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Abstract

Accurate segmentation of the prostate on computed tomography (CT) has many diagnostic and 

therapeutic applications. However, manual segmentation is time-consuming and suffers from high 

inter- and intra-observer variability. Computer-assisted approaches are useful to speed up the 

process and increase the reproducibility of the segmentation. Deep learning-based segmentation 

methods have shown potential for quick and accurate segmentation of the prostate on CT images. 

However, difficulties in obtaining manual, expert segmentations on a large quantity of images 

limit further progress. Thus, we proposed an approach to train a base model on a small, manually-

labeled dataset and fine-tuned the model using unannotated images from a large dataset without 

any manual segmentation. The datasets used for pre-training and fine-tuning the base model 

have been acquired in different centers with different CT scanners and imaging parameters. Our 

fine-tuning method increased the validation and testing Dice scores. A paired, two-tailed t-test 

shows a significant change in test score (p = 0.017) demonstrating that unannotated images can be 

used to increase the performance of automated segmentation models.
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1. INTRODUCTION

Recently, a variety of methods have been used with the goal of automated or semi-automated 

prostate segmentation1–5. Some of the previously presented prostate CT image segmentation 

methods that produced promising results used intra-patient overlap in the training and test 

sets3. More current methods do not rely on images from each patient in both the training 

and test sets, but instead, guide the model using multiple references or user annotations. 

For example, Shahedi, et al. requires the training images to have two expert segmentations 

for best results2. Another method required user input of bounding box information and 

user selection of twelve points on the prostate border1. Shahedi, et al. experiments with a 

range of user input points, with results peaking with 15–20 points5. While the number of 

prostate CT images currently available is large, datasets with expert manual segmentation 

labels are small. Thus, new research is trending towards improving the results on small 

labeled datasets by including data augmentation and/or some level of user input. However, 

for clinical applications of deep learning-based segmentation with a high quantity of images 

(such as automated volume tracking over time), fully automated methods that also generalize 

to varied clinical imaging specifications and locations are needed. Fully automated methods 

are also advantageous in settings such as volume tracking where relative differences in 

volume over time need to be quantified. In this setting, inter- and intra- observer variability 

in manual approaches could obscure small trends over time.

In this work, we focused on increasing the performance of automated segmentation methods 

by using a fine-tuning approach with weakly-labeled images. We first trained a base model 

using a small dataset with expert segmentation labels. We then used an unsupervised, 

iterative, fine-tuning method to gradually introduce new images from an independent dataset 

with varied image specifications and no expert segmentation. While previous work has used 

weakly-labeled images in prostate magnetic resonance imaging (MRI) segmentation, weak 

labels were generated using a sampling of points from a manual segmentation4. A concept 

similar to ours was used in Bai, et al., with a base network predicting a segmentation for 

unlabeled images6. However, Bai, et al. applied the concept to cardiac MR segmentation in a 

2D network and automatic segmentations are improved using a conditional random field6. In 

addition to using unlabeled images, we used large input volumes to allow the use of images 

with different voxel sizes and prevent the method from relying on precise localization of 

prostate landmarks by a trained user.

2. METHODS

2.1 Data

Our data consists of two independent datasets each containing abdominal CT scans, 

including images with artifacts caused by brachytherapy seeds and metallic implants. The 
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first dataset (referred to as the base dataset) contains 92 CT scans of 92 different prostate 

cancer patients with manual, expert segmentation for each image, and a voxel size of 

0.977×0.977×4.25 mm3. The second dataset (referred to as the fine-tuning dataset) contains 

over 300 abdominal CT scans but lacks any manual segmentation data, includes multiple 

scans of each patient over several years, has pixel spacing ranging from 0.660 mm to 0.977 

mm, and slice thickness ranging from 2.50 mm to 3.75 mm. We used 60 annotated images 

for training the base model and up to 80 unannotated images for fine-tuning. We used 

10 annotated images for validation during training and fine-tuning. Twenty two annotated 

images were left reserved for final tests.

2.2 Preprocessing

We used a generously large bounding box size of 128×128×17 voxels (increasing the 

cropped image volume by approximately 100% from previous work in2) to ensure that the 

prostate was fully contained within the cropped volume for both datasets. The fine-tuning 

dataset images tended to have a smaller voxel size and thus required a larger bounding box 

than the base dataset. By using a large bounding box, we eliminated the need to precisely 

locate the base and apex of the prostate and enabled the model to adapt to differences in 

datasets without additional pre-processing such as image resizing. In addition to requiring 

a larger bounding box, the Hounsfield units (HU) in the fine-tuning dataset were corrupted 

and image intensities required modification. Based on differences between the values in the 

fine-tuning dataset images and the standard reference values for air, water, and urine, we 

approximated standard HU by subtracting 1022 from each voxel intensity. After modifying 

the HU on the fine-tuning dataset only, to increase background consistency across the data, 

HU values of both data sets were truncated to the −69 to +165 range (the observed HU range 

for prostate tissue2).

2.3 Network Architecture

As shown in Figure 1, we used a base training stage and a fine-tuning stage. We used a 

standard four-level 3D U-Net architecture7 to train the base model. Each of the four levels 

was composed of multiple convolutional layers. The network model was similar to what 

we used in our previous study2. We automatically generated weak labels for the fine-tuning 

dataset using the base model and its subsequent updates. The last 20 layers in the model 

were frozen and the learning rate was set to 0.7 during fine-tuning to prevent imperfections 

in the weakly labeled images from causing large alterations in the model. In addition, we 

gradually incorporated the weakly labeled images to the base training set and frequently 

refreshed the weak labels to iteratively improve the quality of the weak labels during 

fine-tuning.

2.4 Implementation details

We used TensorFlow framework8 and Keras libraries to implement both the base model 

and the fine-tuning process. The 92 base images were randomly divided into training (60), 

validation (10), and testing (22) groups. We used horizontal reflections to augment the 

base training data, resulting in a base training set of 120 images. The validation set was 

not augmented during training. The validation and testing sets were not altered between 

the base and fine-tuning stages. During fine-tuning, 80 images from the fine-tuning dataset 
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were gradually incorporated into the training set for a total of 200 training images at 

the conclusion of fine-tuning. In both stages, the batch size was one and the Adadelta 

optimizer9 was used with a loss function based on Dice similarity coefficient10 introduced 

in11 (hereafter called “soft Dice”) to optimize the training. The initial learning rate was set to 

the default during base training and then set to 0.7 in the fine-tuning process.

2.5 Evaluation

We evaluated the fine-tuning method using Dice coefficient as the segmentation error 

metric. We compared the network output for the validation and testing images against their 

corresponding manual segmentations. We calculated the final probability maps by pixel-wise 

averaging the probability map of each test image and its reflected version. The average 

probability map was converted to a binary map using a 50% threshold level for measuring 

the Dice coefficient.

3. RESULTS

2.1 Training

We trained the base model for a total of 300 epochs and selected the best model based on the 

validation loss. Figure 2A shows the minimum validation loss occurred at epoch 217 with a 

value of 24.1%. The corresponding training loss was 16.4%. The growing gap between the 

training and validation losses after epoch 217 suggests that the model is overfitting to the 

training set and is unlikely to learn a better representation with more base training time.

Figure 2B shows the optimal validation score from the 10 epochs of fine-tuning for each 

additional image added to the base training set. The validation score for the base model (no 

additional images) was 75.9% and increased by 2.1% to a maximum of 78.0% at additional 

image 53.

2.2 Testing

The Dice score on the testing set for the base model (selected at base training epoch 217 

based on validation score) was 77.37%. The Dice score on the testing set for the fine-tuned 

model (selected after the addition of 53 images based on validation score) was 78.77%, 

showing an overall improvement of 1.40% over the base model. Using a paired, two-tailed 

t-test, the change in test score is statistically significant (p = 0.017). Individually, 15/22 

images showed an improvement in Dice score, while 7/22 images showed a decrease in Dice 

score. The greatest decrease in Dice score was 1.64%, while the greatest increase in Dice 

score was 10.29%. A 3D visualization to compare the results is shown in Figure 3. Each 

row in Figure 3 corresponds to a single testing image, with a total of four images presented. 

The predicted base segmentations are shown in yellow, while the fine-tuned predictions are 

shown in purple. The manual segmentations are shown in blue. The image that showed the 

greatest increase was also the image with the lowest base Dice score of 56.0%, while the 

image with the greatest decrease had a base Dice score over 80.0% (see Figure 3, rows 1 and 

4). Figure 4 shows a qualitative comparison of model performance at the base, mid-gland, 

and apex slices for the same four images shown in Figure 3.
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4. DISCUSSION AND CONCLUSIONS

We developed a fine-tuning method for a pre-trained deep learning segmentation 

model using a dataset with no manual segmentation labels. We automatically generated 

segmentation labels for the fine-tuning data using the model under fine-tuning and its 

weakly-labeled images from a dissimilar dataset to improve the performance of a deep 

learning-based 3D prostate CT segmentation on a base dataset. We used the pre-trained 

base model to automatically generate weak labels for fine-tuning with no user interaction 

such as selection of points on the prostate boundary and no sampling of points from a 

manual segmentation label as used in some of the previous studies1,4. The fine-tuning 

procedure significantly improved the Dice score on the testing set by 1.4% in average. 

We achieved an improvement in Dice score for 15/22 test subjects, with the maximum 

improvement on a single image over 10%. The overall Dice score for the test set using the 

fine-tuned network was about 79%. Other results for automated prostate segmentation in CT 

images have presented a range of higher testing performance2,12,13. Our base model may 

benefit from further tuning of hyperparameters, or by implementing additional techniques, 

such as the cross-validation strategy and the weighted loss function successfully used 

for prostate segmentation in12. In addition, we have not post-processed the segmentation 

labels. We believe applying a post-processing step to our algorithm could improve the 

overall results. For example, in Figure 3, the small miss-classified regions at the prostate 

base side could be easily removed during post-processing. However, we consider this 

a preliminary study for assessing the potential of unsupervised methods for fine-tuning 

automated prostate segmentation models. Thus, we focus our evaluation on the increase in 

Dice score between our base model and our fine-tuned model and leave improvements in 

base model performance for future work.

4.1 Limitations

Our method achieved a maximum 2.1% increase in validation Dice score after adding 53 

fine-tuning images. The decrease in validation score following image 53 (Figure 3) may 

indicate that improvement from weakly labeled images is capped when the additional image 

count approaches the manually labeled image count. However, Figure 3 shows that the score 

trends up again after image 68 and reaches within 0.13% of the best validation score by 

image 77. Thus, the fine-tuning method may be adjusting to the introduction of a more 

challenging weakly labeled image (e.g. an image with considerable distortion from an 

artifact) resulting in a lower-quality weak segmentation. The model may be able to adjust 

to the initial dip in performance and gradually recover by the addition of higher quality 

weakly-labeled images or through iteratively improving the weak label of the challenging 

image. However, the network may benefit from an additional constraint on the weakly 

labeled images, such as the size constraint used by a previous study4.

4.2 Conclusions

We introduced a new training method for prostate segmentation using a pre-trained base 

model and introduction of unannotated images in the fine-tuning stage, resulting in an 

average improvement in test Dice coefficient. Additionally, we use a large bounding box, 

no user annotation of points on the prostate, and a diverse collection of training images 
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collected with various imaging parameters. Our method is applicable to scenarios where a 

limited amount of manual segmentations exists, but in which the clinical setting requires 

a large quantity of images to be processed. While our method increased the average Dice 

score on the test set, additional improvements may be achieved by optimizing the number 

of frozen layers during fine-tuning and the number of additional images to include at each 

step of fine-tuning. We would also like to obtain manual segmentations for a subset of the 

fine-tuning dataset in order to measure if the method is able to improve the Dice score of 

both datasets simultaneously.
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Figure 1: 
Training block diagram for fine-tuning.
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Figure 2: 
Training curves of the neural networks. A: Base model training and validation loss curves. 

B: Fine-tuning validation Dice score per fine-tuning image addition.
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Figure 3: 
3D visualization of four sample test images showing a qualitative comparison of base, 

fine-tuned, and manual segmentations.
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Figure 4: 
Qualitative comparison of manual, base, and fine-tuned model segmentations at the base, 

mid-gland, and apex axial slices for four sample test images.
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