation rate (PM) 0.23

Cannibalism rate (CR) 0.46

Population size 100

Iteration 300

ABC

Number of onlooker bees 90

Number of employed bees 50

Number of scout bees (population size) 100

Iteration 300

PSO

The inertial movement rate (α) 0.11

The movement toward the best personal experience rate (Φ1) 0.61

The movement toward the best global experience rate (Φ2) 0.91

Population size 100

Iteration 300

For validation, sensitivity, accuracy, and specificity metrics are used to compare the
performance of the deep architectures. These criteria are derived from the confusion matrix
(as demonstrated in Figure 7) and can be calculated as Equations (5)–(7).

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

Accuracy =
TP + TN

TP + FN + FP + TN
(7)

where, TP = true positive, FN = false negative, TN = true negative, FP = false positive.
Table 3 indicates the specificity, accuracy, and sensitivity of evolutionary deep learning
models for intrusion detection in IoT systems. As can be seen, the NSBPSO-DCNN model
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indicates the highest ratios in accuracy, sensitivity, and specificity in training and testing
datasets. NSBPSO-DCNN achieved 99.41% and 98.86% accuracy in the test and train
datasets, respectively. NSBPSO-DCNN also achieved 99.86% and 99.03% sensitivity in the
test and train datasets, respectively.
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Table 3. The results of the proposed algorithms for intrusion detection in IoT systems.

Deep Architectures
Training Dataset Validation Dataset

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

NSBPSO-DCNN 0.9986 0.9648 0.9941 0.9903 0.9532 0.9886

I-CSA-DCNN 0.9902 0.9573 0.9852 0.9807 0.9480 0.9769

IG-DCNN 0.9883 0.9563 0.9809 0.9793 0.9491 0.9736

BWO-DCNN 0.9806 0.9541 0.9743 0.9736 0.9406 0.9686

ABC-DCNN 0.9752 0.9449 0.9674 0.9635 0.9366 0.9529

PSO-DCNN 0.9713 0.9376 0.9650 0.9641 0.9309 0.9517

Standard DCNN 0.9513 0.9273 0.9421 0.9415 0.9162 0.9362

Figures 8 and 9 show the comparison of deep architectures in the training and valida-
tion datasets, respectively. According to Figures 8 and 9, the rank of the architectures is:
NSBPSO-DCNN, I-CSA-DCNN, IG -DCNN, BWO -DCNN, ABC-DCNN, PSO-DCNN, and
Standard DCNN, respectively. The results of hybrid deep architectures in the test dataset
show that the proposed architectures are well trained using meta-heuristic algorithms
because the accuracy, specificity, and sensitivity of the different hybrid deep architectures
in the test and train datasets are highly stable.

Table 4 shows the trends of the accuracy and runtime of the proposed architectures in
different epochs. According to this table, the NSBPSO-DCNN architecture has achieved
the highest accuracy in the shortest runtime. The accuracy of the NSBPSO-DCNN, I-CSA-
DCNN, IG-DCNN, BWO-DCNN, ABC-DCNN, PSO-DCNN, and DCNN architectures
is 99.41%, 98.52%, 98.09%, 97.43%, 96.74%, 96.50%, and 94.21%, respectively. Figure 10
compares the total “Runtime” of the architectures. As can be seen, the runtime of NSBPSO-
DCNN is less than other architectures. As mentioned in Section 2, to develop the proposed
NSBPSO algorithm, employed bees and onlooker bees are used to improve the exploitation
of the PSO algorithm. Multi-parent crossover is also proposed to improve the exploration of
the algorithm. Hence, NSBPSO has provided the best results compared to other algorithms.
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Table 4. Accuracy and runtime of the models for different epochs.

Architectures Metric
Epoch

30 60 90 120 150 180 210 240 270 300

NSBPSO-DCNN
Accuracy (%) 91.15 91.88 92.89 94.54 95.84 97.91 98.63 98.88 99.25 99.41

Runtime (s) 74 145 196 275 321 384 462 521 598 681

I-CSA-DCNN
Accuracy (%) 90.16 90.89 91.76 93.60 94.79 95.50 96.98 97.95 98.21 98.52

Runtime (s) 91 169 224 296 351 422 498 543 601 709

IG-DCNN
Accuracy (%) 89.19 90.47 91.85 92.19 93.59 94.90 96.48 97.43 97.89 98.09

Runtime (s) 101 175 246 296 361 429 514 596 632 723

BWO-DCNN
Accuracy (%) 87.72 89.63 90.18 91.85 92.06 92.89 94.73 96.48 97.09 97.43

Runtime (s) 110 185 239 310 389 435 520 599 649 730

ABC-DCNN
Accuracy (%) 89.18 90.19 91.08 91.73 92.76 93.09 94.19 94.81 95.12 96.74

Runtime (s) 136 210 269 314 395 452 576 641 709 789

PSO-DCNN
Accuracy (%) 84.19 86.81 89.72 91.29 92.18 93.18 93.98 94.10 95.29 96.50

Runtime (s) 115 196 267 32 406 459 534 612 693 743

DCNN
Accuracy (%) 78.85 83.49 86.79 89.12 90.13 90.83 91.45 92.71 93.28 94.21

Runtime (s) 159 274 368 406 479 563 631 729 803 876
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Figure 10. Comparison of the proposed algorithms.

Table 5 indicates the value of the mean square error (MSE) for the proposed architec-
tures. The proposed NSBPSO-DCNN model has a lower MSE than other methods. In the
proposed NSBPSO, by considering several particles as the employed bees (global bests),
different parts of the search space can be examined simultaneously. Therefore, it helps
the algorithm to avoid being trapped in the local minimums. Therefore, the proposed
NSBPSO-DCNN model has been useful for intrusion detection in IoT systems.

Figures 11 and 12 show the convergence curve of the NSBPSO-DCNN and other
architectures. The NSBPSO-DCNN architecture is close to its lowest MSE at epoch = 80.
However, other architectures do not have good accuracy at epoch = 80. Subsequently, with
an increasing epoch, NSBPSO-DCNN has achieved high stability and high convergence
speed. As shown in Figure 12a, the convergence curve of the proposed NSBPSO-DCNN
architecture is faster than the other architectures. The reason for NSBPSO’s superiority is
the existence of two new operators. (a) The motion towards the best onlooker bee (from
neighborhood search operator) improves the algorithm’s exploitation, and (b) the motion
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towards the best employed bee from the multi-parent crossover operator improves the
algorithm’s exploration. Figure 12b shows the details of the convergence curves.

Table 5. The value of MSE for the proposed architectures.

Deep Learning Architectures
Mean Square Error (MSE)

Training Dataset Validation Dataset

NSBPSO-DCNN 0.00010 0.00053

I-CSA-DCNN 0.00109 0.03012

IG-DCNN 0.01456 0.05106

BWO-DCNN 0.08186 0.10456

ABC-DCNN 0.20145 0.43296

PSO-DCNN 0.30156 0.58325

Standard DCNN 0.51256 0.74123
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Figure 11. The convergence curve of the NSBPSO-DCNN architecture.

A nonparametric statistical test called Wilcoxon has been used to show the significant
differences between all models. The Wilcoxon test is applied to measure the similarity
of two dependent degree-scale samples. Derrac et al. [69] provided the full details of
this nonparametric statistical test. All architectures have been implemented with 25 runs
for intrusion detection in IoT systems. The mean values of the fitness function were
normalized and then the Wilcoxon test results were obtained using SPSS software. Table 6
shows the R+, R−, and p-value for all NSBPSO-DCNN pairwise comparisons. As shown
in Table 6, NSBPSO-DCNN shows an improvement versus I-CSA-DCNN, IG-DCNN, and
BWO-DCNN with a level of significance α = 0.05, and versus ABC-DCNN, PSO-DCNN,
and Standard DCNN with a level of significance α = 0.01. According to the results, NSBPSO-
DCNN has a strong performance compared to the other algorithms.
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I-CSA-DCNN, IG-DCNN.

Table 6. The results of architectures in the nonparametric statistical test (Wilcoxon test).

Comparison of Algorithm R+ R− p-Value Level of Significance (α)

NSBPSO-DCNN versus I-CSA-DCNN 33 22 0.074 α = 0.05

NSBPSO-DCNN versus IG-DCNN 35 20 0.053 α = 0.05

NSBPSO-DCNN versus BWO-DCNN 38 17 0.041 α = 0.05

NSBPSO-DCNN versus ABC-DCNN 43 12 0.007 α = 0.01

NSBPSO-DCNN versus PSO-DCNN 45 10 0.004 α = 0.01

NSBPSO-DCNN versus Standard DCNN 50 5 0.002 α = 0.01

5. Conclusions and Discussion

This paper developed a novel training algorithm for better tuning the parameters of
the DCNN to accurately detect intrusion in IoT networks. Deep learning-based approaches
could have improved the accuracy of the NIDS, though there were still some important
features that needed to be improved, including achieving a higher detection rate and
decreasing the computational cost. To do so, first, a novel modified PSO algorithm named
the NSBPSO algorithm has been introduced to improve the exploitation and exploration
abilities of the PSO algorithm. After that, we used the advantages of the NSBPSO algorithm
to optimally train the deep architecture as our network intrusion detector in order to obtain
better accuracy and performance. For evaluating the performance of the NSBPSO-based
DCNN, we used two network intrusion detection datasets named UNSW-NB15 and Bot-IoT
to evaluate the accuracy and performance of the proposed classifier. The experiment results
have shown that the proposed NIDS has the best accuracy and performance in comparison
with other state-of-the-art schemes.
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