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Abstract

Objective: To develop and evaluate deep learning (DL) risk assessment models for predicting 

pain progression in subjects with or at risk for knee osteoarthritis (OA).

Materials and Methods: The incidence and progression cohorts of the Osteoarthritis Initiative, 

a multi-center longitudinal study involving 9348 knees in 4674 subjects with of at risk for 

knee OA that began in 2004 and is ongoing, was used to conduct this retrospective analysis. 

A subset of knees without and with pain progression (defined as nine point or greater increase 

in pain score between baseline and two or more follow-up time over the first 48-months) were 

randomly stratified into training (4200 knees with mean age of 61.0 years and 60% female) and 

hold-out testing (500 knees with mean age of 60.8 years and 60% female) datasets. A DL model 

was developed to predict pain progression using baseline knee radiographs. An artificial neural 

network was used to develop a traditional risk assessment model to predict pain progression 

using demographic, clinical, and radiographic risk factors. A combined model was developed 

to combine demographic, clinical, and radiographic risk factors with DL analysis of baseline 
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knee radiographs. Area under the curve (AUC) analysis was performed using the hold-out testing 

dataset to evaluate model performance.

Results: The traditional model had an AUC of 0.692 (66.9% sensitivity and 64.1% specificity). 

The DL model had an AUC of 0.770 (76.7% sensitivity and 70.5% specificity), which was 

significantly higher (p<0.001) than the traditional model. The combined model had an AUC of 

0.807 (72.3% sensitivity and 80.9% specificity), which was significantly higher (p<0.05) than the 

traditional and DL models.

Conclusions: DL models using baseline knee radiographs had higher diagnostic performance 

for predicting pain progression than traditional models using demographic, clinical, and 

radiographic risk factors.
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INTRODUCTION

Osteoarthritis (OA) is one of the most prevalent and disabling chronic diseases, with the 

knee being the joint most commonly affected [1]. Pain is the hallmark of knee OA and is 

the symptom that drives patients to seek medical attention and contributes to the reduced 

quality of life [2]. Developing risk assessment models for predicting pain progression in 

patients with knee OA could potentially improve the likelihood of successful treatment 

during the early stages of the disease before chronic nervous system sensitization to pain 

has evolved [3]. Heightening risk appraisals can influence intentions and behaviors [4] and 

thus may motivate patients with knee OA at high risk for pain progression to adhere to 

beneficial lifestyle modifications including weight loss and physical activity [5]. In addition, 

identifying patients with knee OA at high risk for pain progression could help triage referrals 

for more expensive and invasive treatment options such as corticosteroid and hyaluronic 

acid injections [6], genicular nerve ablation [7], and surgical correction of mechanical 

malalignment [8], thereby improving patient outcomes while reducing health care costs.

The etiology of pain in patients with knee OA is complex and multi-factorial [2]. 

Discordance between knee pain and structural knee pathology has been widely noted with 

relatively weak correlations between the radiographic severity of OA and the presence and 

severity of pain, especially during the early stages of radiographic disease [9–11]. However, 

risk factors for pain progression have been identified including older age [12–14], female 

gender [13, 15], non-Caucasian race [15, 16], higher body mass index (BMI) [12–14], 

increased knee pain [13, 14], and advanced radiographic disease [15, 17]. Nevertheless, risk 

assessment models for predicting pain progression in patients with knee OA have remained 

relatively limited. Current risk assessment models have primarily used demographic, 

clinical, and radiographic risk factors [18, 19] or detailed analysis of magnetic resonance 

imaging (MRI) examinations [20, 21]. Thus, new and improved strategies are needed to 

create widespread, cost-effective, and easily acquired risk assessment models for predicting 

pain progression in patients with knee OA.
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Deep learning (DL) is an advanced form of artificial intelligence that has been successfully 

used for various medical imaging applications [22]. DL could provide a new approach 

for developing OA risk assessment models to predict pain progression through rapid and 

fully-automated extraction of useful prognostic information from imaging studies. DL 

could potentially learn a representative subset of features on baseline imaging studies 

in patients with knee OA that could distinguish between individuals without and with 

pain progression over time. Previous studies have demonstrated the feasibility of using 

DL analysis of baseline radiographs and MRI examinations in risk assessment models to 

predict the presence of knee pain [23], radiographic progression of knee OA [24, 25], 

and subsequent total knee arthroplasty [26, 27]. Our study was performed to develop and 

evaluate DL risk assessment models for predicting pain progression in subjects with or at 

risk for knee OA using baseline knee radiographs. We hypothesize that DL models would 

have higher diagnostic performance for predicting pain progression than traditional models 

using demographic, clinical, and radiographic risk factors.

METHODS

Selection Criteria

Knees eligible to be included in this retrospective analysis were selected from subjects in 

the Osteoarthritis Initiative (OAI). The OAI is a multi-center longitudinal study that began 

in 2004 and is ongoing and that collected demographic, clinical, and imaging data over a 

nine-year follow-up period on 4674 men and women between the ages of 45 and 79 years 

[28]. Knees were selected from both the incidence cohort of 3285 subjects without knee 

OA but with risk factors for OA incidence (knee pain, elevated BMI, prior knee injury 

or surgery, family history of OA, Heberden’s nodes, repetitive knee bending, and over 70 

years of age) and the progression cohort of 1389 subjects with knee OA. The OAI was 

approved by the Internal Review Boards at University of California at San Francisco and at 

each individual clinical recruitment site and was performed in compliance with the Health 

Insurance Portability and Accountability Act (HIPAA) and with all subjects signing written 

informed consent.

Imaging and clinical data was collected on both knees of the 4674 subjects in the OAI 

incidence and progression cohorts. The 9348 knees in the OAI database were eligible to be 

included in the study if they had the following information recorded: 1) age, gender, race, 

and BMI at baseline; 2) grade of knee OA at baseline according to the Kellgren-Lawrence 

(KL) system [29] provided by central reading using bilateral standing posterior-anterior 

knee radiographs; and 3) Western Ontario and McMaster Universities Osteoarthritis Index 

(WOMAC) pain scores normalized to a 0 to 100 scale [30] at baseline and 12-month, 24-

month, 36-month, and 48-month follow-up, with sufficient data available to determine the 

presence or absence of persistent pain progression. Six thousand five hundred sixty-seven 

knees of the total 9348 knees in the OAI database met the above-mentioned criteria and were 

thus eligible for inclusion. Both knees from the same subject were eligible to be included 

in the study if they met the inclusion criteria, with each knee independently assessed for 

the presence or absence of persistent pain progression. Figure 1 summarizes the selection of 

eligible knees.
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Outcome Measure for OA Risk Assessment Models

The outcome measure for the OA risk assessment models was persistent pain progression, 

which was defined according to the Foundation of the National Institute of Health OA 

Biomarker Consortium Project as a nine point or greater increase in WOMAC pain score 

between baseline and two or more follow-up time over the first 48-months points [31]. 

The nine point or greater increase in WOMAC pain score was based upon the literature 

for a minimum clinically important difference for pain worsening [32]. Persistent pain 

progression required an increase in WOMAC pain score above the threshold level at two or 

more follow-up time points as pain in patients with knee OA may fluctuate over time. Knees 

were excluded due to insufficient data if WOMAC pain scores were not recorded in the OAI 

database at all follow-up time points or if there were not enough follow-up time points after 

the first increase in WOMAC pain score above the threshold level to determine if the pain 

progression was persistent.

OA Risk Assessment Models

Traditional Risk Assessment Models—Traditional OA risk assessment models were 

developed using three alternative approaches including Random forest, logistic regression, 

and an artificial neural network (ANN). The ANN model had the same architecture as OA 

risk assessment models used in previous studies that had high diagnostic performance and 

consisted of four layers including an input layer, two hidden layers with 64 and 32 hidden 

nodes, and an output layer [25, 33]. The inputs of the traditional risk assessment models 

consisted of six demographic, clinical, and radiographic risk factors including baseline age, 

gender, race, BMI, WOMAC pain score, and KL grade, with continuous variable normalized 

by means and standard deviations.

DL Risk Assessment Models—The DL risk assessment models were fully-automated 

processing pipelines consisting of two deep convolutional neural networks (CNNs) 

connected in a cascaded fashion. The first joint cropping CNN was used to crop regions of 

interest around each individual knee joint on the baseline bilateral standing posterior-anterior 

knee radiographs to narrow the range of information used for DL analysis. The second 

classification CNN was used to evaluate the cropped images of the knee to determine the 

likelihood of pain progression. The processing pipeline framework was implemented in a 

hybrid computing environment involving Python (version 3.7, Python Software Foundation, 

Wilmington, DE) and MATLAB (version 2019a, MathWorks, Natick, MA). The CNNs were 

coded using TensorFlow (version 1.12, Google, Mountain View, CA).

The first fully-automated joint cropping CNN was adapted from You Only Look Once 

(YOLO) [34], which consisted of 24 convolutional layers followed by an average pooling 

layer. The input of the CNN was the baseline knee radiographs in DICOM format, which 

were resized to 448×448 matrix, normalized by means and standard deviations with respect 

to images in the ImageNet training dataset [35], and converted to Numpy arrays. The CNN 

was used to extract image features to provide the coordinates of two square boxes that 

defined the regions of each individual knee joint on the radiographs. The pre-defined square 

boxes were doubled in area to correct for potential errors in the localization process and 

superimposed over the original DICOM X-ray images with full matrix size. Cropped images 
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of each knee joint were extracted, downsized to 224×224 matrix size, and used as the input 

to the classification CNN layer [25].

DL models were developed using two alternative classification CNNs. One CNN was 

adapted from DenseNet [36], which consisted of three dense blocks with each block 

connected by a convolutional layer and a maxpooling layer. The second CNN was adapted 

from EfficientNet [37], which consisted of six MBConv blocks and one SpeCov block. The 

MBConv block was comprised of a convolutional block connected by a list of convolution 

layers, a depthwise convolution layer, and a maxpooling layer. The SpeConv block was 

comprised of a convolution layer followed by a depthwise convolution layer. In both CNNs, 

the last block was connected to an average pooling layer, which was followed by a Softmax 

output layer. Since saliency maps have been used for visualization in many recent DL 

applications for creating OA risk assessment models [23–27], the average pooling layer was 

modified using a gradient back-propagation method to calculate saliency maps that showed 

the regions of discriminative high activation on the radiographs on which the classification 

CNN based its interpretation.

Combined Traditional and DL Risk Assessment Model—A combined model using 

joint training was developed to combine demographic, clinical, and radiographic risk factors 

with DL analysis of baseline knee radiographs. The feature extractor of risk factors was 

a two layer fully-connected network with the data normalized by means and standard 

deviations and used as the input into a six-dimensional fully connected layer. The feature 

extractor of DL analysis of baseline knee radiographs had the same architecture as the DL 

model with the highest diagnostic performance. The output of the feature extractor of risk 

factors and the feature extractor of DL analysis of baseline knee radiographs were combined 

as a new vector and then used as the input into another fully-connected network for joint 

model training. The CNNs and fully-connected layers were connected in a cascaded fashion 

to create a fully-automated processing pipeline as shown in Figure 2.

OA Risk Assessment Model Training and Evaluation

Training and evaluation of the OA risk assessment models was performed on a computer 

running a 64-bit Linux operating system (Ubuntu 16.04) with an Intel i7 7700k quad-core 

CPU with 32 GB DDR3 RAM and two Nvidia GTX 1080-Ti graphic cards with 3584 

CUDA cores and 11GB GDDR5X RAM. A detailed description of the training and 

evaluation methods used for each model is provided in the Supplemental Material.

A total of 5000 knees of the 6567 knees eligible to be included in the study were selected 

for model training and evaluation, with the number chosen to achieve the largest sample 

size consisting of near equal numbers of knees without and with pain progression. Knees 

without and with pain progression were randomly selected and stratified using a random 

data generator in TensorFlow (version 1.12, Google, Mountain View, CA) into three non-

overlapping datasets for training, validation, and hold-out testing. The training dataset 

consisted of 4200 knees (2097 knees without and 2103 knees with pain progression), the 

validation dataset consisted of 300 knees (150 knees without and 150 knees with pain 
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progression), and the hold-out testing dataset consisted of 500 knees (245 knees without and 

255 knees with pain progression).

Statistical Analysis

Statistical analysis was performed using MATLAB (version 2019a, MathWorks, Natick, 

MA) and MedCalc (version 14.8; MedCalc Software, Ostend, Belgium). Statistical 

significance was defined as a p-value less than 0.05.

Mann-Whitney U tests were used to compare differences in age, BMI, WOMAC pain score, 

and KL-grade between knees in the training and hold-out testing datasets without and 

without pain progression. Chi-square tests were used to compare differences in gender and 

race between knees without and with pain progression.

Receiver operator characteristic (ROC) analysis with areas under the curves (AUCs) was 

used to determine the diagnostic performance of all traditional models and all DL models 

for predicting pain progression for all knees in the hold-out testing dataset. For the best 

traditional model, best DL model, and combined model, AUCs and optimal sensitivities and 

specificities at the Youden Index [38] were determined for all knees, KL grades 0 and 1 

knees at risk for OA, KL grades 2, 3, and 4 knees with OA, KL grade 2 knees with mild 

OA, and KL grades 3 and 4 knees with moderate and severe OA in the hold-out testing 

dataset. Two-sided exact binomial tests were used to calculate 95% confidence intervals. A 

nonparametric approach was used to compare AUCs between the models and AUCs between 

KL grade 0 and 1 knees and KL grades 2, 3, and 4 knees for each individual model [39]. 

KL grade 1 knees and KL grade 2 and 3 knees could not be included in the analysis due to 

insufficient sample size.

RESULTS

Tables 1 and 2 compare the distribution of demographic, clinical, and radiographic risk 

factors for all knees without and with pain progression in the training and hold-out testing 

datasets, respectively. For both datasets, BMI and KL grade were significantly higher 

(p<0.05) for knees with pain progression than knees without pain progression. However, 

there was no significant difference (p=0.093–0.996) between knees without and with pain 

progression for age, gender, race, or baseline WOMAC pain score for either the training or 

hold-out testing datasets.

The AUCs of the traditional models for predicting pain progression for all knees in the 

hold-out testing dataset were 0.692 (95% confidence interval of 0.660 to 0.742) for the ANN 

model, 0.681 (95% confidence interval of 0.637 to 0.721) for the random forest model, 

and 0.660 (95% confidence interval of 0.616 to 0.701) for the logistic regression model. 

The AUCs of the DL models for predicting pain progression for all knees in the hold-out 

testing dataset were 0.751 (95% confidence interval of 0.711 to 0.788) for the DenseNet 

model and 0.770 (95% confidence interval of 0.730 to 0.806) for the EfficientNet model. 

The EfficientNet model had significantly higher diagnostic performance (p<0.05) than the 

DenseNet model.
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Table 3 shows the sensitivity, specificity, and AUCs of the best traditional ANN model, best 

DL EfficientNet model, and combined model for predicting pain progression for all knees, 

KL grade 0 and 1 knees, KL grades 2, 3, and 4 knees, KL grade 2 knees, and KL grades 3 

and 4 knees in the hold-out testing dataset, with the ROC curves shown in Figures 3 and 4. 

The AUCs for all models were significantly higher (p<0.05) for KL grades 2, 3, and 4 knees 

than KL grades 0 and 1 knees. The combined model had the highest diagnostic performance 

with an AUC of 0.807 (72.3% sensitivity and 80.9% specificity) for all knees, 0.776 (67.7% 

sensitivity and 83.0% specificity) for KL grades 0 and 1 knees, 0.841 (82.8% sensitivity 

and 74.5% specificity) for KL grades 2, 3, and 4 knees, 0.877 (82.5% sensitivity and 80.0% 

specificity) for KL grade 2 knees, and 0.794 (77.8% sensitivity and 74.4% specificity) for 

KL grades 3 and 4 knees. Figures 5, 6, 7, and 8 show saliency maps for baseline knee 

radiographs without and with pain progression evaluated by the combined model which 

show the regions of discriminative high activation on which the classification CNN based its 

interpretation.

DL analysis of baseline knee radiographs improved the diagnostic performance for 

predicting pain progression when compared to traditional models using demographic, 

clinical, and radiographic risk factors. The DL EfficientNet model and combined model 

had significantly higher (p<0.001) AUCs than the traditional ANN model for all knees, 

KL grades 0 and 1 knees, and KL grades 2, 3, and 4 knees. The combined model had 

significantly higher (p<0.05) AUCs than the DL EfficientNet model for all knees and KL 

grades 2, 3, and 4 knees and marginally significantly higher AUC (p=0.058) for KL grades 0 

and 1 knees.

DISCUSSION

Our study has demonstrated the feasibility of using DL risk assessment models for 

predicting pain progression in subjects with or at risk for knee OA using baseline knee 

radiographs. The combined model had the top diagnostic performance with an AUC of 0.807 

for predicting pain progression for all knees, compared to AUCs of 0.692 and 0.770 for the 

best traditional ANN model and best DL EfficientNet model, respectively. The AUCs of 

the combined model and DL EfficientNet model were significantly higher (p<0.001) than 

the AUC of the traditional ANN model. The AUCs of all models were significantly higher 

(p<0.05) for KL grades 2, 3, and 4 knees than KL grades 0 and 1 knees, indicating higher 

diagnostic performance for predicting pain progression in knees with OA than knees with 

risk factors for OA that had not yet developed radiographic manifestations of the disease.

Two previous studies have described traditional OA risk assessment models for predicting 

pain progression in subjects at risk for knee OA using demographic, clinical, and 

radiographic risk factors [18, 19]. Landsmeer et al [19] used a traditional model to predict 

the onset of frequent knee pain over a six-year follow-up period in 472 knees of overweight 

and obese women without knee OA in the Prevention of Knee Osteoarthritis in Overweight 

Females (PROOF) study. A multivariate logistic regression model using BMI, baseline knee 

pain, knee pain climbing stairs, morning stiffness, post-menopausal status, and heavy lifting 

had an AUC of 0.71 for predicting the onset of frequent knee pain. Halilaj et al [18] used 

a much larger number of potential risk factors, including demographics, knee symptoms, 
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medication usage, family history, general health status, comorbidities, nutritional and mental 

health information, walking ability and upper leg strength assessments, and KL grade and 

knee alignment measurements on radiographs, to predict pain progression in 1243 knees in 

the OAI incidence cohort. A LASSO regression model had an AUC of 0.79 for predicting 

pain progression over an eight-year follow-up period. The model developed by Halilaj et 

al [18] achieved high diagnostic performance but would be difficult to incorporate into 

widespread clinical use, as it analyzed a large number of risk factors obtained from detailed 

and time-consuming clinical history, physical examination, and radiographic evaluations.

Two previous studies have described OA risk assessment models for predicting pain 

progression in patients at risk for knee OA using baseline MRI examinations [20, 21]. 

Both studies analyzed cartilage T2 relaxation time texture information on T2 maps to 

distinguish between knees in the OAI control cohort without pain progression and knees in 

the OAI incidence cohort with pain progression over a four-year follow-up period [20, 21]. 

A support machine vector had a sensitivity and specificity of 71.2% and 72.3%, respectively 

for distinguishing between knees without and with pain progression in a study performed 

by Urish et al [20] and an AUC of 0.87 with a sensitivity and specificity of 77.2% and 

89.3%, respectively in a study performed by Zhong et al. [21]. Both models achieved high 

diagnostic performance. However, analyzing baseline T2 maps is relatively time-consuming 

and requires segmenting cartilage, identifying specific features that warrant investigation, 

and then extracting the features from an MRI examination that is costly and not performed 

as commonly as radiographs in clinical practice to evaluate patients with or at risk for knee 

OA.

Our combined model had an AUC of 0.770 for predicting pain progression for KL 

grades 0 and 1 knees, which compares favorably to the AUCs of other models reported 

in the literature for subjects at risk for knee OA [18–21]. Furthermore, the diagnostic 

performance of the combined for predicting pain progression for grades 2, 3, and 4 knees 

was significantly higher (p<0.05), with an AUC of 0.841. To our knowledge, no previous 

studies have described a risk assessment model for predicting pain progression exclusively 

in subjects with knee OA. Our combined joint training model also has several unique 

advantages. The model threshold for predicting pain progression can be adjusted to achieve 

the desired level of sensitivity and specificity for use in different clinical scenarios. For 

example, a more sensitive but less specific threshold could be used to help motivate high 

risk patients to adhere to beneficial lifestyle modifications, while a more specific but 

less sensitive threshold could be used to help triage high risk patients for referrals for 

more expensive and invasive treatment options. Our combined model also provides a fully-

automated method to simultaneously analyze readily obtainable demographic, clinical, and 

radiographic risk factors and baseline knee radiographs. Thus, the model could potentially 

be used in clinical practice to rapidly and accurately predict pain progression in patients with 

or at risk factors for knee OA.

Our study has several limitations. One limitation was the inclusion of only a relatively 

small number of demographic, clinical, and radiographic risk factors in our traditional and 

combined risk assessment models. However, the main objective of our study was to create 

widespread, cost-effective, and easily acquired OA risk assessment models for predicting 
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pain progression. Thus, our models only analyzed readily obtainable demographic, clinical, 

and radiographic variables that have been shown to be risk factors for pain progression 

in multiple previously published studies. Another limitation was that the diagnostic 

performance of our OA risk assessment models were only evaluated using a hold-out 

testing dataset in the OAI. Future studies are needed to determine whether similar high 

diagnostic performance could be achieved when our DL models are evaluated in different 

subject populations using knee radiographs potentially acquired with different imaging 

protocols and quality assurance standards. In addition, the classification CNNs in our DL 

and combined models required equal numbers of knees with and without pain progression 

in the training dataset as the neural networks were unable to adapt to unbalanced data in 

the training process. Thus, the proportion of knees with pain progression in the training, 

validation, and testing datasets were not the same as the true prevalence of pain progression 

in the OAI database or in the real population. Furthermore, our study only used the 

definition of pain progression provided by the Foundation of the National Institute of 

Health OA Biomarker Consortium Project, which is a nine point or greater increase in 

WOMAC pain score between baseline and two or more follow-up time over the first 

48-months. Additional studies are needed to investigate the ability of our DL models to 

predict other pain trajectories such as severe, rapidly progressing pain, and pain persisting 

and worsening over longer follow-up periods. Our study also did not take into account the 

specific treatment regiments received by subjects in the OAI, which could have influenced 

the severity of their knee pain. A final limitation was that our DL models could provide no 

mechanistic information regarding the imaging features responsible for pain progression in 

subjects with knee OA or risk factors for knee OA.

In conclusion, our study has demonstrated the feasibility of using DL risk assessment 

models for predicting pain progression in subjects with knee OA or risk factors for knee 

OA using baseline knee radiographs. Our combined model, which used demographic, 

clinical and radiographic risk factors and DL analysis of baseline knee radiographs together, 

achieved the highest diagnostic performance for predicting pain progression, which was 

significantly higher (p<0.05) than the diagnostic performance of the traditional and DL 

models. However, future work is needed to further validate our combined model in different 

subject populations and to optimize threshold levels best suited for different clinical 

scenarios. Furthermore, future prospective studies are needed to determine whether the 

increase in diagnostic performance of our combined model could directly translate into 

improvements in clinical care and whether early initiation of treatment of patients with or at 

risk for knee OA using the model is clinically feasible and ultimately successful.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Flowchart showing the selection of eligible knees for the study.
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Figure 2: 
Illustration of the architecture of the combined model for predicting pain progression. The 

proposed model consisted of two separate convolutional neural networks connected in a 

cascaded fashion to create a fully-automated pipeline. The combined model was created 

using YOLO and EfficientNet to extract DL information from baseline knee radiographs as 

a feature vector, which was further concatenated with the normalized demographic, clinical, 

and radiographic risk factor data vector. BN: batch normalization, Conv2D: 2D convolution, 

ReLU: rectified linear activation, 2D: two-dimensional.
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Figure 3: 
Receiver operating characteristic curves showing the diagnostic performance of the OA 

risk assessment models for predicting pain progression for all knees in the hold-out testing 

dataset. The combined model which used demographic, clinical and radiographic risk factors 

and deep learning (DL) analysis of baseline knee radiographs together had an AUC of 0.807, 

the DL EfficientNet model which used DL analysis of baseline knee radiographs alone had 

an AUC of 0.770, and the traditional artificial neural network (ANN) model which used 

demographic, clinical, and radiographic risk factors alone had an AUC of 0.692.
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Figure 4: 
Receiver operating characteristic curves showing the diagnostic performance of the OA risk 

assessment models for predicting pain progression for (a) knees in the hold-out testing 

dataset with baseline KL grades of 0 and 1 at risk for OA and (b) knees in the hold-out 

testing dataset with baseline KL grades of 2, 3, and 4 with OA. For knees with baseline KL 

grades of 0 and 1, the combined model which used demographic, clinical and radiographic 

risk factors and deep learning (DL) analysis of baseline knee radiographs together had 

an AUC of 0.776, the DL EfficientNet model which used DL analysis of baseline knee 

radiographs alone had an AUC of 0.754, and the traditional artificial neural network (ANN) 

model which used demographic, clinical, and radiographic risk factors alone had an AUC of 

0.684. For knees with baseline KL grades of 2, 3, and 4, the combined model had an AUC 

of 0.841, the DL EfficientNet model had an AUC of 0.786, and the traditional model had an 

AUC of 0.714.
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Figure 5: 
(a) Baseline radiograph and (b) corresponding saliency map for a knee in the hold-out 

testing dataset from a 59 year old female with a KL grade of 0 without pain progression 

evaluated by the combined model, which made a true negative interpretation of no pain 

progression. Note that the strong discriminative high activation region on the radiograph on 

which the model based its interpretation was centered on the joint space and surrounding 

bone (color region).
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Figure 6: 
(a) Baseline radiograph and (b) corresponding saliency map for a knee in the hold-out 

testing dataset from a 65 year old male with a KL grade of 2 with pain progression evaluated 

by the combined model, which made a true positive interpretation of pain progression. 

Note that the strong discriminative high activation regions on the radiograph on which the 

model based its interpretation were centered on the joint space and surrounding bone (color 

regions).
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Figure 7: 
(a) Baseline radiograph and (b) corresponding saliency map for a knee in the hold-out 

testing dataset from a 67 year old female with a KL grade of 2 without pain progression 

evaluated by the combined model, which made a false positive interpretation of pain 

progression. Note that the strong discriminative high activation region on the radiograph 

on which the model based its interpretation was centered on the joint space and surrounding 

bone (color region), similar to the locations of high activation on the cases with true negative 

and true positive interpretations. The reason for the false positive interpretation cannot be 

determined.
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Figure 8: 
(a) Baseline radiograph and (b) corresponding saliency map for a knee in the hold-out 

testing dataset from a 61 year old male with a KL grade of 3 with pain progression evaluated 

by the combined model, which made a false negative interpretation of no pain progression. 

Note that there was not a strong discriminative high activation region on the radiograph on 

which the model based its interpretation (color region), which was the likely cause of the 

false negative interpretation.
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Table 1:

Distribution of demographic, clinical, and radiographic risk factors for all knees, knees without pain 

progression, and knees with pain progression in the training dataset.

Risk Factor All Knees
(N=4200)

Knees Without Progression
(N=2097)

Knees With Progression
(N=2103)

*P-Value

Age in Years (Mean, SD) 61.0, 9.2 61.2, 9.5 60.8, 8.9 0.470

Gender (Number Female, %) 2507, 59.7 1235, 58.9 1272, 60.5 0.576

Race (Number Caucasian, %) 3404, 81.4 1715, 81.8 1689, 80.3 0.724

BMI in km/m2 (mean, SD) 28.6, 4.8 28.0, 4.7 29.1, 4.9 < 0.001

WOMAC Score (Mean, SD) 11.1, 15.6 13.1, 18.0 9.6, 13.2 0.101

KL-Grade (Mean, SD) 1.2, 1.2 1.1, 1.2 1.4, 1.2 < 0.001

SD: Standard Deviation

BMI: Body Mass Index

WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index Pain Score

KL: Kellgren-Lawrence

*
P-Values for Difference Between Knees Without and With Pain Progression
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Table 2:

Distribution of demographic, clinical, and radiographic risk factors for all knees, knees without pain 

progression, and knees with pain progression in the hold-out testing dataset.

Risk Factor All Knees
(N=500)

Knees Without Progression
(N=245)

Knees With Progression
(N=255)

*P-Value

Age in Years (Mean, SD) 60.8, 9.3 61.0, 9.4 60.6, 9.1 0.861

Gender (Number Female, %) 299, 59.8 146, 59.6 153, 60.0 0.996

Race (Number Caucasian, %) 395, 79.0 186, 75.9 209, 81.9 0.892

BMI in km/m2 (mean, SD) 28.6, 5.1 28.0, 4.8 29.2, 5.4 0.015

WOMAC Score (Mean, SD) 10.7, 15.7 13.0, 18.1 8.3, 12.4 0.093

KL Grade (Mean, SD) 1.2, 1.2 1.0, 1.2 1.4, 1.2 < 0.001

SD: Standard Deviation

BMI: Body Mass Index

WOMAC: Western Ontario and McMaster Universities Osteoarthritis Index Pain Score

KL: Kellgren-Lawrence

*
P-Values for Difference Between Knees Without and With Pain Progression
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Table 3:

Sensitivity, specificity, and AUCs for the OA risk assessment models for predicting pain progression in knees 

in the hold-out testing dataset.

All Knees with Baseline KL Grades of 0, 1, 2, 3, and 4 (N= 500 Knees)

Model Sensitivity % Specificity % AUC

Traditional Model 66.9 (59.6 – 71.7)
[164/249]

64.1 (57.9 – 70.1)
[161/251]

0.692 (0.660 – 0.742)

DL Model 76.7 (71.0 – 81.8)
[191/249]

70.5% (64.5 – 76.1)
[177/251]

0.770 (0.730 – 0.806)

Combined Model 72.3% (66.3 – 77.8)
[180/249]

80.9% (75.5 – 85.6)
[203/251]

0.807 (0.769 – 0.840)

Knees With Baseline KL Grades of 0 and 1 at Risk for OA (N= 286 Knees)

Models Sensitivity % Specificity % AUC

Traditional Model 62.4 (53.7 – 70.9)
[83/133]

62.7 (54.7 – 70.6)
[96/153]

0.684 (0.627 – 0.738)

DL Model 70.7 (62.2 – 78.2)
[94/133]

71.9 (64.1 – 78.9)
[110/153]

0.754 (0.700 – 0.803)

Combined Model 67.7 (59.0 – 75.5)
[90/133]

83.0% (76.1 – 88.6)
[127/153]

0.776 (0.723 – 0.823)

Knees with Baseline KL Grades of 2, 3, and 4 with OA (N= 214 Knees)

Models Sensitivity Specificity AUC

Best Traditional Model 69.8 (60.9 – 78.4)
[81/116]

66.3(56.1 – 75.6)
[65/98]

0.714 (0.648 – 0.774)

DL Efficient-Net Model 83.6 (75.6 – 89.8)
[97/116]

70.4 (60.3 – 79.2)
[69/98]

0.786 (0.725 – 0.839)

Combined Model 82.8 (74.6 – 89.1)
[96/116]

74.5 (64.7 – 82.8)
[73/98]

0.841 (0.784 – 0.887

Knees with Baseline KL Grade of 2 with Mild OA (N= 135 Knees)

Models Sensitivity Specificity AUC

Best Traditional Model 77.5 (66.8 – 86.1)
[62/80]

63.6 (49.6 – 76.2)
[35/55]

0.733 (0.650 – 0.805)

DL Efficient-Net Model 83.8 (73.8 – 91.1)
[67/80]

70.9 (57.1 – 82.4)
[39/55]

0.819 (0.743 – 0.880)

Combined Model 82.5 (72.4 – 90.1)
[66/80]

80.0 (67.0 – 89.6)
[44/55]

0.877 (0.810 – 0.927)

Knees with Baseline KL Grades of 3 and 4 with Moderate to Severe OA (N= 79 Knees)

Models Sensitivity Specificity AUC

Best Traditional Model 94.4 (81.3 – 99.3)
[34/36]

37.2 (23.0 – 53.3)
[16/43]

0.683 (0.569 – 0.783)

DL Efficient-Net Model 83.3 (67.2 – 93.6)
[30/36]

69.8 (53.9 – 82.8)
[30/43]

0.734 (0.622 – 0.827)

Combined Model 77.8 (60.8 – 89.9)
[28/36]

74.4 (58.8 – 86.5)
[32/43]

0.794 (0.688 – 0.877)

Numbers in Parentheses are 95% Confidence Intervals
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Number in Brackets are Raw Data

AUC: Area under the Curve

KL: Kellgren-Lawrence

OA: Osteoarthritis
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