
Citation: Baniasadi, S.; Rostami, O.;

Martín, D.; Kaveh, M. A Novel Deep

Supervised Learning-Based

Approach for Intrusion Detection in

IoT Systems. Sensors 2022, 22, 4459.

https://doi.org/10.3390/s22124459

Academic Editor: Francesco Bellotti

Received: 9 May 2022

Accepted: 9 June 2022

Published: 13 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Novel Deep Supervised Learning-Based Approach for
Intrusion Detection in IoT Systems
Sahba Baniasadi 1, Omid Rostami 1, Diego Martín 2,* and Mehrdad Kaveh 2

1 Department of Industrial Engineering, University of Houston, Houston, TX 77204, USA;
sbaniasa@cougarnet.uh.edu (S.B.); orostami@cougarnet.uh.edu (O.R.)

2 ETSI Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
m.kaveh11@email.kntu.ac.ir

* Correspondence: diego.martin.de.andres@upm.es

Abstract: The Internet of Things (IoT) has become one of the most important concepts in various
aspects of our modern life in recent years. However, the most critical challenge for the world-wide
use of the IoT is to address its security issues. One of the most important tasks to address the security
challenges in the IoT is to detect intrusion in the network. Although the machine/deep learning-
based solutions have been repeatedly used to detect network intrusion through recent years, there
is still considerable potential to improve the accuracy and performance of the classifier (intrusion
detector). In this paper, we develop a novel training algorithm to better tune the parameters of the
used deep architecture. To specifically do so, we first introduce a novel neighborhood search-based
particle swarm optimization (NSBPSO) algorithm to improve the exploitation/exploration of the
PSO algorithm. Next, we use the advantage of NSBPSO to optimally train the deep architecture as
our network intrusion detector in order to obtain better accuracy and performance. For evaluating
the performance of the proposed classifier, we use two network intrusion detection datasets named
UNSW-NB15 and Bot-IoT to rate the accuracy and performance of the proposed classifier.

Keywords: IoT; network intrusion detection; deep learning; optimal network training

1. Introduction

The Internet of Things (IoT), as a new communication/control platform, connects
everything/everybody to the Internet, where the behavior of connected nodes in the IoT
can be monitored to or their operation can be controlled by a (group of) server(s) [1–3].
IoT-connected nodes can range from simple sensors in various environments to critical
components in different applications and communicate with each other on a predefined
(Internet-based) network [4]. With the global activation of the IoT, there will be a funda-
mental change in various aspects of human life, including industry, culture, education,
trade, transportation, etc. Therefore, the IoT is one of the most important technologies
being developed in the world today [5–8].

In general, there are several challenges facing the IoT in order for it to be practically
implemented and move from the research and development to the productivity stage [9–13].
These challenges include but are not limited to: (a) large-scale: in any communication
networks, there are different parameters that may lead to a decrease in the network perfor-
mance, e.g., scalability, device heterogeneity, variety of network interactions, and network
mobility rate [14]; (b) lack of infrastructure: in the IoT, the connected devices need to
discover each other through a certain infrastructure [15]; and (c) commercialization: the
International Telecommunication Union (ITU) has described the IoT-commercialization
process as an important challenge and reported it as follows: “Many centers such as stan-
dard development organizations, research centers, service providers, network operators
need to work together and each change many of its own rules and regulations” [16].

Sensors 2022, 22, 4459. https://doi.org/10.3390/s22124459 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22124459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8810-0695
https://orcid.org/0000-0002-2660-4158
https://doi.org/10.3390/s22124459
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22124459?type=check_update&version=1

Sensors 2022, 22, 4459 2 of 17

However, the most important and critical challenge that the IoT is facing, and will
always face, is security. Security itself can be defined/considered in different aspects such
as the kind of security requirements and threat models, the studied layer in the network,
and the type of cryptographic primitives that can be used [17–25]. The same as most
consumer technologies, IoT has not been considered with security in mind in the first
place, leading security to be emerging as an important obstacle in the adoption of different
networks and services.

Among all security mechanisms, intrusion detection [26–28] is one of the most im-
portant security mechanisms, which can be studied in all of four IoT architecture layers
as depicted in Figure 1 [29]. The network intrusion detection system (NIDS) is known
as a promising solution to detect the intrusion of malicious behaviors in IoT networks.
The NIDS is mainly provided by the network layer in the IoT, which plays as a spine in
order to connect various IoT devices. The adversarial threats in the network layer can
be classified in four main categories including probing, denial of service (DoS), user to
root (U2R), and remote to local (R2L) [30–36]. Another categorization for the NIDS is
based on the scheme’s ability in detecting the intrusion, based on which it is divided
into two main categories named signature-based intrusion detection and anomaly-based
intrusion detection [37–39]. A more general classification can include the host intrusion
detection (HID) and network intrusion detection (NID) [40–42], which have their own
advantages and drawbacks.

Sensors 2022, 21, x FOR PEER REVIEW 2 of 18

providers, network operators need to work together and each change many of its own

rules and regulations” [16].

However, the most important and critical challenge that the IoT is facing, and will

always face, is security. Security itself can be defined/considered in different aspects such

as the kind of security requirements and threat models, the studied layer in the network,

and the type of cryptographic primitives that can be used [17–25]. The same as most

consumer technologies, IoT has not been considered with security in mind in the first

place, leading security to be emerging as an important obstacle in the adoption of dif-

ferent networks and services.

Among all security mechanisms, intrusion detection [26–28] is one of the most im-

portant security mechanisms, which can be studied in all of four IoT architecture layers

as depicted in Figure 1 [29]. The network intrusion detection system (NIDS) is known as a

promising solution to detect the intrusion of malicious behaviors in IoT networks. The

NIDS is mainly provided by the network layer in the IoT, which plays as a spine in order

to connect various IoT devices. The adversarial threats in the network layer can be clas-

sified in four main categories including probing, denial of service (DoS), user to root

(U2R), and remote to local (R2L) [30–36]. Another categorization for the NIDS is based on

the scheme’s ability in detecting the intrusion, based on which it is divided into two main

categories named signature-based intrusion detection and anomaly-based intrusion de-

tection [37–39]. A more general classification can include the host intrusion detection

(HID) and network intrusion detection (NID) [40–42], which have their own advantages

and drawbacks.

Its best perf.

The best perf.

of its

neighbours

Pi

Pg
X

V

Figure 1. The velocity motions of particles in PSO.

1.1. Rekated Works

Through recent years, many schemes have been introduced for NID to better classify

different attacks/threats in the network’s normal traffic. The traditional detection

schemes have often employed statistical approaches, for example, distance measuring

[43], the Hidden Markov Model (HMM) [44], Bayes theory [45], cluster analysis [46], and

signal processing [47]; however, these methods have gradually given way to machine

learning-based approaches. Thaseen et al. [48] introduced an approach using the support

vector machine (SVM) and principal component analysis (PCA). They could improve the

accuracy and training-time cost for some attacks in the network, e.g., U2R and R2L, by

automatically tuning the optimization parameters and optimizing SVM’s kernels and

parameters.

There are other well-known machine learning-based methods for detecting the at-

tacks in IoT networks, including the multi-layer perceptron neural network (MLP NN),

Random Forest (RF), and Naive Bayes (NB) [49–53], though, it has been shown that the

Figure 1. The velocity motions of particles in PSO.

1.1. Rekated Works

Through recent years, many schemes have been introduced for NID to better classify
different attacks/threats in the network’s normal traffic. The traditional detection schemes
have often employed statistical approaches, for example, distance measuring [43], the
Hidden Markov Model (HMM) [44], Bayes theory [45], cluster analysis [46], and signal
processing [47]; however, these methods have gradually given way to machine learning-
based approaches. Thaseen et al. [48] introduced an approach using the support vector
machine (SVM) and principal component analysis (PCA). They could improve the accuracy
and training-time cost for some attacks in the network, e.g., U2R and R2L, by automatically
tuning the optimization parameters and optimizing SVM’s kernels and parameters.

There are other well-known machine learning-based methods for detecting the attacks
in IoT networks, including the multi-layer perceptron neural network (MLP NN), Random
Forest (RF), and Naive Bayes (NB) [49–53], though, it has been shown that the performances
of MLP, RF, NB, and other traditional machine learning-based approaches are not sufficient,
especially when the number of traffic data is big, mostly because of their shallow learning
essence. As a result of the growth in using deep learning in various ranges of applications,
many efforts have been also done to propose an efficient and accurate NIDS based on
deep learning.

Sensors 2022, 22, 4459 3 of 17

Yin et al. [54] have introduced a NIDS using a recurrent neural network (RNN).
In comparison with former machine learning-based approaches, their scheme could obtain
better classification accuracy and a higher detection rate. He et al. [55] have introduced
a NIDS using the long short-term memory (LSTM) and multimodal deep auto-encoder
for obtaining better accuracy. Garg et al. [56] have introduced an IoT NIDS based on
the grey wolf optimizer (GWO) and the deep convolutional neural network (DCNN).
The authors in [56] have shown that their proposed model could achieve a higher detection
rate with minimized features on three network intrusion datasets. Xu et al. [57] proposed
employing a log-cosh conditional variational auto-encoder (CVAE) in order to catch the
complicated propagation of the observed data and produce new data with pre-specified
classes, leading to the creation of a more efficient way to produce various intrusion data for
disbalanced classes.

Deep learning-based approaches could have improved the accuracy of the NIDS,
though there were still some important features that needed to be improved, including
achieving a higher detection rate and decreasing the computational cost. One important
thing to do on these scores, which has been rarely considered in the literature, is to optimally
train the fully connected neural network in the deep architecture [58–63]. Due to the fact
that better training the fully connected neural network leads to better classification accuracy,
the used classifier can be designed in a more lightweight manner (in an equal detection
rate), and thus less data will be required to train the network.

1.2. Paper Contributions

According to the drawbacks of the mentioned NID models, the most important contri-
butions of this paper are summarized as follows:

• We improve a novel meta-heuristic algorithm named NSBPSO, in which new concepts
such as employed bees, onlooker bees, and the multi-parent crossover of bees are
introduced to better the exploitation and exploration abilities of the PSO algorithm.

• We optimally improve the performance of the DCNN as our NIDS by updating its
optimization parameters using the NSBPSO algorithm.

• We evaluate the performance of the proposed evolutionary deep learning-based IDS
by comparing it with other IoT intrusion detectors in the literature using the UNSW-
NB15 [64] and Bot-IoT [65] datasets.

1.3. Paper Organization

The rest of this paper is organized as follows: Section 2 elaborates the proposed
NSBPSO algorithm. Section 3 explains the proposed NIDS for the IoT, including the used
datasets and the way of training the intrusion detector (DCNN) by the proposed NSBPSO
algorithm. Section 4 evaluates the performance of the proposed evolutionary deep learning-
based IDS by comparing it with other IoT intrusion detectors in the literature using the
UNSW-NB15 [64] and Bot-IoT [65] datasets, and, finally, we conclude the paper in Section 5.

2. The Proposed NSBPSO Algorithm

Particle Swarm Optimization (PSO) is one of the most important meta-heuristic al-
gorithms that was introduced by Kennedy and Eberhart in 1995. This algorithm was
inspired by the social behavior of animals such as fish and birds. PSO is suitable for
discrete and continuous problems and has performed very well in various engineering
optimization problems.

In the PSO algorithm, solutions are mapped to particles, and each particle is assigned
an initial velocity. The fitness function is used to calculate the next velocity of the particles
in the search space. Particle velocity consists of three main movements: (a) the percentage
of the previous movement, (b) the motion toward the best personal experience, and (c) the
motion toward the best experience of other particles. Figure 2 indicates an overview of
particle velocity motions in the PSO algorithm. Equations (1) and (2) represent the velocity
and position of the particles, respectively.

Sensors 2022, 22, 4459 4 of 17

Vid(t + 1) = αVid(t) + βrand(0,ϕ1)(Pid(t)− Xid(t)) + βrand(0,ϕ2)
(

Pgd(t)− Xid(t)
)

(1)

Xid(t + 1) = Xid(t) + Vid(t + 1) (2)

where Vid(t) = the current velocity of particle in dimension, d, Vid(t + 1) = the new veloc-
ity of particle in dimension, d, Xid(t) = the current position of particle in dimension, d,
Xid(t + 1) = the new position of particle in dimension d; βrand(0,ϕ1) = a random number
between zero and ϕ1, βrand(0,ϕ2) = a random number between zero and ϕ2, α = the
inertial coefficient, Pid(t) = the best personal experience of particles in dimension d, and
Pgd(t) = the best global experience of particles in dimension d.

Sensors 2022, 21, x FOR PEER REVIEW 4 of 18

and continuous problems and has performed very well in various engineering optimiza-

tion problems.

In the PSO algorithm, solutions are mapped to particles, and each particle is as-

signed an initial velocity. The fitness function is used to calculate the next velocity of the

particles in the search space. Particle velocity consists of three main movements: (a) the

percentage of the previous movement, (b) the motion toward the best personal experi-

ence, and (c) the motion toward the best experience of other particles. Figure 2 indicates

an overview of particle velocity motions in the PSO algorithm. Equations (1) and (2)

represent the velocity and position of the particles, respectively.

𝑉𝑖𝑑(t + 1) = α𝑉𝑖𝑑(t) + βrand(0, φ1)(𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + βrand(0, φ2)(𝑃𝑔𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) (1)

𝑋𝑖𝑑(t + 1) = 𝑋𝑖𝑑(t) + 𝑉𝑖𝑑(t + 1) (2)

where 𝑉𝑖𝑑(t) = the current velocity of particle in dimension, 𝑑, 𝑉𝑖𝑑(t + 1) = the new ve-

locity of particle in dimension, 𝑑, 𝑋𝑖𝑑(t) = the current position of particle in dimension,

𝑑, 𝑋𝑖𝑑(t + 1) = the new position of particle in dimension 𝑑; βrand(0, φ1) = a random

number between zero and φ1, βrand(0, φ2) = a random number between zero and φ2,

α = the inertial coefficient, 𝑃𝑖𝑑(𝑡) = the best personal experience of particles in dimen-

sion 𝑑, and 𝑃𝑔𝑑(𝑡) = the best global experience of particles in dimension 𝑑.

Figure 2. The example of a neighborhood search around employed bees.

This paper shows that standard PSO has two main drawbacks: (I) insufficient ability

to explore and exploit solutions, and (II) getting stuck in local minimums. PSO has no

operator to make sudden changes, which leads to getting stuck in local minimums. The

PSO algorithm improves its position by considering the best personal and global expe-

rience. If the initial populations are far from the best solution, PSO can rarely converge.

Another weakness of PSO is that this algorithm is highly dependent on the distribution of

Figure 2. The example of a neighborhood search around employed bees.

This paper shows that standard PSO has two main drawbacks: (I) insufficient abil-
ity to explore and exploit solutions, and (II) getting stuck in local minimums. PSO has
no operator to make sudden changes, which leads to getting stuck in local minimums.
The PSO algorithm improves its position by considering the best personal and global ex-
perience. If the initial populations are far from the best solution, PSO can rarely converge.
Another weakness of PSO is that this algorithm is highly dependent on the distribution
of initial particles in the search space. If a considerable number of particles are trapped
in local minimums, PSO can slightly prevent particles from being trapped in local mini-
mums. However, PSO converges faster if the particles change suddenly. In this paper, to
improve the PSO algorithm, employed bees, onlooker bees, and the multi-parent crossover
of bees are used to amplify exploitation and exploration. The proposed algorithm is called
neighborhood search-based particle swarm optimization (NSBPSO).

In the proposed NSBPSO algorithm, by considering several particles as the employed
bees (global bests), different parts of the search space can be examined simultaneously.
Therefore, it helps the algorithm to avoid being trapped in the local minimums. In the artifi-

Sensors 2022, 22, 4459 5 of 17

cial bee colony (ABC) algorithm, the onlooker bees are obtained by a neighborhood search
around the employed bees. If the onlooker bees are more efficient than the employed bees,
they will be replaced by the employed bees and the employed bees will be updated. In the
proposed NSBPSO algorithm, after selecting the employed bees, a number of onlooker
bees are sent to search around them. Updated employed bees are then compared to the
global best, and the global best is updated. In NSBPSO, onlooker bees play the role of
exploiting good solutions. Figure 3 shows the example of the production of onlooker bees
(a neighborhood search around employed bees).

Sensors 2022, 21, x FOR PEER REVIEW 6 of 18

Figure 3. The example of the multi-parent crossover operator.

In standard PSO, the particle diversity gradually decreases as the particles move

towards the personal best and global best. In this paper, due to the exploratory nature of

the crossover operator, a multi-parent crossover is proposed to achieve highly varied

solutions. In this operator, instead of using two employed bees, all employed bees par-

ticipate in the crossover to create new solutions. When we use several best particles (as

employed bees) to produce the new solutions, the obtained child bears less similarity to

its parent, meaning that the solutions are diverse in the search space. Therefore, the mul-

ti-parent crossover operator improves the algorithm exploration. Figure 4 shows the

example of the multi-parent crossover operator of the NSBPSO algorithm.

Figure 3. The example of the multi-parent crossover operator.

In standard PSO, the particle diversity gradually decreases as the particles move
towards the personal best and global best. In this paper, due to the exploratory nature of the
crossover operator, a multi-parent crossover is proposed to achieve highly varied solutions.
In this operator, instead of using two employed bees, all employed bees participate in
the crossover to create new solutions. When we use several best particles (as employed
bees) to produce the new solutions, the obtained child bears less similarity to its parent,
meaning that the solutions are diverse in the search space. Therefore, the multi-parent

Sensors 2022, 22, 4459 6 of 17

crossover operator improves the algorithm exploration. Figure 4 shows the example of the
multi-parent crossover operator of the NSBPSO algorithm.

Sensors 2022, 21, x FOR PEER REVIEW 7 of 18

Initialization and particle definition

Updating the position

Motion towards the best onlooker bee

Motion to the inertia, pbest, and gbest

Motion towards the best employed bee (MPC)

Create initial population randomly

Calculate the fitness function

Updating pbest and gbest

Termination

condition

Start

End (gbest)

No

Yes

Figure 4. The flowchart of the proposed NSBPSO algorithm.

Therefore, Equation (1) is updated as follows and two new vectors are added to

improve the PSO performance. Motion towards the best onlooker bee (from the neigh-

borhood search operator) improves the algorithm’s exploitation. Motion to the best em-

ployed bee from the multi-parent crossover operator improves the algorithm’s explora-

tion. Figure 5 shows the flowchart of the proposed NSBPSO algorithm.

𝑉𝑖𝑑(t + 1) = α𝑉𝑖𝑑(t) + βrand(0, φ1)(𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + βrand(0, φ2)(𝑃𝑔𝑑(𝑡) −

𝑋𝑖𝑑(𝑡)) + βrand(0, φ3)(𝑃𝑜𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + βrand(0, φ4)(𝑃𝑒𝑑(𝑡) − 𝑋𝑖𝑑(𝑡))
(3)

where βrand(0, φ3) = a random number between zero and φ3, βrand(0, φ4) = a ran-

dom number between zero and φ4, 𝑃𝑜𝑑(𝑡) = the best onlooker bee from neighborhood

search operator in dimension 𝑑, and 𝑃𝑒𝑑(𝑡) = the best employed bee from the mul-

ti-parent crossover operator in dimension 𝑑.

IoT Network Traffic

1st Convolution 1st Pooling 2nd Convolution

Fully Connected MLP Desired Value

F
la

tt
e

n
e

d
F

la
tt

e
n

e
d

1st Iteration Nth Iteration

NSBPSO

Figure 5. The overall schematic of the proposed model for detecting IoT network intrusions.

Figure 4. The flowchart of the proposed NSBPSO algorithm.

Therefore, Equation (1) is updated as follows and two new vectors are added to im-
prove the PSO performance. Motion towards the best onlooker bee (from the neighborhood
search operator) improves the algorithm’s exploitation. Motion to the best employed bee
from the multi-parent crossover operator improves the algorithm’s exploration. Figure 5
shows the flowchart of the proposed NSBPSO algorithm.

Vid(t + 1) = αVid(t) + βrand(0,ϕ1)(Pid(t)− Xid(t)) + βrand(0,ϕ2)
(

Pgd(t)− Xid(t)
)

+βrand(0,ϕ3)(Pod(t)− Xid(t)) + βrand(0,ϕ4)(Ped(t)− Xid(t))
(3)

where βrand(0,ϕ3) = a random number between zero and ϕ3, βrand(0,ϕ4) = a random
number between zero and ϕ4, Pod(t) = the best onlooker bee from neighborhood search
operator in dimension d, and Ped(t) = the best employed bee from the multi-parent
crossover operator in dimension d.

Sensors 2022, 22, 4459 7 of 17

Sensors 2022, 21, x FOR PEER REVIEW 7 of 18

Initialization and particle definition

Updating the position

Motion towards the best onlooker bee

Motion to the inertia, pbest, and gbest

Motion towards the best employed bee (MPC)

Create initial population randomly

Calculate the fitness function

Updating pbest and gbest

Termination

condition

Start

End (gbest)

No

Yes

Figure 4. The flowchart of the proposed NSBPSO algorithm.

Therefore, Equation (1) is updated as follows and two new vectors are added to

improve the PSO performance. Motion towards the best onlooker bee (from the neigh-

borhood search operator) improves the algorithm’s exploitation. Motion to the best em-

ployed bee from the multi-parent crossover operator improves the algorithm’s explora-

tion. Figure 5 shows the flowchart of the proposed NSBPSO algorithm.

𝑉𝑖𝑑(t + 1) = α𝑉𝑖𝑑(t) + βrand(0, φ1)(𝑃𝑖𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + βrand(0, φ2)(𝑃𝑔𝑑(𝑡) −

𝑋𝑖𝑑(𝑡)) + βrand(0, φ3)(𝑃𝑜𝑑(𝑡) − 𝑋𝑖𝑑(𝑡)) + βrand(0, φ4)(𝑃𝑒𝑑(𝑡) − 𝑋𝑖𝑑(𝑡))
(3)

where βrand(0, φ3) = a random number between zero and φ3, βrand(0, φ4) = a ran-

dom number between zero and φ4, 𝑃𝑜𝑑(𝑡) = the best onlooker bee from neighborhood

search operator in dimension 𝑑, and 𝑃𝑒𝑑(𝑡) = the best employed bee from the mul-

ti-parent crossover operator in dimension 𝑑.

IoT Network Traffic

1st Convolution 1st Pooling 2nd Convolution

Fully Connected MLP Desired Value

F
la

tt
e

n
e

d
F

la
tt

e
n

e
d

1st Iteration Nth Iteration

NSBPSO

Figure 5. The overall schematic of the proposed model for detecting IoT network intrusions. Figure 5. The overall schematic of the proposed model for detecting IoT network intrusions.

3. The Proposed IoT IDS Using the NSBPSO-Based Deep Architecture

In this section, we explain the proposed NIDS for the IoT, which mainly consists
of the DCNN. The overall schematic of the proposed classifier is depicted in Figure 5.
According to this figure, the input data passes through some convolution and pooling
layers. After that, we use a fully connected MLP to classify the datasets. The fully connected
MLP is trained by the proposed NSBPSO in order to achieve a higher classification and
detection rate. More details will be discussed in the following subsections.

3.1. Datasets

We explain two network intrusion detection datasets named UNSW-NB15 [64] and
Bot-IoT [65] in this section.

3.1.1. UNSW-NB15 Dataset

The raw network packets of the UNSW-NB15 dataset has been obtained from the IXIA
Perfect-Storm tool in the Cyber Range Lab of the Australian Centre for Cyber Security in
order to produce a hybrid of synthetic contemporary attack behaviors and real modern
normal activities. UNSW-NB15 dominates the defects of the KDD99 dataset (for instance,
no modern attacks, etc.) and has inchmeal become the most favorite dataset in the area
of IoT intrusion detection in recent years. In the training dataset, the number of records
is 175,341, whereas this number in the testing dataset decreases to 82,332. There are nine
kinds of attacks in the UNSW-NB15 dataset named Fuzzers, Analysis, Backdoors, DoS,
Exploits, Generic, Reconnaissance, Shellcode, and Worms.

3.1.2. Bot-IoT Dataset

This is the latest IoT network intrusion detection dataset. The network environment
in this dataset combined the normal and botnet traffic. In other words, Bot-IoT includes
normal IoT network traffic as well as four different attacks named DoS, distributed DoS
(DDoS), Reconnaissance, and Theft. Many IoT scenarios exist in Bot-IoT’s testbed, such
as a weather station, a smart fridge, motion-activated lights, a remote-controlled garage
door, and a smart thermostat. A huge number of traffic records exist in the raw CSV file
of the Bot-IoT dataset, so we only use some parts of the traffic records for our simulations
and experiments. In the training dataset, the number of terrific records is 364,562, whereas
this number in the testing dataset decreases to 243,043. Table 1 shows more details of
these datasets.

Sensors 2022, 22, 4459 8 of 17

Table 1. Summary of the UNSW-NB15 [64] and Bot-IoT [65] datasets. Reprinted with permission
from Ref. [52]. Copyright 2021 IEEE.

Dataset Category Training Dataset Testing Dataset

UNSW-NB15

Normal 56,000 37,000

Fuzzers 18,184 6062

Analysis 2000 677

Backdoors 1746 583

DoS 12,264 4089

Exploits 33,393 11,132

Generic 40,000 18,871

Recon. 10,491 3496

Shell 1133 378

Worms 130 44

Total 175,341 82,332

Bot-IoT

Normal 286 191

DoS 146,293 97,529

DDos 163,287 108,858

Recon. 54,649 36,433

Theft 47 32

Total 364,562 243,043

3.2. Training Deep Architecture Using the NSBPSO Algorithm

In this paper, the NSBPSO algorithm is used to train deep learning, called the NSBPSO
deep convolutional neural network (NSBPSO-DCNN). In the proposed algorithm, NSBPSO
optimizes the weights and biases of the fully connected MLP in the DCNN. For NSBPSO
modeling, one of the main tasks is to define a solution in the form of a particle. Figure 6
shows the definition of a particle in NSBPSO. The fitness function of proposed approach
can be calculated as Equation (4).

Mean Square Error (MSE) =
1
k

k

∑
i=1

(Oi − Di)
2 (4)

where, k = the total number of samples, Oi = system output, and Di = desire.

Sensors 2022, 21, x FOR PEER REVIEW 9 of 18

Table 1. Summary of the UNSW-NB15 [64] and Bot-IoT [65] datasets. Reprinted with permission

from Ref. [52]. Copyright 2021 IEEE.

Dataset Category Training Dataset Testing Dataset

UNSW-NB15

Normal 56,000 37,000

Fuzzers 18,184 6062

Analysis 2000 677

Backdoors 1746 583

DoS 12,264 4089

Exploits 33,393 11,132

Generic 40,000 18,871

Recon. 10,491 3496

Shell 1133 378

Worms 130 44

Total 175,341 82,332

Bot-IoT

Normal 286 191

DoS 146,293 97,529

DDos 163,287 108,858

Recon. 54,649 36,433

Theft 47 32

Total 364,562 243,043

3.2. Training Deep Architecture Using the NSBPSO Algorithm

In this paper, the NSBPSO algorithm is used to train deep learning, called the

NSBPSO deep convolutional neural network (NSBPSO-DCNN). In the proposed algo-

rithm, NSBPSO optimizes the weights and biases of the fully connected MLP in the

DCNN. For NSBPSO modeling, one of the main tasks is to define a solution in the form of

a particle. Figure 6 shows the definition of a particle in NSBPSO. The fitness function of

proposed approach can be calculated as Equation (4).

𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑆𝐸) =
1

𝑘
 ∑(𝑂𝑖 − 𝐷𝑖)

2

𝑘

𝑖=1

 (4)

where, 𝑘 = the total number of samples, 𝑂𝑖 = system output, and 𝐷𝑖 = desire.

Figure 6. Particle definition in the NSBPSO algorithm.

4. Simulation Results on the NID Datasets

In this section, the results of various hybrid deep architectures for intrusion detec-

tion in IoT systems are evaluated. The performance of the proposed NSBPSO algorithm is

also evaluated in comparison with some widely-used and competitive metaheuristic al-

gorithms, including the particle swarm optimization (PSO) algorithm, the artificial bee

colony (ABC) algorithm, the iterated greedy algorithm (IG) [66], the improved crow

search algorithm (I-CSA) [67], and the black widow optimization (BWO) algorithm [68].

All algorithms have been coded in MATLAB, and the calibration parameters of the algo-

rithms have been shown in Table 2.

Figure 6. Particle definition in the NSBPSO algorithm.

4. Simulation Results on the NID Datasets

In this section, the results of various hybrid deep architectures for intrusion detection
in IoT systems are evaluated. The performance of the proposed NSBPSO algorithm is also
evaluated in comparison with some widely-used and competitive metaheuristic algorithms,
including the particle swarm optimization (PSO) algorithm, the artificial bee colony (ABC)
algorithm, the iterated greedy algorithm (IG) [66], the improved crow search algorithm
(I-CSA) [67], and the black widow optimization (BWO) algorithm [68]. All algorithms have
been coded in MATLAB, and the calibration parameters of the algorithms have been shown
in Table 2.

Sensors 2022, 22, 4459 9 of 17

Table 2. The parameters settings of the algorithms.

Algorithm Parameter Value

NSBPSO

The inertial movement rate (α) 0.08

The movement toward the best personal experience rate (Φ1) 0.56

The movement toward the best global experience rate (Φ2) 0.84

The movement toward the best onlooker bee from the neighborhood search rate (Φ3) 0.61

The movement toward the best employed bee from the multi-parent crossover rate (Φ4) 0.59

Population size 100

Iteration 300

I-CSA

Flight length (fl) 2

Awareness probability (AP) 0.1

Population size 100

Iteration 300

IG

T 0.4

d 4

Number of scout bees (population size) 100

Iteration 300

BWO

Procreate rate (PP) 0.62

Mutation rate (PM) 0.23

Cannibalism rate (CR) 0.46

Population size 100

Iteration 300

ABC

Number of onlooker bees 90

Number of employed bees 50

Number of scout bees (population size) 100

Iteration 300

PSO

The inertial movement rate (α) 0.11

The movement toward the best personal experience rate (Φ1) 0.61

The movement toward the best global experience rate (Φ2) 0.91

Population size 100

Iteration 300

For validation, sensitivity, accuracy, and specificity metrics are used to compare the
performance of the deep architectures. These criteria are derived from the confusion matrix
(as demonstrated in Figure 7) and can be calculated as Equations (5)–(7).

Sensitivity =
TP

TP + FN
(5)

Speci f icity =
TN

TN + FP
(6)

Accuracy =
TP + TN

TP + FN + FP + TN
(7)

where, TP = true positive, FN = false negative, TN = true negative, FP = false positive.
Table 3 indicates the specificity, accuracy, and sensitivity of evolutionary deep learning
models for intrusion detection in IoT systems. As can be seen, the NSBPSO-DCNN model

Sensors 2022, 22, 4459 10 of 17

indicates the highest ratios in accuracy, sensitivity, and specificity in training and testing
datasets. NSBPSO-DCNN achieved 99.41% and 98.86% accuracy in the test and train
datasets, respectively. NSBPSO-DCNN also achieved 99.86% and 99.03% sensitivity in the
test and train datasets, respectively.

Sensors 2022, 21, x FOR PEER REVIEW 11 of 18

datasets. NSBPSO-DCNN achieved 99.41% and 98.86% accuracy in the test and train da-

tasets, respectively. NSBPSO-DCNN also achieved 99.86% and 99.03% sensitivity in the

test and train datasets, respectively.

Figure 7. The confusion matrix.

Table 3. The results of the proposed algorithms for intrusion detection in IoT systems.

Deep

Architectures

Training Dataset Validation Dataset

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

NSBPSO-DCNN 0.9986 0.9648 0.9941 0.9903 0.9532 0.9886

I-CSA-DCNN 0.9902 0.9573 0.9852 0.9807 0.9480 0.9769

IG-DCNN 0.9883 0.9563 0.9809 0.9793 0.9491 0.9736

BWO-DCNN 0.9806 0.9541 0.9743 0.9736 0.9406 0.9686

ABC-DCNN 0.9752 0.9449 0.9674 0.9635 0.9366 0.9529

PSO-DCNN 0.9713 0.9376 0.9650 0.9641 0.9309 0.9517

Standard DCNN 0.9513 0.9273 0.9421 0.9415 0.9162 0.9362

Figures 8 and 9 show the comparison of deep architectures in the training and vali-

dation datasets, respectively. According to Figures 8 and 9, the rank of the architectures

is: NSBPSO-DCNN, I-CSA-DCNN, IG -DCNN, BWO -DCNN, ABC-DCNN, PSO-DCNN,

and Standard DCNN, respectively. The results of hybrid deep architectures in the test

dataset show that the proposed architectures are well trained using meta-heuristic algo-

rithms because the accuracy, specificity, and sensitivity of the different hybrid deep ar-

chitectures in the test and train datasets are highly stable.

Figure 7. The confusion matrix.

Table 3. The results of the proposed algorithms for intrusion detection in IoT systems.

Deep Architectures
Training Dataset Validation Dataset

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

NSBPSO-DCNN 0.9986 0.9648 0.9941 0.9903 0.9532 0.9886

I-CSA-DCNN 0.9902 0.9573 0.9852 0.9807 0.9480 0.9769

IG-DCNN 0.9883 0.9563 0.9809 0.9793 0.9491 0.9736

BWO-DCNN 0.9806 0.9541 0.9743 0.9736 0.9406 0.9686

ABC-DCNN 0.9752 0.9449 0.9674 0.9635 0.9366 0.9529

PSO-DCNN 0.9713 0.9376 0.9650 0.9641 0.9309 0.9517

Standard DCNN 0.9513 0.9273 0.9421 0.9415 0.9162 0.9362

Figures 8 and 9 show the comparison of deep architectures in the training and valida-
tion datasets, respectively. According to Figures 8 and 9, the rank of the architectures is:
NSBPSO-DCNN, I-CSA-DCNN, IG -DCNN, BWO -DCNN, ABC-DCNN, PSO-DCNN, and
Standard DCNN, respectively. The results of hybrid deep architectures in the test dataset
show that the proposed architectures are well trained using meta-heuristic algorithms
because the accuracy, specificity, and sensitivity of the different hybrid deep architectures
in the test and train datasets are highly stable.

Table 4 shows the trends of the accuracy and runtime of the proposed architectures in
different epochs. According to this table, the NSBPSO-DCNN architecture has achieved
the highest accuracy in the shortest runtime. The accuracy of the NSBPSO-DCNN, I-CSA-
DCNN, IG-DCNN, BWO-DCNN, ABC-DCNN, PSO-DCNN, and DCNN architectures
is 99.41%, 98.52%, 98.09%, 97.43%, 96.74%, 96.50%, and 94.21%, respectively. Figure 10
compares the total “Runtime” of the architectures. As can be seen, the runtime of NSBPSO-
DCNN is less than other architectures. As mentioned in Section 2, to develop the proposed
NSBPSO algorithm, employed bees and onlooker bees are used to improve the exploitation
of the PSO algorithm. Multi-parent crossover is also proposed to improve the exploration of
the algorithm. Hence, NSBPSO has provided the best results compared to other algorithms.

Sensors 2022, 22, 4459 11 of 17Sensors 2022, 21, x FOR PEER REVIEW 12 of 18

Figure 8. Comparison of the proposed architectures in the training dataset.

Figure 9. Comparison of the proposed architectures in the validation dataset.

Table 4 shows the trends of the accuracy and runtime of the proposed architectures

in different epochs. According to this table, the NSBPSO-DCNN architecture has

achieved the highest accuracy in the shortest runtime. The accuracy of the

NSBPSO-DCNN, I-CSA-DCNN, IG-DCNN, BWO-DCNN, ABC-DCNN, PSO-DCNN,

and DCNN architectures is 99.41%, 98.52%, 98.09%, 97.43%, 96.74%, 96.50%, and 94.21%,

respectively. Figure 10 compares the total “Runtime” of the architectures. As can be seen,

the runtime of NSBPSO-DCNN is less than other architectures. As mentioned in Section

2, to develop the proposed NSBPSO algorithm, employed bees and onlooker bees are

used to improve the exploitation of the PSO algorithm. Multi-parent crossover is also

90

91

92

93

94

95

96

97

98

99

100

Sensitivity Accuracy Specificity

%

Training dataset

NSBPSO-DCNN I-CSA-DCNN IG-DCNN BWO-DCNN

ABC-DCNN PSO-DCNN DCNN

90

91

92

93

94

95

96

97

98

99

100

Sensitivity Accuracy Specificity

%

Validation dataset

NSBPSO-DCNN I-CSA-DCNN IG-DCNN BWO-DCNN

ABC-DCNN PSO-DCNN DCNN

Figure 8. Comparison of the proposed architectures in the training dataset.

Sensors 2022, 21, x FOR PEER REVIEW 12 of 18

Figure 8. Comparison of the proposed architectures in the training dataset.

Figure 9. Comparison of the proposed architectures in the validation dataset.

Table 4 shows the trends of the accuracy and runtime of the proposed architectures

in different epochs. According to this table, the NSBPSO-DCNN architecture has

achieved the highest accuracy in the shortest runtime. The accuracy of the

NSBPSO-DCNN, I-CSA-DCNN, IG-DCNN, BWO-DCNN, ABC-DCNN, PSO-DCNN,

and DCNN architectures is 99.41%, 98.52%, 98.09%, 97.43%, 96.74%, 96.50%, and 94.21%,

respectively. Figure 10 compares the total “Runtime” of the architectures. As can be seen,

the runtime of NSBPSO-DCNN is less than other architectures. As mentioned in Section

2, to develop the proposed NSBPSO algorithm, employed bees and onlooker bees are

used to improve the exploitation of the PSO algorithm. Multi-parent crossover is also

90

91

92

93

94

95

96

97

98

99

100

Sensitivity Accuracy Specificity

%

Training dataset

NSBPSO-DCNN I-CSA-DCNN IG-DCNN BWO-DCNN

ABC-DCNN PSO-DCNN DCNN

90

91

92

93

94

95

96

97

98

99

100

Sensitivity Accuracy Specificity

%

Validation dataset

NSBPSO-DCNN I-CSA-DCNN IG-DCNN BWO-DCNN

ABC-DCNN PSO-DCNN DCNN

Figure 9. Comparison of the proposed architectures in the validation dataset.

Sensors 2022, 22, 4459 12 of 17

Table 4. Accuracy and runtime of the models for different epochs.

Architectures Metric
Epoch

30 60 90 120 150 180 210 240 270 300

NSBPSO-DCNN
Accuracy (%) 91.15 91.88 92.89 94.54 95.84 97.91 98.63 98.88 99.25 99.41

Runtime (s) 74 145 196 275 321 384 462 521 598 681

I-CSA-DCNN
Accuracy (%) 90.16 90.89 91.76 93.60 94.79 95.50 96.98 97.95 98.21 98.52

Runtime (s) 91 169 224 296 351 422 498 543 601 709

IG-DCNN
Accuracy (%) 89.19 90.47 91.85 92.19 93.59 94.90 96.48 97.43 97.89 98.09

Runtime (s) 101 175 246 296 361 429 514 596 632 723

BWO-DCNN
Accuracy (%) 87.72 89.63 90.18 91.85 92.06 92.89 94.73 96.48 97.09 97.43

Runtime (s) 110 185 239 310 389 435 520 599 649 730

ABC-DCNN
Accuracy (%) 89.18 90.19 91.08 91.73 92.76 93.09 94.19 94.81 95.12 96.74

Runtime (s) 136 210 269 314 395 452 576 641 709 789

PSO-DCNN
Accuracy (%) 84.19 86.81 89.72 91.29 92.18 93.18 93.98 94.10 95.29 96.50

Runtime (s) 115 196 267 32 406 459 534 612 693 743

DCNN
Accuracy (%) 78.85 83.49 86.79 89.12 90.13 90.83 91.45 92.71 93.28 94.21

Runtime (s) 159 274 368 406 479 563 631 729 803 876

Sensors 2022, 21, x FOR PEER REVIEW 13 of 18

proposed to improve the exploration of the algorithm. Hence, NSBPSO has provided the

best results compared to other algorithms.

Table 4. Accuracy and runtime of the models for different epochs.

Architectures Metric
Epoch

30 60 90 120 150 180 210 240 270 300

NSBPSO-DCNN
Accuracy (%) 91.15 91.88 92.89 94.54 95.84 97.91 98.63 98.88 99.25 99.41

Runtime (s) 74 145 196 275 321 384 462 521 598 681

I-CSA-DCNN
Accuracy (%) 90.16 90.89 91.76 93.60 94.79 95.50 96.98 97.95 98.21 98.52

Runtime (s) 91 169 224 296 351 422 498 543 601 709

IG-DCNN
Accuracy (%) 89.19 90.47 91.85 92.19 93.59 94.90 96.48 97.43 97.89 98.09

Runtime (s) 101 175 246 296 361 429 514 596 632 723

BWO-DCNN
Accuracy (%) 87.72 89.63 90.18 91.85 92.06 92.89 94.73 96.48 97.09 97.43

Runtime (s) 110 185 239 310 389 435 520 599 649 730

ABC-DCNN
Accuracy (%) 89.18 90.19 91.08 91.73 92.76 93.09 94.19 94.81 95.12 96.74

Runtime (s) 136 210 269 314 395 452 576 641 709 789

PSO-DCNN
Accuracy (%) 84.19 86.81 89.72 91.29 92.18 93.18 93.98 94.10 95.29 96.50

Runtime (s) 115 196 267 32 406 459 534 612 693 743

DCNN
Accuracy (%) 78.85 83.49 86.79 89.12 90.13 90.83 91.45 92.71 93.28 94.21

Runtime (s) 159 274 368 406 479 563 631 729 803 876

Figure 10. Comparison of the proposed algorithms.

Table 5 indicates the value of the mean square error (MSE) for the proposed archi-

tectures. The proposed NSBPSO-DCNN model has a lower MSE than other methods. In

the proposed NSBPSO, by considering several particles as the employed bees (global

bests), different parts of the search space can be examined simultaneously. Therefore, it

helps the algorithm to avoid being trapped in the local minimums. Therefore, the pro-

posed NSBPSO-DCNN model has been useful for intrusion detection in IoT systems.

0

200

400

600

800

1000

NSBPSO-DCNN I-CSA-DCNN IG-DCNN BWO-DCNN ABC-DCNN PSO-DCNN DCNN

681 709 723 730
789 743

876

R
u

n
ti

m
e

Algorithm

Figure 10. Comparison of the proposed algorithms.

Table 5 indicates the value of the mean square error (MSE) for the proposed architec-
tures. The proposed NSBPSO-DCNN model has a lower MSE than other methods. In the
proposed NSBPSO, by considering several particles as the employed bees (global bests),
different parts of the search space can be examined simultaneously. Therefore, it helps
the algorithm to avoid being trapped in the local minimums. Therefore, the proposed
NSBPSO-DCNN model has been useful for intrusion detection in IoT systems.

Figures 11 and 12 show the convergence curve of the NSBPSO-DCNN and other
architectures. The NSBPSO-DCNN architecture is close to its lowest MSE at epoch = 80.
However, other architectures do not have good accuracy at epoch = 80. Subsequently, with
an increasing epoch, NSBPSO-DCNN has achieved high stability and high convergence
speed. As shown in Figure 12a, the convergence curve of the proposed NSBPSO-DCNN
architecture is faster than the other architectures. The reason for NSBPSO’s superiority is
the existence of two new operators. (a) The motion towards the best onlooker bee (from
neighborhood search operator) improves the algorithm’s exploitation, and (b) the motion

Sensors 2022, 22, 4459 13 of 17

towards the best employed bee from the multi-parent crossover operator improves the
algorithm’s exploration. Figure 12b shows the details of the convergence curves.

Table 5. The value of MSE for the proposed architectures.

Deep Learning Architectures
Mean Square Error (MSE)

Training Dataset Validation Dataset

NSBPSO-DCNN 0.00010 0.00053

I-CSA-DCNN 0.00109 0.03012

IG-DCNN 0.01456 0.05106

BWO-DCNN 0.08186 0.10456

ABC-DCNN 0.20145 0.43296

PSO-DCNN 0.30156 0.58325

Standard DCNN 0.51256 0.74123

Sensors 2022, 21, x FOR PEER REVIEW 14 of 18

Table 5. The value of MSE for the proposed architectures.

Deep Learning Architectures
Mean Square Error (MSE)

Training Dataset Validation Dataset

NSBPSO-DCNN 0.00010 0.00053

I-CSA-DCNN 0.00109 0.03012

IG-DCNN 0.01456 0.05106

BWO-DCNN 0.08186 0.10456

ABC-DCNN 0.20145 0.43296

PSO-DCNN 0.30156 0.58325

Standard DCNN 0.51256 0.74123

Figures 11 and 12 show the convergence curve of the NSBPSO-DCNN and other

architectures. The NSBPSO-DCNN architecture is close to its lowest MSE at epoch = 80.

However, other architectures do not have good accuracy at epoch = 80. Subsequently,

with an increasing epoch, NSBPSO-DCNN has achieved high stability and high conver-

gence speed. As shown in Figure 12a, the convergence curve of the proposed

NSBPSO-DCNN architecture is faster than the other architectures. The reason for

NSBPSO’s superiority is the existence of two new operators. (a) The motion towards the

best onlooker bee (from neighborhood search operator) improves the algorithm’s ex-

ploitation, and (b) the motion towards the best employed bee from the multi-parent

crossover operator improves the algorithm’s exploration. Figure 12b shows the details of

the convergence curves.

Figure 11. The convergence curve of the NSBPSO-DCNN architecture.

50 100 150 200 250 300

0

0.05

0.1

0.15

0.2

0.25

Epoch

M
S

E

NSBPSO-DCNN

Figure 11. The convergence curve of the NSBPSO-DCNN architecture.

A nonparametric statistical test called Wilcoxon has been used to show the significant
differences between all models. The Wilcoxon test is applied to measure the similarity
of two dependent degree-scale samples. Derrac et al. [69] provided the full details of
this nonparametric statistical test. All architectures have been implemented with 25 runs
for intrusion detection in IoT systems. The mean values of the fitness function were
normalized and then the Wilcoxon test results were obtained using SPSS software. Table 6
shows the R+, R−, and p-value for all NSBPSO-DCNN pairwise comparisons. As shown
in Table 6, NSBPSO-DCNN shows an improvement versus I-CSA-DCNN, IG-DCNN, and
BWO-DCNN with a level of significance α = 0.05, and versus ABC-DCNN, PSO-DCNN,
and Standard DCNN with a level of significance α = 0.01. According to the results, NSBPSO-
DCNN has a strong performance compared to the other algorithms.

Sensors 2022, 22, 4459 14 of 17Sensors 2022, 21, x FOR PEER REVIEW 15 of 18

(a) (b)

Figure 12. The convergence curve of the architectures: (a) All architecture; and (b) NSBPSO-DCNN,

I-CSA-DCNN, IG-DCNN.

A nonparametric statistical test called Wilcoxon has been used to show the signifi-

cant differences between all models. The Wilcoxon test is applied to measure the simi-

larity of two dependent degree-scale samples. Derrac et al. [69] provided the full details

of this nonparametric statistical test. All architectures have been implemented with 25

runs for intrusion detection in IoT systems. The mean values of the fitness function were

normalized and then the Wilcoxon test results were obtained using SPSS software. Table

6 shows the R+, R−, and P-value for all NSBPSO-DCNN pairwise comparisons. As shown

in Table 6, NSBPSO-DCNN shows an improvement versus I-CSA-DCNN, IG-DCNN,

and BWO-DCNN with a level of significance 𝛼 = 0.05, and versus ABC-DCNN,

PSO-DCNN, and Standard DCNN with a level of significance 𝛼 = 0.01. According to the

results, NSBPSO-DCNN has a strong performance compared to the other algorithms.

Table 6. The results of architectures in the nonparametric statistical test (Wilcoxon test).

Comparison of Algorithm R+ R− p-Value Level of Significance (α)

NSBPSO-DCNN versus I-CSA-DCNN 33 22 0.074 α = 0.05

NSBPSO-DCNN versus IG-DCNN 35 20 0.053 α = 0.05

NSBPSO-DCNN versus BWO-DCNN 38 17 0.041 α = 0.05

NSBPSO-DCNN versus ABC-DCNN 43 12 0.007 α = 0.01

NSBPSO-DCNN versus PSO-DCNN 45 10 0.004 α = 0.01

NSBPSO-DCNN versus Standard DCNN 50 5 0.002 α = 0.01

5. Conclusions and Discussion

This paper developed a novel training algorithm for better tuning the parameters of

the DCNN to accurately detect intrusion in IoT networks. Deep learning-based ap-

proaches could have improved the accuracy of the NIDS, though there were still some

important features that needed to be improved, including achieving a higher detection

rate and decreasing the computational cost. To do so, first, a novel modified PSO algo-

rithm named the NSBPSO algorithm has been introduced to improve the exploitation

and exploration abilities of the PSO algorithm. After that, we used the advantages of the

NSBPSO algorithm to optimally train the deep architecture as our network intrusion de-

tector in order to obtain better accuracy and performance. For evaluating the perfor-

50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Epoach

M
S

E

DCNN

PSO-DCNN

ABC-DCNN

BWO-DCNN

IG-DCNN

I-CSA-DCNN

NSBPSO-DCNN

50 100 150 200 250 300

0

0.05

0.1

0.15

0.2

0.25

0.3

Epoch

M
S

E

IG-DCNN

I-CSA-DCNN

NSBPSO-DCNN

Figure 12. The convergence curve of the architectures: (a) All architecture; and (b) NSBPSO-DCNN,
I-CSA-DCNN, IG-DCNN.

Table 6. The results of architectures in the nonparametric statistical test (Wilcoxon test).

Comparison of Algorithm R+ R− p-Value Level of Significance (α)

NSBPSO-DCNN versus I-CSA-DCNN 33 22 0.074 α = 0.05

NSBPSO-DCNN versus IG-DCNN 35 20 0.053 α = 0.05

NSBPSO-DCNN versus BWO-DCNN 38 17 0.041 α = 0.05

NSBPSO-DCNN versus ABC-DCNN 43 12 0.007 α = 0.01

NSBPSO-DCNN versus PSO-DCNN 45 10 0.004 α = 0.01

NSBPSO-DCNN versus Standard DCNN 50 5 0.002 α = 0.01

5. Conclusions and Discussion

This paper developed a novel training algorithm for better tuning the parameters of
the DCNN to accurately detect intrusion in IoT networks. Deep learning-based approaches
could have improved the accuracy of the NIDS, though there were still some important
features that needed to be improved, including achieving a higher detection rate and
decreasing the computational cost. To do so, first, a novel modified PSO algorithm named
the NSBPSO algorithm has been introduced to improve the exploitation and exploration
abilities of the PSO algorithm. After that, we used the advantages of the NSBPSO algorithm
to optimally train the deep architecture as our network intrusion detector in order to obtain
better accuracy and performance. For evaluating the performance of the NSBPSO-based
DCNN, we used two network intrusion detection datasets named UNSW-NB15 and Bot-IoT
to evaluate the accuracy and performance of the proposed classifier. The experiment results
have shown that the proposed NIDS has the best accuracy and performance in comparison
with other state-of-the-art schemes.

Author Contributions: Conceptualization, S.B. and O.R.; Data curation, S.B., O.R. and M.K.; Formal
analysis, S.B., O.R., D.M. and M.K.; Funding acquisition, D.M.; Investigation, S.B., O.R. and M.K.;
Methodology, O.R., D.M. and M.K.; Project administration, S.B., M.K. and D.M; Resources, D.M;
Software, S.B., O.R. and M.K.; Supervision, D.M.; Validation, D.M. and M.K.; Visualization, D.M. and
M.K.; Writing—original draft, S.B., O.R., D.M. and M.K.; Writing—review & editing, S.B., D.M. and
M.K. All authors have read and agreed to the published version of the manuscript.

Sensors 2022, 22, 4459 15 of 17

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, S.K.; Bae, M.; Kim, H. Future of IoT Networks: A Survey. Appl. Sci. 2017, 7, 1072. [CrossRef]
2. Da Xu, L.; He, W.; Li, S. Internet of things in industries: A survey. IEEE Trans. Ind. Inform. 2014, 10, 2233–2243.
3. Dai, H.-N.; Zheng, Z.; Zhang, Y. Blockchain for Internet of Things: A Survey. IEEE Internet Things J. 2019, 6, 8076–8094. [CrossRef]
4. Belli, L.; Cirani, S.; Davoli, L.; Gorrieri, A.; Mancin, M.; Picone, M.; Ferrari, G. Design and Deployment of an IoT Application-

Oriented Testbed. Computer 2015, 48, 32–40. [CrossRef]
5. Xu, L.; Zhou, X.; Tao, Y.; Liu, L.; Yu, X.; Kumar, N. Intelligent Security Performance Prediction for IoT-Enabled Healthcare

Networks Using an Improved CNN. IEEE Trans. Ind. Inform. 2021, 18, 2063–2074. [CrossRef]
6. Putra, G.D.; Dedeoglu, V.; Kanhere, S.S.; Jurdak, R.; Ignjatovic, A. Trust-based blockchain authorization for iot. IEEE Trans. Netw.

Serv. Manag. 2021, 18, 1646–1658. [CrossRef]
7. Agarwal, V.; Sharma, S.; Agarwal, P. IoT Based Smart Transport Management and Vehicle-to-Vehicle Communication System. In

Computer Networks, Big Data and IoT; Springer: Singapore, 2021; pp. 709–716.
8. Mukhopadhyay, S.C.; Tyagi, S.K.S.; Suryadevara, N.K.; Piuri, V.; Scotti, F.; Zeadally, S. Artificial Intelligence-Based Sensors for

Next Generation IoT Applications: A Review. IEEE Sens. J. 2021, 21, 24920–24932. [CrossRef]
9. Sharda, S.; Singh, M.; Sharma, K. Demand side management through load shifting in IoT based HEMS: Overview, challenges and

opportunities. Sustain. Cities Soc. 2021, 65, 102517. [CrossRef]
10. Vadera, M.P.; Marlin, B.M. Challenges and Opportunities in Approximate Bayesian Deep Learning for Intelligent IoT Systems.

arXiv 2021, arXiv:2112.01675.
11. Dawson, L.; Akinbi, A. Challenges and opportunities for wearable IoT forensics: TomTom Spark 3 as a case study. Forensic Sci. Int.

Rep. 2021, 3, 100198. [CrossRef]
12. Reyna, A.; Martín, C.; Chen, J.; Soler, E.; Díaz, M. On blockchain and its integration with IoT. Challenges and opportunities. Futur.

Gener. Comput. Syst. 2018, 88, 173–190. [CrossRef]
13. Selvaraj, S.; Sundaravaradhan, S. Challenges and opportunities in IoT healthcare systems: A systematic review. SN Appl. Sci.

2020, 2, 1–8. [CrossRef]
14. Bader, A.; ElSawy, H.; Gharbieh, M.; Alouini, M.-S.; Adinoyi, A.; Alshaalan, F. First Mile Challenges for Large-Scale IoT. IEEE

Commun. Mag. 2017, 55, 138–144. [CrossRef]
15. Verma, A.; Prakash, S.; Srivastava, V.; Kumar, A.; Mukhopadhyay, S.C. Sensing, Controlling, and IoT Infrastructure in Smart

Building: A Review. IEEE Sens. J. 2019, 19, 9036–9046. [CrossRef]
16. McGuire, D. Security Challenges with the Commercialization of the Internet of Things. Ph.D. Thesis, Cardiff Metropolitan

University, Cardiff, Wales, 2017.
17. Aghapour, S.; Kaveh, M.; Mosavi, M.R.; Martin, D. An Ultra-Lightweight Mutual Authentication Scheme for Smart Grid Two-Way

Communications. IEEE Access 2021, 9, 74562–74573. [CrossRef]
18. Hassan, W.H. Current research on Internet of Things (IoT) security: A survey. Comput. Netw. 2019, 148, 283–294. [CrossRef]
19. Kaveh, M.; Falahati, A. An improved Merkle hash tree based secure scheme for bionic underwater acoustic communication. Front.

Inf. Technol. Electron. Eng. 2021, 22, 1010–1019. [CrossRef]
20. Xiao, L.; Wan, X.; Lu, X.; Zhang, Y.; Wu, D. IoT Security Techniques Based on Machine Learning: How Do IoT Devices Use AI to

Enhance Security? IEEE Signal Process. Mag. 2018, 35, 41–49. [CrossRef]
21. Najafi, F.; Kaveh, M.; Martín, D.; Reza Mosavi, M. Deep PUF: A Highly Reliable DRAM PUF-Based Authentication for IoT

Networks Using Deep Convolutional Neural Networks. Sensors 2021, 21, 2009. [CrossRef]
22. Kaveh, M.; Martín, D.; Mosavi, M.R. A Lightweight Authentication Scheme for V2G Communications: A PUF-Based Approach

Ensuring Cyber/Physical Security and Identity/Location Privacy. Electronics 2020, 9, 1479. [CrossRef]
23. Aghapour, S.; Kaveh, M.; Martin, D.; Mosavi, M.R. An Ultra-Lightweight and Provably Secure Broadcast Authentication Protocol

for Smart Grid Communications. IEEE Access 2020, 8, 125477–125487. [CrossRef]
24. Kaveh, M.; Aghapour, S.; Martin, D.; Mosavi, M.R. A secure lightweight signcryption scheme for smart grid communications

using reliable physically unclonable function. In Proceedings of the 2020 IEEE International Conference on Environment and
Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain,
9–12 June 2020; pp. 1–6.

25. Kaveh, M.; Mosavi, M.R. A Lightweight Mutual Authentication for Smart Grid Neighborhood Area Network Communications
Based on Physically Unclonable Function. IEEE Syst. J. 2020, 14, 4535–4544. [CrossRef]

26. Zarpelão, B.B.; Miani, R.S.; Kawakani, C.T.; de Alvarenga, S.C. A survey of intrusion detection in Internet of Things. J. Netw.
Comput. Appl. 2017, 84, 25–37. [CrossRef]

http://doi.org/10.3390/app7101072
http://doi.org/10.1109/JIOT.2019.2920987
http://doi.org/10.1109/MC.2015.253
http://doi.org/10.1109/TII.2021.3082907
http://doi.org/10.1109/TNSM.2021.3077276
http://doi.org/10.1109/JSEN.2021.3055618
http://doi.org/10.1016/j.scs.2020.102517
http://doi.org/10.1016/j.fsir.2021.100198
http://doi.org/10.1016/j.future.2018.05.046
http://doi.org/10.1007/s42452-019-1925-y
http://doi.org/10.1109/MCOM.2017.1600604CM
http://doi.org/10.1109/JSEN.2019.2922409
http://doi.org/10.1109/ACCESS.2021.3080835
http://doi.org/10.1016/j.comnet.2018.11.025
http://doi.org/10.1631/FITEE.2000043
http://doi.org/10.1109/MSP.2018.2825478
http://doi.org/10.3390/s21062009
http://doi.org/10.3390/electronics9091479
http://doi.org/10.1109/ACCESS.2020.3007623
http://doi.org/10.1109/JSYST.2019.2963235
http://doi.org/10.1016/j.jnca.2017.02.009

Sensors 2022, 22, 4459 16 of 17

27. Chaabouni, N.; Mosbah, M.; Zemmari, A.; Sauvignac, C.; Faruki, P. Network Intrusion Detection for IoT Security Based on
Learning Techniques. IEEE Commun. Surv. Tutor. 2019, 21, 2671–2701. [CrossRef]

28. Elrawy, M.F.; Awad, A.I.; Hamed, H.F. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput.
2018, 7, 21. [CrossRef]

29. Suo, H.; Wan, J.; Zou, C.; Liu, J. Security in the internet of things: A review. In Proceedings of the 2012 International Conference
on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; Volume 3, pp. 648–651.

30. Ghoumid, K.; Ar-Reyouchi, D.; Rattal, S.; Yahiaoui, R.; Elmazria, O. An Accelerated End-to-End Probing Protocol for Narrowband
IoT Medical Devices. IEEE Access 2021, 9, 34131–34141. [CrossRef]

31. Salim, M.M.; Rathore, S.; Park, J.H. Distributed denial of service attacks and its defenses in IoT: A survey. J. Supercomput. 2020, 76,
5320–5363. [CrossRef]

32. Vaccari, I.; Aiello, M.; Cambiaso, E. SlowTT: A Slow Denial of Service against IoT Networks. Information 2020, 11, 452. [CrossRef]
33. Kianfar, N.; Mesgari, M.S.; Mollalo, A.; Kaveh, M. Spatio-temporal modeling of COVID-19 prevalence and mortality using

artificial neural network algorithms. Spat. Spatio-Temporal Epidemiol. 2022, 40, 100471. [CrossRef]
34. Lotfy, A.; Kaveh, M.; Martin, D.; Mosavi, M.R. An Efficient Design of Anderson PUF by Utilization of the Xilinx Primitives in the

SLICEM. IEEE Access 2021, 9, 23025–23034. [CrossRef]
35. Otoum, Y.; Liu, D.; Nayak, A. DL-IDS: A deep learning–based intrusion detection framework for securing IoT. Trans. Emerg.

Telecommun. Technol. 2019, 33, e3803. [CrossRef]
36. Churcher, A.; Ullah, R.; Ahmad, J.; Rehman, S.U.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W. An Experimental

Analysis of Attack Classification Using Machine Learning in IoT Networks. Sensors 2021, 21, 446. [CrossRef] [PubMed]
37. Otoum, Y.; Nayak, A. AS-IDS: Anomaly and Signature Based IDS for the Internet of Things. J. Netw. Syst. Manag. 2021, 29, 23.

[CrossRef]
38. Pajouh, H.H.; Javidan, R.; Khayami, R.; Dehghantanha, A.; Choo, K.-K.R. A Two-Layer Dimension Reduction and Two-Tier

Classification Model for Anomaly-Based Intrusion Detection in IoT Backbone Networks. IEEE Trans. Emerg. Top. Comput. 2016, 7,
314–323. [CrossRef]

39. Tavallaee, M.; Stakhanova, N.; Ghorbani, A.A. Toward Credible Evaluation of Anomaly-Based Intrusion-Detection Methods.
IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2010, 40, 516–524. [CrossRef]

40. Jose, S.; Malathi, D.; Reddy, B.; Jayaseeli, D. A Survey on anomaly based host intrusion detection system. In Journal of Physics:
Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1000, p. 012049.

41. Ahmad, Z.; Shahid Khan, A.; Wai Shiang, C.; Abdullah, J.; Ahmad, F. Network intrusion detection system: A systematic study of
machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 2021, 32, e4150. [CrossRef]

42. Di Mauro, M.; Galatro, G.; Fortino, G.; Liotta, A. Supervised feature selection techniques in network intrusion detection: A critical
review. Eng. Appl. Artif. Intell. 2021, 101, 104216. [CrossRef]

43. Weller-Fahy, D.J.; Borghetti, B.J.; Sodemann, A.A. A Survey of Distance and Similarity Measures Used Within Network Intrusion
Anomaly Detection. IEEE Commun. Surv. Tutorials 2014, 17, 70–91. [CrossRef]

44. Ariu, D.; Tronci, R.; Giacinto, G. HMMPayl: An intrusion detection system based on Hidden Markov Models. Comput. Secur.
2011, 30, 221–241. [CrossRef]

45. Koc, L.; Mazzuchi, T.A.; Sarkani, S. A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier.
Expert Syst. Appl. 2012, 39, 13492–13500. [CrossRef]

46. Lin, W.-C.; Ke, S.-W.; Tsai, C.-F. CANN: An intrusion detection system based on combining cluster centers and nearest neighbors.
Knowl.-Based Syst. 2015, 78, 13–21. [CrossRef]

47. Thottan, M.; Ji, C. Anomaly detection in IP networks. IEEE Trans. Signal Process. 2003, 51, 2191–2204. [CrossRef]
48. Thaseen, I.S.; Kumar, C.A. Intrusion detection model using fusion of PCA and optimized SVM. In Proceedings of the IEEE

International Conference on Contemporary Computing and Informatics (IC3I), Mysuru, India, 27–29 November 2014; pp. 879–884.
49. Tsai, C.-F.; Hsu, Y.-F.; Lin, C.-Y.; Lin, W.-Y. Intrusion detection by machine learning: A review. Expert Syst. Appl. 2009, 36,

11994–12000. [CrossRef]
50. Moustafa, N.; Turnbull, B.; Choo, K.-K.R. An Ensemble Intrusion Detection Technique Based on Proposed Statistical Flow Features

for Protecting Network Traffic of Internet of Things. IEEE Internet Things J. 2018, 6, 4815–4830. [CrossRef]
51. Lee, S.; Kim, D.; Park, J. A hybrid approach for real-time network intrusion detection systems. In Proceedings of the International

Conference on Computational Intelligence and Security, Harbin, China, 15–19 December 2007; pp. 712–715.
52. Zhao, R.; Gui, G.; Xue, Z.; Yin, J.; Ohtsuki, T.; Adebisi, B.; Gacanin, H. A Novel Intrusion Detection Method Based on Lightweight

Neural Network for Internet of Things. IEEE Internet Things J. 2021, 9, 9960–9972. [CrossRef]
53. Wang, H.; Gu, J.; Wang, S. An effective intrusion detection framework based on SVM with feature augmentation. Knowl.-Based

Syst. 2017, 136, 130–139. [CrossRef]
54. Yin, C.; Zhu, Y.; Fei, J.; He, X. A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access

2017, 5, 21954–21961. [CrossRef]
55. He, H.; Sun, X.; He, H.; Zhao, G.; He, L.; Ren, J. A Novel Multimodal-Sequential Approach Based on Multi-View Features for

Network Intrusion Detection. IEEE Access 2019, 7, 183207–183221. [CrossRef]
56. Garg, S.; Kaur, K.; Kumar, N.; Kaddoum, G.; Zomaya, A.Y.; Ranjan, R. A Hybrid Deep Learning-Based Model for Anomaly

Detection in Cloud Datacenter Networks. IEEE Trans. Netw. Serv. Manag. 2019, 16, 924–935. [CrossRef]

http://doi.org/10.1109/COMST.2019.2896380
http://doi.org/10.1186/s13677-018-0123-6
http://doi.org/10.1109/access.2021.3061257
http://doi.org/10.1007/s11227-019-02945-z
http://doi.org/10.3390/info11090452
http://doi.org/10.1016/j.sste.2021.100471
http://doi.org/10.1109/ACCESS.2021.3056291
http://doi.org/10.1002/ett.3803
http://doi.org/10.3390/s21020446
http://www.ncbi.nlm.nih.gov/pubmed/33435202
http://doi.org/10.1007/s10922-021-09589-6
http://doi.org/10.1109/TETC.2016.2633228
http://doi.org/10.1109/TSMCC.2010.2048428
http://doi.org/10.1002/ett.4150
http://doi.org/10.1016/j.engappai.2021.104216
http://doi.org/10.1109/COMST.2014.2336610
http://doi.org/10.1016/j.cose.2010.12.004
http://doi.org/10.1016/j.eswa.2012.07.009
http://doi.org/10.1016/j.knosys.2015.01.009
http://doi.org/10.1109/TSP.2003.814797
http://doi.org/10.1016/j.eswa.2009.05.029
http://doi.org/10.1109/JIOT.2018.2871719
http://doi.org/10.1109/JIOT.2021.3119055
http://doi.org/10.1016/j.knosys.2017.09.014
http://doi.org/10.1109/ACCESS.2017.2762418
http://doi.org/10.1109/ACCESS.2019.2959131
http://doi.org/10.1109/TNSM.2019.2927886

Sensors 2022, 22, 4459 17 of 17

57. Xu, X.; Li, J.; Yang, Y.; Shen, F. Toward Effective Intrusion Detection Using Log-Cosh Conditional Variational Autoencoder. IEEE
Internet Things J. 2020, 8, 6187–6196. [CrossRef]

58. Rostami, O.; Kaveh, M. Optimal feature selection for SAR image classification using biogeography-based optimization (BBO),
artificial bee colony (ABC) and support vector machine (SVM): A combined approach of optimization and machine learning.
Comput. Geosci. 2021, 25, 911–930. [CrossRef]

59. Khishe, M.; Mosavi, M.R.; Kaveh, M. Improved migration models of biogeography-based optimization for sonar dataset
classification by using neural network. Appl. Acoust. 2017, 118, 15–29. [CrossRef]

60. Kaveh, M.; Khishe, M.; Mosavi, M.R. Design and implementation of a neighborhood search biogeography-based optimization
trainer for classifying sonar dataset using multi-layer perceptron neural network. Analog Integr. Circuits Signal Process. 2019, 100,
405–428. [CrossRef]

61. Kaveh, M.; Kaveh, M.; Mesgari, M.S.; Paland, R.S. Multiple criteria decision-making for hospital location-allocation based on
improved genetic algorithm. Appl. Geomat. 2020, 12, 291–306. [CrossRef]

62. Lotfy, A.; Kaveh, M.; Mosavi, M.R.; Rahmati, A.R. An enhanced fuzzy controller based on improved genetic algorithm for speed
control of DC motors. Analog Integr. Circuits Signal Process. 2020, 105, 141–155. [CrossRef]

63. Kaveh, M.; Mesgari, M.S. Improved biogeography-based optimization using migration process adjustment: An approach for
location-allocation of ambulances. Comput. Ind. Eng. 2019, 135, 800–813. [CrossRef]

64. Moustafa, N.; Slay, J. UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data
set). In Proceedings of the IEEE Military Communications and Information Systems Conference (MilCIS), Canberra, Australia,
10–12 November 2015; pp. 1–6.

65. Koroniotis, N.; Moustafa, N.; Sitnikova, E.; Turnbull, B. Towards the development of realistic botnet dataset in the internet of
things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst. 2019, 100, 779–796. [CrossRef]

66. Gokalp, O. An iterated greedy algorithm for the obnoxious p-median problem. Eng. Appl. Artif. Intell. 2020, 92, 103674. [CrossRef]
67. Eligüzel, İ.M.; Özceylan, E. Application of an improved discrete crow search algorithm with local search and elitism on a

humanitarian relief case. Artif. Intell. Rev. 2021, 54, 4591–4617. [CrossRef]
68. Hayyolalam, V.; Kazem, A.A.P. Black Widow Optimization Algorithm: A novel meta-heuristic approach for solving engineering

optimization problems. Eng. Appl. Artif. Intell. 2020, 87, 103249. [CrossRef]
69. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for

comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

http://doi.org/10.1109/JIOT.2020.3034621
http://doi.org/10.1007/s10596-020-10030-1
http://doi.org/10.1016/j.apacoust.2016.11.012
http://doi.org/10.1007/s10470-018-1366-3
http://doi.org/10.1007/s12518-020-00297-5
http://doi.org/10.1007/s10470-020-01599-9
http://doi.org/10.1016/j.cie.2019.06.058
http://doi.org/10.1016/j.future.2019.05.041
http://doi.org/10.1016/j.engappai.2020.103674
http://doi.org/10.1007/s10462-021-10006-2
http://doi.org/10.1016/j.engappai.2019.103249
http://doi.org/10.1016/j.swevo.2011.02.002

	Introduction
	Rekated Works
	Paper Contributions
	Paper Organization

	The Proposed NSBPSO Algorithm
	The Proposed IoT IDS Using the NSBPSO-Based Deep Architecture
	Datasets
	UNSW-NB15 Dataset
	Bot-IoT Dataset

	Training Deep Architecture Using the NSBPSO Algorithm

	Simulation Results on the NID Datasets
	Conclusions and Discussion
	References

