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abstract

PURPOSE Symptoms are vital outcomes for cancer clinical trials, observational research, and population-level
surveillance. Patient-reported outcomes (PROs) are valuable for monitoring symptoms, yet there are many
challenges to collecting PROs at scale. We sought to develop, test, and externally validate a deep learning model
to extract symptoms from unstructured clinical notes in the electronic health record.

METHODS We randomly selected 1,225 outpatient progress notes from among patients treated at the Dana-
Farber Cancer Institute between January 2016 and December 2019 and used 1,125 notes as our training/
validation data set and 100 notes as our test data set. We evaluated the performance of 10 deep learning models
for detecting 80 symptoms included in the National Cancer Institute’s Patient-Reported Outcomes version of the
Common Terminology Criteria for Adverse Events (PRO-CTCAE) framework. Model performance as compared
with manual chart abstraction was assessed using standard metrics, and the highest performer was externally
validated on a sample of 100 physician notes from a different clinical context.

RESULTS In our training and test data sets, 75 of the 80 candidate symptoms were identified. The ELECTRA-small
model had the highest performance for symptom identification at the token level (ie, at the individual symptom
level), with an F1 of 0.87 and a processing time of 3.95 seconds per note. For the 10 most common symptoms in
the test data set, the F1 score ranged from 0.98 for anxious to 0.86 for fatigue. For external validation of the same
symptoms, the note-level performance ranged from F1 = 0.97 for diarrhea and dizziness to F1 = 0.73 for swelling.

CONCLUSION Training a deep learning model to identify a wide range of electronic health record–documented
symptoms relevant to cancer care is feasible. This approach could be used at the health system scale to
complement to electronic PROs.

JCO Clin Cancer Inform 6:e2100136. © 2022 by American Society of Clinical Oncology

INTRODUCTION

Patients with cancer experience a multitude of dis-
tressing symptoms related to their disease and the side
effects of treatment. Symptoms have a major effect on
patients’ quality of life,1,2 treatment tolerance, and
prognosis.3,4 Symptoms are therefore critical out-
comes to monitor in therapeutic clinical trials, obser-
vational research, and population-level surveillance.

In recent years, standardized patient-reported out-
come (PRO) measures have become a common
method to assess patients’ symptoms within clinical
research and routine clinical care. Electronic systems
to systematically assess PROs have demonstrated
benefits of symptom control, health care utilization,
and even survival.5 Despite the promise of electronic
PRO tools, many patients do not complete PROs or do
so only intermittently.6 This is particularly true among
historically disadvantaged populations, such as the
elderly, the poor, or those living in rural areas, whomay

lack reliable internet access or the devices required to
use PRO systems.7-9 Complementary data sources and
assessment methods are therefore required to monitor
symptoms at scale and to avoid the biases inherent to
direct patient reporting.

The electronic health record (EHR) is a rich source of
data regarding symptoms owing to the fact that pro-
viders routinely assess and document systems within
clinical notes. Yet, this resource remains underutilized
for symptom extraction at scale given the difficult and
time-consuming process of manual chart abstraction.
Unlike discrete structured data points such as vital
signs or laboratory data, symptoms are traditionally
recorded in clinical notes as narrative free text. Ex-
traction of symptom information from unstructured
clinical notes is time-consuming, expensive, and error-
prone and requires clinical expertise.10

Deep learning models are increasingly important tools
for extracting oncologic end points from unstructured
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EHR text data.10-12 Models have been developed that can
extract data on cancer progression and response and
documentation of end-of-life care preferences.13-15 To date,
valid, reliable models for identifying cancer-related symp-
toms have not been developed. The purpose of this study
was to (1) develop and test a deep learning model for
symptom extraction from unstructured clinical notes and
(2) externally validate the method in a data set from another
health care system.

METHODS

Data Source and Study Sample

Our training and test data sets were derived from the Dana-
Farber Cancer Institute (DFCI) instance of the Epic EHR
(Verona, WI). Clinician (medical, surgical, radiation on-
cologist, nurse practitioner, and physician assistant)
progress notes were randomly selected from among all
patients seen in breast, GI, thoracic, gynecologic, psy-
chosocial, and palliative care clinics at DFCI between
January 2016 and December 2019. Of the 1,225 selected
notes, 1,125 notes were randomly selected for our model
training/validation data set and 100 were used for our test
data set.

To evaluate generalizability, the model was externally val-
idated using 100 physician notes randomly selected from a
data set used in our previously published study,13 obtained
from the Medical Information Mart for Intensive Care III
(MIMIC-III) data set. MIMIC-III is an existing data set
composed of all EHR notes for patients in intensive care
units at the Beth Israel Deaconess Medical Center (Boston,
MA) between January 2008 andDecember 2012. This data
source was chosen for external validation to assess the
transferability of our deep learning model for symptom
detection to other care contexts (ie, symptoms documen-
tation may differ in an ICU versus an outpatient setting).
Figure 1 shows a flowchart for the derivation of the data sets
and methods used. This study was approved by the DFCI
Institutional Review Board (IRB 18-192); informed consent
was not required.

Symptom Definitions and Data Annotation

We used the National Cancer Institute’s Patient-Reported
Outcomes version of the Common Terminology Criteria for
Adverse Events (PRO-CTCAE)16 as our framework to es-
tablish coding rules for annotating symptoms reported in
EHRs. The PRO-CTCAE system was a collaborative effort
between multiple stakeholders, including the US Food and
Drug Administration, for creating a standardized patient-
reporting tool for identification of symptoms that may be
associated with adverse events.17 The PRO-CTCAE system
is narrower than the full CTCAE, in that it focuses specif-
ically on symptoms. The full PRO-CTCAE assesses a total of
80 symptoms, using between one and three survey items
per symptom to assess severity, frequency, and interfer-
ence. Using the PRO-CTCAE as a coding framework, a
team of three internal medicine, medical oncology, and
palliative care physicians independently reviewed and
annotated 25 notes and labeled the text for the presence of
symptoms. Discordance in annotations was discussed
during in-person meeting coordinated by the project lead
(C.L.). These first 25 notes were not included in the model
training/validation data set. Another 50 notes were anno-
tated by a single physician (W.M.) and then reviewed and
discussed by three physicians to establish consensus la-
beling rules. The remaining 1,200 notes were annotated by
a single physician (W.M.) for each of the 85 labels (80
symptoms and five attributes, including negation) using an
open-source web-based software label studio18 (Appendix
Fig A1). Label studio allows for linkage between negation
and symptom(s).

Another 100 notes obtained from the MIMIC-III data set
were also annotated by the physician (W.M.). The physician
(W.M.) had timely access to discuss challenging labels with
the project lead (C.L.).

Data Preprocessing

After data annotation and before training deep learning
models, the texts were converted into the Computational
Natural Language Learning-2003 (CoNLL-2003) standard

CONTEXT

Key Objective
Is it feasible to rapidly capture patients’ symptoms from unstructured clinical notes in the electronic health record (EHR) using

deep learning?
Knowledge Generated
Deep learning models trained to detect clinically relevant symptoms exhibited high performance. Deep learning allowed for

symptom detection to occur rapidly, as opposed to much longer times demanded for symptom detection during manual
chart review.

Relevance
Health systems could use deep learning models to scale detection of symptoms documented in the EHR, which are relevant to

cancer care; EHR-based symptom assessments could be automated for a variety of research, clinical, and regulatory
purposes.
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format.19 First, the texts were tokenized (split up into useful
semantic units for processing) using the scispaCy en_core_
sci_lg tokenizer.20 Then, each token was aligned with the
appropriate label by comparing the (start and end) offsets of
the tokens and annotated spans.

We then extracted the History of Present Illness from each
note given that this section is most likely to contain the most
current information, unlike other note sections (eg, Review
of Systems), which are frequently copy forwarded from
previous encounters.21 The History of Present Illness in
each note was identified using a set of regular expressions
as described previously,21 and sentence boundary tokens
were added to the token sequences. The position of each
token (including words and subwords) and label tags were
also recorded to process the model output.

Training Deep Learning Models

Preprocessed text was used as input for a named entity
recognition (NER) task for symptom extraction. In deep
learning, NER is the task of classifying short sequences of
tokens or entities within a text into predefined classes. In

recent years, the transformer model architecture has
gained recognition for achieving state-of-the art results on
several natural language processing (NLP) benchmark
tasks.22,23 Since the original publication, many Transformer
models have been made available that have been trained
on very large general-purpose corpora, such as Wikipedia.
These pretrained models can then be leveraged as a
starting point for further training on new data, a generally
less computationally expensive process than training a
comparable model from scratch. Models selected for
training included the following: BERT,24 XLNet,25

RoBERTa,26 XLM-RoBERTa,27 DistilBERT,28 ELECTRA,29

and Longformer.30 DFCI data were split into training and
test sets (Fig 1). Combinations of the aforementioned batch
size and learning rates were used to calculate the F1 score
for every combination. The best performing combination
during the cross-validation step on the validation set was
selected as our final model parameters and was used for
testing on both DFCI and MIMIC III data sets.

We used two NVIDIA Tesla V100 (32 GB) GPU to fine tune
Electra-SMALL for NER. The maximum sequence length

EHRs from DFCI
2016-2019

EHRs from the 
MIMIC-III data set

2008-2012

Sampling of 100
clinical notes

Sampling of 1,225
clinical notes

Human labeling of
80 symptoms

Human labeling of
80 symptoms

Training set,
1,125 notes

Run learning
algorithm,

10 NLP models

Test set,
100 notes

Test set,
100 notes

External validation
of model

performance

Evaluate model
performance

at DFCI

FIG 1. Flowchart of
methods. DFCI, Dana-
Farber Cancer Institute;
EHR, electronic health re-
cord; MIMIC-III, Medical
Information Mart for Inten-
sive Care III; NLP, natural
language processing.
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was fixed to 512, the minibatch size was selected from 8,
16, 32, or 64, and a learning rate of 6e-5, 3e-5, or 1e-5 was
selected.

Statistical Methods

Evaluation metrics of model performance were based on
the CoNLL-2003 standard,19 including precision (positive
predictive value), recall (sensitivity), and F1 measure (ie,
the harmonic mean between precision and recall) for
token-level and note-level analysis. Negations were linked
to symptoms at the sentence level. This means that if a
symptom was negated (eg, no fatigue) in the gold standard,
but the NLPmodel only picked up the symptom and not the
negation (eg, fatigue), this was counted as false positive in
the evaluation metrics. For note-level analysis, if there were
contradictions within a document with respect to an indi-
vidual symptom, such as the presence and absence of a
symptom, the document was considered to be positive for
that symptom. For example, if one part of a note said
“denies SOB [shortness of breath],” whereas another part
indicated that shortness of breath was present, this note
would be considered positive for reporting the symptom.

RESULTS

Note and Patient Characteristics

The study examined 1,125 unique notes on 870 unique
patients in the DFCI training/validation data set and 100
unique notes on 97 unique patients in the DFCI test set.
The MIMIC-III external test data set included 100 unique
notes for 91 unique patients. Demographic information and
general statistics for clinical notes are presented in Table 1.
The DFCI training/validation and test data set contained a
total of 2,793,511 tokens, whereas the external validation
test data set contained 177,362 tokens.

In the DFCI training/validation and test data set, we iden-
tified an average of 12 symptoms per clinical note. Of the 80
total PRO-CTCAE symptoms, only five were not identified in
any notes: decreased sweating, delayed orgasm, ejacula-
tion, no orgasm, and stretch marks. Table 2 presents a
qualitative demonstration of the variety of contexts in which
the 20 most frequently reported PRO-CTCAE symptoms
were documented. The 20 and 10 most frequently docu-
mented symptoms represented 96% and 75% of all
symptom occurrences, respectively. General pain was the
most commonly documented symptom representing 20%
of symptom occurrences.

Token-Level Model Performance

When examining the performance of the 10 deep learning
models in the DFCI test data set at the token level (ie,
sensitivity and specificity for distinct mentions of a symp-
tom), BERT, ClinicalBERT, XLNet, RoBERTa, XLM-
RoBERTa, DistilBERT, and ELECTRA all achieved an F1
score . 0.85. XLM-RoBERTa-base, which has the largest
pretrained corpus among all the models, achieved the
highest performance (F1 = 0.88). However, DistilBERT and

ELECTRA-small had faster processing times (7.58 seconds
and 3.95 seconds, respectively) and a similar performance
(F1 = 0.87) as the XLM-RoBERTa-base model. The F1
scores, recall, precision, and processing time for each of
the 10 models are presented in Table 3.

Note-Level Model Performance

Given the combination of high performance with a fast
processing time, we chose the ELECTRA-small model for
validation on the note level. The F1 scores using ELECTRA-
small ranged from 0.98 for identification of anxious to 0.86
for identification of fatigue. The F1 scores, precision, and
recall for the 10 most common symptoms in the DFCI test
data set are presented in Table 4.

External Validation

In the MIMIC-III data set used for external validation, an
average of eight symptoms were identified per clinical note
and 38 PRO-CTCAE symptoms were identified across the
data set. Six of the 10 most frequently documented
symptoms in the DFCI test data set achieved an F1 score.
0.85 in external validation (Table 4). For the top 10 most
common frequently documented symptoms in the MIMIC-
III data set, F1 scores ranged from 0.73 for swelling to 0.97
for diarrhea and dizziness (Table 5).

DISCUSSION

We built, tested, and externally validated a deep learning
model that extracts symptoms directly from clinical notes in
EHRs. To our knowledge, this is the first creation of a deep
learning model using the PRO-CTCAE framework, thus
ensuring that clinically relevant patient symptoms are cap-
tured. The ELECTRA-small model achieved the highest
performance for symptom identification at the token level,
and at the note level, it achieved an F1 score. 0.90 for the
10 most frequently documented symptoms. This suggests
that our model had high performance in identifying docu-
mentation containing relevant clinical symptoms for review.
With a processing time of only 3.95 seconds per note, deep
learning could greatly accelerate evaluations of patient
symptoms as compared with manual chart abstraction,
which typically requires over an hour of chart review per
patient.31 The high performance of our model suggests that
deep learning would be suitable for automated, EHR-based
symptom assessments for a variety of research, clinical, and
regulatory purposes. Deep learning can be used in retro-
spective studies of cancer symptoms, postmarketing drug
surveillance programs, and for novel care delivery innova-
tions to improve monitoring and proactive intervention in
response to patient symptoms.

Electronic PROs are arguably one of the most important
innovations in cancer care delivery, yet they have important
limitations that could be ameliorated by deep learning. The
sensitivity of PROs in the real world depends upon the
frequency of patient reporting. PRO’s may therefore miss
important symptoms if patients may choose not to complete
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PROs or if they selectively report when they are feeling well.
Clinically important symptoms are likely to be documented
within a clinical encounter; therefore, our model could
identify symptoms that might otherwise be missed by PROs.
Moreover, several studies suggest that symptoms docu-
mented by clinicians may be more predictive of serious
clinical events (eg, emergency department visits or mortality)
than symptoms directly reported by patients.5 Therefore,
symptoms identified by deep learning may complement and
ultimately provide more meaningful and actionable infor-
mation than PROs alone. Finally, there are well-documented
sociodemographic disparities in the use of electronic PROs,
with lower completion rates among patients who are racial/
ethnic minorities and elderly and have limited English pro-
ficiency, cognitive disabilities, psychiatric disorders, and
visual impairment.9,32 Therefore, relying solely on electronic
PROs could magnify racial/ethnic disparities in the quality of

cancer care. Ourmethods could help overcome this problem
and promote equity in cancer care.

A recent systematic review of automated methods to extract
symptoms from EHRs found that most previous efforts have
focused on very narrow sets of symptoms relevant to dis-
eases of interest (eg, heart failure,33 multiple sclerosis,34

and acute respiratory distress syndrome)35,36 or to specific
adverse drug events (eg, rash and arrhythmia).37-39 By
contrast, few studies have focused on the extraction of
broad sets of symptoms that are necessary within oncology
or for research or care interventions focused primarily on
symptom management.40,41 Efforts to perform automated
extraction of symptoms from EHRs for the oncologic
population have been limited, with only 11% of such
previous studies featuring oncology as the clinical specialty
of interest.36 These few studies are limited by the absence
of a clear guiding framework to identify clinically

TABLE 1. Sample Characteristics

Characteristic
Training and Validation

Data Sets Test Data Set External Data Set

General clinical note statistics

Clinical site DFCI DFCI BIDMC

Annotated notes, No. 1,125 100 100

Department

Breast 259 (23.0) 19 (19.0) NA

GI 194 (17.2) 16 (16.0) NA

Thoracic 186 (16.5) 22 (22.0) NA

Gynecology 179 (15.9) 13 (13.0) NA

Psychiatry 117 (10.4) 14 (14.0) NA

Palliative care 108 (9.6) 9 (9.0) NA

Others 82 (7.3) 7 (7.0) 100a

Tokens per notes, mean (SD)

Token instances per document 591 (470) 572 (469) 1,328 (518)

Unique tokens per document 265 (157) 258 (143) 489 (157)

Symptoms per notes, mean (SD)

Symptom instances per note 11.9 (8.6) 12.1 (8.1) 7.9 (9.4)

Unique symptoms per note 8.1 (5.1) 8.2 (5.1) 5.0 (5.4)

Patient demographics

Unique patients, No. 870 97 91

Age, years, mean (SD) 55 (13) 55 (13) 71 (15)

Female, No. (%) 655 (75.5) 71 (73.2) 43 (47.3)

Race, No. (%)

White 763 (87.9) 82 (84.5) 74 (81.3)

Black or African American 37 (4.3) 3 (3.1) 5 (5.5)

Asian 37 (4.3) 5 (5.2) 2 (2.2)

Others 18 (2.1) 5 (5.2) 5 (5.5)

Unknown 13 (1.5) 2 (2.1) 4 (4.4)

Abbreviations: DFCI, Dana-Farber Cancer Institute; BIDMC, Beth Israel Deaconess Medical Center; SD, standard deviation.
aClinical notes from BIDMC were obtained from intensive care units represented in the Medical Information Mart for Intensive Care (MIMIC-III)

data set.
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meaningful symptoms for adverse event monitoring. By
contrast, we followed the PRO-CTCAE framework, which
has been rigorously developed with guidance from the
National Cancer Institute, the US Food and Drug Admin-
istration, and patient advocates and is widely used in
cancer care delivery research and in therapeutic clinical
trials.42 Our automated method to identify PRO-CTCAE
symptoms is therefore a significant advance that could

accelerate research and clinical innovations to improve
symptom management in the oncologic population.

Our study has several limitations. Although deep learning
models were trained to identify 80 PRO-CTCAE symptoms
considered to be most clinically relevant to the care of
oncology patients, this framework does not encompass all
the possible symptoms that a patient may experience and
does not extract descriptive aspects of symptoms such as

TABLE 2. Top 20 PRO-CTCAE Symptoms Identified Through Manual Annotation of Clinical Notes From the Dana-Farber Cancer Institute Training and Test
Data Sets

Symptom
No. of

Mentions
Examples of Documentation

From Clinical Notes

General pain 1,794 pain, Pain, discomfort, chest pain, PAIN, painful, tenderness, pains, chest discomfort, uncomfortable, aches, sore,
LBP, soreness, Discomfort, tender, pressure, generalized pain, aching, back, hurting, chest pressure, sensitivity,
Tender, Painful, CP, aches/pains

Anxious 940 anxiety, anxious, Anxiety, worry, worried, worries, Anxious, anxiety symptoms, anxieties, worrying

Fatigue 877 fatigue, Fatigue, fatigued, low energy, tired, FATIGUE, Fatigued, decreased energy

Sad 708 depression, depressed, mood, depressed mood, depressive, Depression, tearful, low mood, sad, depressive
symptoms, sadness, tearfulness, down, dysphoric mood, grief, crying, Mood, dysphoria, depressive sxs, cries, mood
symptoms, mood is low, grieving, Tearful, Mood has been low, teary, low/depressed mood, Crying, low, low/
depressed

Nausea 557 nausea, Nausea, nauseated, N, nauseous, queasiness, n

Neuropathy 458 neuropathy, numbness, Neuropathy, neuropathic, tingling, neuropathic pain, numbness and tingling, Paresthesia,
paresthesias, numbness/tingling, Numbness, numb, Numbness or tingling, paresthesia, PN, dysesthesias, sciatica,
dysesthesia, burning pain, Numbness/tingling, neuralgia, dysesthia, 10 mg PO, tingling and numbness, burning,
Paresthesias, nerve pain

Shortness of
breath

374 shortness of breath, dyspnea, dyspnea on exertion, SOB, DOE, Dyspnea, short of breath, Shortness of breath, dyspnea
with exertion, shortness of breath with exertion, shortness of breath on exertion, sob, exertional dyspnea, SOB with
exertion, short of breath with exertional activity, Breathing, exertional shortness of breath, Short of breath with
exertional activity, dyspneic, Shortness of breath on exertion, Short of breath, shortness of breath with activity

Insomnia 354 insomnia, sleep, Insomnia, sleep disturbance, difficulty sleeping, trouble sleeping, poor sleep, dyssomnia, difficulty
with sleep, Sleep, not sleeping, difficulty falling asleep, sleep disturbances, sleeping, interruptions in his sleep, Not
sleeping, difficulty staying asleep, sleep deprivation, disrupted sleep, not sleeping well, not been sleeping well, not
been sleeping, INSOMNIA

Constipation 285 constipation, Constipation, constipated, obstipation

Cough 276 cough, Cough, coughing, Coughing

Decreased
appetite

276 anorexia, decreased appetite, early satiety, poor appetite, appetite change, appetite, loss of appetite, Poor appetite, low
appetite, poor PO intake, Appetite, Appetite is poor, no appetite, appetite is poor, Appetite poor, appetite loss, unable to
eat, lower appetite, Decreased appetite, trouble eating, Appetite low, Anorexia, not eating, change in appetite, Appetite
is low, Loss of appetite, decreased oral intake, No appetite, lack of appetite, Appetite off, Decreased Appetite

Diarrhea 275 diarrhea, Diarrhea, D

Abdominal pain 244 abdominal pain, abdominal discomfort, Abdominal pain, pain, abd pain, right upper quadrant discomfort, right upper
quadrant pain, RUQ pain, LUQ pain, epigastric pain, epigastric discomfort, Abdominal discomfort, abd cramps,
discomfort in his abdomen, Abdominal Pain, abd discomfort, LUQ discomfort

Hoarseness 242 hoarseness, Hoarseness, hoarse voice, hoarse, Hoarse voice

Headache 161 headaches, headache, HA, Headaches, migraines, Headache, HAs, migraine

Hot flashes 144 hot flashes, Hot flashes, hot flash, hotflashes

Swelling 143 edema, swelling, swollen, Swelling, lymphedema, Edema

Joint pain 142 arthralgias, arthralgia, arthritis, joint pain, painful joints, pain, Arthralgias, arthritic pain, Arthralgia, Gout, joint pains,
joint discomfort

Rash 139 rash, Rash, cellulitis, dermatitis, shingles, rashes, red blotches

Vomiting 123 vomiting, V, emesis, vomited, dry heaves, Vomiting, v, dry heaving, vomits, vomit, Vomited

Abbreviations: CP, chest pain; DOE, dyspnea on exertion; HA, headache; LUQ, left upper quadrant; D, diarrhea; PN, peripheral neuropathy; PO, orally; PRO-
CTCAE, Patient-Reported Outcomes version of the Common Terminology Criteria for Adverse Events; RUQ, right upper quadrant; SOB, shortness of breath.
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quality, severity, and frequency. The utility of this model for
abstracting symptoms for patient populations outside of the
oncology context may therefore be limited. Nevertheless,
our study included external validation of our model in
another health care system with a distinctly different vali-
dation cohort consisting of ICU patients. EHRs of ICU
patients may be more likely to describe a different set of
symptoms (eg, shortness of breath) compared with longi-
tudinal progress notes. Although the high performance of
the model in this patient population may suggest its
transferability, further efforts for external validation in

disparate patient populations may be warranted. Although
our study presents an important method for supplementing
ongoing efforts to identify patient symptoms using elec-
tronic PROs, ensuring that all relevant patient symptoms
are captured requires innovative efforts that can use ma-
chine learning for identifying symptoms from clinician-
patient conversations. An important limitation of this
work is its basis in EHR data; although clinical notes
comprise an important unstructured data source, they may
not be fully reflective of patient-experienced symptoms, as
clinicians tend to under-report symptoms compared with
what patients would self-report.43 Therefore, additional
efforts to extract verbally discussed symptoms would
identify critical information that a clinician may not docu-
ment or a patient may not report in a questionnaire. A
combination of symptom abstraction from EHRs, electronic
PROs, and audio recordings would represent the most
comprehensive approach to date for adverse event moni-
toring and effective symptommanagement. Finally, a single
physician annotated all clinical notes used for model
training and testing. Discordance is common whenmultiple
clinicians annotate symptoms in clinical notes.31,43,44 In-
terestingly, studies have shown that NLP models can
outperform humans in identifying text-based data.13,45

In conclusion, we demonstrated that NLP methods can be
applied to EHRs for extraction of symptoms at scale. The
use of the PRO-CTCAE framework to guide training of deep
learning ensures that the model captures a variety of
symptoms considered to be most clinically meaningful in
the oncology context. Implementation of this automated
surveillance method in conjunction with electronic PROs
can enable real-time adverse event monitoring and ongoing
quality improvement efforts.

TABLE 3. Token-Level Performance of Deep Learning Models in the Dana-Farber
Cancer Institute Test Data Set

Model F1a Precisionb Recallc

Average Time to
Analyze Each Note

(seconds)

BERT-base 0.87 0.89 0.86 16.24

ClinicalBERT 0.88 0.89 0.86 16.12

XLNet-base 0.86 0.84 0.88 61.36

ClinicalXLNet 0.85 0.87 0.84 59.06

DistilBERT-base 0.87 0.87 0.86 7.58

RoBERTa-base 0.87 0.88 0.86 15.89

XLMRobERTa-base 0.88 0.88 0.88 18.58

ELECTRA-small 0.87 0.86 0.87 3.95

ClinicalELECTRA-small 0.78 0.77 0.80 3.80

Longformer-base 0.82 0.89 0.77 54.83

aF1 assesses the harmonic value between precision and recall.
bPrecision is the positive predictive value.
cRecall is the sensitivity.

TABLE 4. Symptom Identification on the Note Level Using the ELECTRA-Small
Deep Learning Model in the Dana-Farber Cancer Institute Test Data Set and the
MIMIC-III Test Data Set

Symptoma

F1 Precision Recall

DFCI MIMIC-III DFCI MIMIC-III DFCI MIMIC-III

General pain 0.97 0.90 0.94 0.86 1.0 0.95

Anxious 0.98 NAb 1.0 NAb 0.96 NAb

Fatigue 0.86 0.71 0.86 0.83 0.86 0.63

Sad 0.94 NAb 0.92 NAb 0.96 NAb

Nausea 0.93 0.94 0.89 1.00 0.97 0.88

Neuropathy 0.94 0.75 0.92 0.60 0.96 1.00

Shortness of breath 0.97 0.90 0.86 0.97 0.98 0.83

Cough 0.98 0.91 0.97 0.95 1.0 0.88

Diarrhea 0.93 0.97 0.86 1.00 1.0 0.95

Fever 0.93 0.93 0.94 1.00 0.92 0.87

Abbreviations: DFCI, Dana-Farber Cancer Institute; MIMIC-III, Medical
Information Mart for Intensive Care.

aSymptoms listed here are the 10 most common Patient-Reported Outcomes
version of the Common Terminology Criteria for Adverse Events (PRO-CTCAE)
symptoms that were identified in the DFCI test data set through manual annotation.

bMIMIC-III data set did not contain these symptoms.

TABLE 5. External Validation of Symptom Identification at the Note
Level Using the ELECTRA-Small Deep Learning Model Applied to the
MIMIC-III Test Data Set
Symptoma F1 Precision Recall

Shortness of breath 0.90 0.97 0.83

General pain 0.90 0.86 0.95

Abdominal pain 0.83 0.88 0.78

Fever 0.93 1.00 0.87

Vomiting 0.87 0.96 0.79

Nausea 0.94 1.00 0.88

Cough 0.91 0.95 0.88

Diarrhea 0.97 1.00 0.95

Dizziness 0.97 1.00 0.94

Swelling 0.73 0.69 0.79

Abbreviations: MIMIC-III, Medical Information Mart for Intensive
Care; PRO-CTCAE, Patient-Reported Outcomes version of the
Common Terminology Criteria for Adverse Events.

aSymptoms listed here are the 10 most common PRO-CTCAE
symptoms that were identified through manual annotation in the
MIMIC-III test data set.
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APPENDIX

FIG A1. Example of the annotation interface, label studio, for symptom identification in clinical notations. Ground Truth represents manual
annotations, and Prediction represents symptoms identified by a deep learning algorithm.
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