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a b s t r a c t 

A key issue for the ongoing COVID-19 pandemic is whether non-pharmaceutical public- 

health interventions (NPIs) retard death rates. Good information about causal effects from 

NPIs comes from flu-related excess deaths in large U.S. cities during the second wave of the 

Great Influenza Pandemic, September 1918-February 1919. The measured NPIs are in three 

categories: school closings, prohibitions of public gatherings, and quarantine/isolation. Al- 

though an increase in NPIs flattened the curve in the sense of reducing the ratio of peak 

to overall flu-related excess death rates, the estimated effect on overall deaths is small and 

statistically insignificant. These findings differ from those associated with COVID-19 in the 

sense that facemask mandates and usage seem to reduce COVID-related cases. 

© 2022 University of Venice. Published by Elsevier Ltd. All rights reserved. 

 

 

 

 

The mortality experienced during the Great Influenza Pandemic of 1918–1920 likely provides a useful guide for outcomes 

under the COVID-19 pandemic. An important issue is how mortality responds to non-pharmaceutical interventions (NPIs), 

which in 1918–1920 emphasized school closings, prohibitions of public gatherings, and quarantine/isolation. A difficulty in 

finding causal effects of NPIs during the COVID-19 Pandemic is reverse causality; that is, U.S. state and city governments

clearly reacted to numbers on mortality, hospitalizations, and cases by adjusting the extent of interventions. Specifically, 

when the extent of disease increased, governments were more likely to mandate closing of non-essential businesses and 

wearing of facemasks. This endogenous reaction makes it difficult to assess the effects of NPIs on health outcomes. 

For scientific purposes, the ideal setting would be controlled experiments, whereby NPIs were adjusted randomly across 

governmental jurisdictions. This kind of experimentation did not arise during the Great Influenza or COVID-19 Pandemic. 1 

However, the nature of the evolution of the Great Influenza across U.S. cities offers the potential to assess causal effects of

NPIs on death rates. Specifically, the flu spread gradually across locations from its origin point in Boston, and the distance

from Boston provides a reasonable instrumental variable for the intensity of NPIs. The subsequent analysis lays out this 

methodology and considers possible concerns about this identification strategy. 

1. Non-Pharmaceutical interventions and flu-related death rates 

Epidemiologists, notably Markel et al. (2007) ; Hatchett et al. (2007) ; and Bootsma and Ferguson (2007) , have studied

effects of non-pharmaceutical public-health interventions (NPIs) on flu-related excess deaths in large U.S. cities over the 24- 

week period corresponding to the peak of the Great Influenza Pandemic, September 1918-February 1919. The weekly data 
✰ This research was supported by the National Institute on Aging of the National Institutes of Health under Award Number P30AG012810. The content 
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Table 1 

Descriptive Statistics. 

Variable: NPI School 

closings 

Public 

gatherings 

Quar 

antine 

PHRT Excess flu-related 

death rate 9/18–2/19 

Relative peak excess 

flu-related death rate 

9/18–2/19 

Units years years years years years % of population per 

year 

number 

Mean 0.24 0.10 0.09 0.05 0.02 1.12 4.6 

Median 0.18 0.08 0.08 0 0.02 1.15 4.4 

Std dev. 0.13 0.06 0.05 0.07 0.02 1.32 1.3 

Max 0.47 0.29 0.22 0.26 0.10 1.78 7.9 

Min 0.08 0 0 0 −0.03 0.47 2.8 

Variable: Flu-related 

death rate 

1910–1916, 

winter 

Excess 

flu-related 

death rate 

1/18–4/18 

Excess all-cause 

death rate 

9/18–2/19 

Relative peak 

all-cause excess 

death rate 

9/18–2/19 

Distance from 

Boston 

Population 1910 Area 

Units % of population 

per year 

% of population 

per year 

% of population 

per year 

number 10 0 0 miles 10 0 0s square miles 

Mean 0.172 0.34 0.98 3.4 1.01 434 49.7 

Median 0.172 0.27 0.99 2.9 0.83 224 37.0 

Std dev. 0.046 0.35 0.45 1.3 0.92 760 53.4 

Max 0.294 1.51 2.87 6.3 3.10 4768 286.8 

Min 0.080 −0.35 0.21 1.9 0 100 6.3 

Note: These statistics apply to variables defined and shown in Appendix Table A1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

on flu-related excess death rates come from U.S. Census Bureau, Weekly Health Index , reproduced in Collins et al. (1930 ,

Appendix, Table B). Continuous weekly data over the study period are available for 45 of the 50 largest U.S. cities, where

this group of 50 corresponds to a central-city population in the 1910 U.S. Census of at least 10 0,0 0 0. 1 Monthly data on

flu-related excess deaths are available for these cities back to 1910 (Collins, Appendix Table A). 

Markel et al. (2007 , Table 1 and supplemental figures) collected data on NPIs from September 1918 to February 1919 for

43 of the 45 cities that have full weekly data on flu-related excess mortality. Atlanta and Detroit were excluded, but the

current study adds these cities to the sample. The data on NPIs were organized by Markel et al. (2007) into the three broad

categories of school closings, prohibitions of public gatherings, and quarantine/isolation. Hatchett et al. (2007) consider many 

more categories of NPIs but analyze only 17 of the 43 cities considered by Markel et al. (2007) . 2 Mask ordinances, prominent

recently in the context of COVID-19, are indicated by Hatchett et al. (2007 , Table 1 ) as applying in only 2 of their 17 cities. 

The underlying information on NPIs in Markel et al. (2007) comes from articles in two newspapers in each city, along

with other sources. The main data were reported as number of days in which NPIs of each type were in effect, with a focus

on a variable that considers the presence of any type of NPI. For example, when school closings and prohibitions of public

gatherings prevail on the same day, the variable records two days’ worth of NPI. 3 Barry (2007) raises objections to the NPI

data collected for New York City, and these objections are discussed below. Business closings, emphasized in the context of 

the ongoing coronavirus pandemic, were not implemented in broad form during the Great Influenza, although staggering of 

business hours was common. 4 Likely because of the absence of substantial business closings, Markel et al. (2007) did not

focus on this category of NPI. However, the variable for prohibitions of public gatherings includes closings of theatres, bars, 

entertainment and sporting events, and so on. 

The present analysis considers two characteristics of each city’s flu-related excess death rates: first, the cumulative flu- 

related excess death rate out of the total population over the full 24-week study period, and second, the ratio of the peak

weekly excess death rate during the period to the overall death rate. (All death rates are expressed at annual rates.) A lower

cumulative death rate is a reasonable gauge of the ultimate success of the NPIs. In contrast, a lower relative peak implies

a smoother pattern, often described as a “flattening of the curve,” which can be desirable from the standpoint of easing 

burdens on the healthcare system, possibly leading thereby to fewer cumulative deaths. However, for a given overall excess 

death rate, if an NPI lowers the relative peak, the implication is that the intervention delays deaths but does not ultimately

avoid them. 
1 The five missing cities are Bridgeport, Jersey City, Memphis, Paterson, and Scranton. 
2 Bootsma and Ferguson (2007) studied the timing of the introduction of a set of NPIs in 16 cities (15 of those considered by Markel, et al. [2007] plus 

Atlanta). 
3 Correia, Luck, and Verner (2020) also use the Markel data on NPIs, focusing on how number and speed of implementation of NPIs impact manufacturing 

employment and output in U.S. cities. Lilley, Lilley, and Rinaldi (2020) critique the methodology used by Correia, Luck, and Verner. 
4 Velde (2020 , Figure 4 ) constructed measures of these types of restrictions on business activity for 42 cities (those considered by Markel plus Atlanta 

and Detroit, with Lowell, Milwaukee, and New Haven omitted). 
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For illustrative purposes, Fig. 1 shows the weekly evolution of flu-related excess death rates from September 1918 to 

February 1919 in 8 of the 45 cities studied: Boston, New York, Philadelphia, Pittsburgh, Chicago, New Orleans, St. Louis, and

San Francisco. The typical pattern is that the excess death rate starts around zero, rises to a sharp peak, then falls rapidly

and remains positive for several more weeks. For example, Boston and especially Philadelphia have pronounced peaks in 

early to mid-October 1918. Pittsburgh has a smaller peak but high death rates over a longer period around the peak. New

York and Chicago have smaller peaks and a milder overall experience. New Orleans and San Francisco show second peaks 

in early 1919. St. Louis has the mildest outcomes overall without a pronounced peak. 

The epidemiologists used standard epidemiological models to study the dynamics of flu-related excess deaths during 

the Great Influenza Pandemic, as illustrated by Fig. 1 . The present analysis focuses instead on two measures of overall

outcomes—the cumulative flu-related excess death rate over the study period (which corresponds to the areas under the 

curves in Fig. 1 ) and the peak weekly excess death rate measured relative to the overall rate. 

As already mentioned, there is concern that NPIs—measured, say, by length of time in force—and flu-related death rates 

are simultaneously determined at the level of cities. On the one hand, the basic hypothesis is that more NPIs reduce death

rates. On the other hand, NPIs implemented by city governments are likely to respond to death rates in terms of numbers

realized or anticipated. The implicit assumption in the statistical analysis by the epidemiologists is that NPIs are determined 

exogenously; that is, shifts in actual or anticipated flu-related excess death rates do not impact the chosen NPIs. Bootsma 

and Ferguson (p. 7592) recognize the endogeneity problem—“Causality will never be proven, because, unsurprisingly, control 

measures were nearly always introduced as case incidence was increasing and removed after it had peaked”—but did not 

deal with it. The present research attempts to account for the potential endogeneity of NPIs by employing an instrumental- 

variable approach. 

Appendix Table A1 shows the data used for the 45 large U.S. cities in the sample. The variables include measures of

death rates, measures of non-pharmaceutical interventions (NPIs), and other variables. Table 1 has descriptive statistics for 

the variables detailed in Appendix Table A1 . 

2. Regression analysis 

In the parts of their analysis that assess overall outcomes for flu-related death rates, the epidemiologists rely on an array

of pair-wise correlations involving NPIs, flu-related excess death rates, and other variables. One shortcoming of this approach 

is that it does not account for relations with variables outside of each pair—for example, in assessing the connection between

NPIs and flu-related excess death rates, there is no consideration of overall health status or other variables. In addition, as

already noted, the approach does not attempt to establish causation between the two variables in each pair—is it NPIs that

affect death rates or vice versa or both? 

The present analysis deals with these issues by employing the multivariate-regression framework familiar to economists. 

This analysis includes an instrumental-variable approach to attempt to isolate causal effects of NPIs on flu-related excess 

death rates. 

2.1. First-Stage regression for NPIs 

An important consideration is that the second wave of the Great Influenza began in the United States by late August 1918,

likely coming from Europe and then appearing around Boston at the army base Fort Devens and the Navy’s Commonwealth 

Pier facility. 5 Shortly thereafter, sailors leaving Boston on ships spread the flu to Philadelphia and New Orleans, leading 

subsequently to spread to other places. From this perspective, distance from Boston (shown in Appendix Table A1 , column

9) may serve as an exogenous measure of how early the Influenza Pandemic tended to reach each city in the sample.

Specifically, cities further from Boston typically had more time to prepare and were, therefore, more likely to react in terms

of the implementation of NPIs. 6 Empirically, distance from Boston, entered in a quadratic form, has considerable explanatory 

power for the NPI variable. The pair-wide relationship between distance and overall NPIs, shown in Fig. 2 , is positive with a

simple correlation coefficient of 0.65. (The NPI variable is in Appendix Table A1 , column 3.) 

Although distance from Boston is clearly exogenous, the distance-from-Boston variable might be problematic for instru- 

mental estimation if this variable affects flu-related deaths directly (or is correlated with other variables that relate to these 

deaths). That is, the effects of distance on mortality may not work solely through the channel of influencing choices of NPIs.

This issue is taken up in the subsequent discussion. 

A first-stage OLS regression for NPIs across 45 cities for September 1918-February 1919 is: 

NPI = 0 . 107 

∗∗∗ + 0 . 190 

∗∗∗ · ( distance Boston ) − 0 . 033 

∗∗ · ( distance Boston ) 
2 
, 

( 0 . 029 ) ( 0 . 053 ) ( 0 . 016 ) (1) 
5 For a discussion, see Barry (2004 , pp. 181 ff.). 
6 Possibly the distance measure could be improved by using the time required to transit from Boston to a particular location, given the transportation 

technology available in 1918. However, an estimate of the time required to transit from Boston to each city by train or boat did not improve on the 

explanatory power of the first-stage regression for explaining NPIs. 
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Fig. 1. Evolution of Flu-Related Excess Death Rates in Selected Cities September 1918-February 1919. Note: The graphs show the evolution of the weekly 

flu-related excess death rate (percent of city population) for each city from the week ending September 14, 1918 to that ending February 22, 1919. Data 

are from Collins et al. (1930 , Appendix Table B). 
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Fig. 2. Relationship between Distance from Boston (thousands of miles) and NPIs (years of implementation). Note: The sample is for 45 U.S. cities. Distance 

from Boston is the minimum distance shown by Google Maps . Non-Pharmaceutical Interventions (NPIs) from September 1918 to February 1919 are from 

Markel et al. (2007 , Table 1 ), updated to include Atlanta and Detroit. NPIs are days in effect (in units of years) for school closings, prohibitions of public 

gatherings, and quarantine/isolation. See Appendix Table A1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where R 

2 = 0.47, mean of dependent variable = 0.24 (years), standard error of regression = 0.094, standard errors of co-

efficients are in parentheses, and the statistical significance of each coefficient is denoted by ∗∗∗ at 1% and 

∗∗ at 5%. The

F-Statistic for the two distance variables jointly is 18.8. Eq. (1) implies that the estimated marginal effect of distance on

NPIs is positive for most of the sample and is roughly zero at the furthest away cities on the west coast, for which the

distance variable is around 3 (in thousands of miles). 

Eq. (1) matches up with second-stage regressions for the relative peak death rate, as discussed in the next section. The F-

Statistic for the two distance variables jointly of 18.8 is well above the critical value of 10 favored by Stock and Yogo (2005) ,

so that a weak-instrument problem should not apply, and two-stage-least-squares estimates should be satisfactory. The 

next section also considers second-stage regressions for excess flu-related death rates, and these specifications include an 

additional explanatory variable that is regarded as exogenous: the flu-related gross death rate for 1910–1916 (for September- 

February periods). If this variable is added to Eq. (1) , the F-Statistic for the two distance variables jointly becomes 10.5. 

2.2. Second-State regressions for flu-related excess death rates 

Effects of NPIs on cumulative excess death rates and relative peak excess death rates. Table 2 has second-stage regres-

sions applying to the 45 U.S. cities for weeks ending from September 8, 1918 to February 22, 1919. The analysis considers

two dependent variables: the cumulative flu-related excess death rate and the relative peak flu-related excess death rate 

(the peak weekly excess death rate divided by the overall rate, with all rates expressed on an annual basis). These data are

in Appendix Table A1 , columns 1 and 2. 

The main analysis uses information on deaths ascribed to influenza and pneumonia. This concept, used by the epidemi- 

ologists and reported for the relevant period for the 45 cities on a weekly basis in Collins et al. (1930) , is expressed as

flu-related excess death rates. Specifically, for each city, the average gross flu-related death rates for 1910-1916 are sub- 

tracted from the gross flu-related death rates during the 24-week study period. 

An alternative concept considers all-cause excess mortality rates. This measure is available for the relevant period for 

the 45 cities on a monthly basis from Mortality Statistics 1918 and Mortality Statistics 1919 ( U.S. Department of Commerce,

Bureau of the Census, 1920 and 1921). An advantage of this concept is that it does not depend on diagnoses of causes of

death, specifically of deaths due to influenza and pneumonia. A disadvantage is that it includes deaths from non-flu-related 

causes, which are not the focus of the study; that is, overall excess mortality adds a lot of noise to the dependent variable.

Another problem is that the lack of weekly data on all-cause excess morality makes it difficult to pinpoint the peak death

rate. The present analysis focuses on the flu-related concept, but the results using all-cause excess mortality turn out to 

yield similar results. 

Aside from NPIs, the cumulative flu-related excess death rate in each city likely depends on age structure and other 

demographic characteristics and would depend on the nature of healthcare facilities to the extent that these were effective 

in curbing mortality. To take account of these effects, the regressions for cumulative flu-related excess death rates include 

as an explanatory variable the flu-related gross mortality rate from a prior period 

7 —specifically, the median rate for 1910–

1916, corresponding to the months, September-February, used for the dependent variable. This variable, shown in Appendix 
7 A variable of this type was used by Bootsma and Ferguson (2007 , p. 7588). 
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Table 2 

Effects from Non-Pharmaceutical Interventions (NPIs) 45 U.S. Cities, September 1918-February 1919. 

Dependent variable: Flu-Related Excess Death Rate Relative Peak Excess Death Rate 

(1) (2) (3) (4) 

Method: OLS TSLS OLS TSLS 

Constant 0.48 ∗∗

(0.24) 

0.33 

(0.34) 

5.96 ∗∗∗

(0.36) 

6.60 ∗∗∗

(0.51) 

Non-pharmaceutical 

interventions, NPI 

−0.02 

(0.37) 

0.31 

(0.64) 

−5.86 ∗∗∗

(1.32) 

−8.55 ∗∗∗

(2.01) 

Flu-related gross death 

rate 

1910–1916 

3.76 ∗∗∗

(1.03) 

4.21 ∗∗∗

(1.26) 

– –

R-squared 0.30 0.29 0.31 0.25 

Standard error of 

regression 

0.27 0.27 1.11 1.16 

Number of observations 45 45 45 45 

Dependent variable: Excess Death Rate Relative Peak Death Rate 

(5) (6) (7) (8) 

Method: OLS TSLS OLS TSLS 

Constant 0.47 ∗∗

(0.23) 

0.40 

(0.33) 

5.86 ∗∗∗

(0.39) 

6.51 ∗∗∗

(0.56) 

School closings 1.60 ∗

(0.83) 

1.70 ∗

(0.90) 

−6.72 ∗

(3.58) 

−8.31 ∗∗

(3.86) 

Prohibitions of 

public gatherings 

−2.43 ∗∗

(1.01) 

−2.24 ∗

(1.20) 

−3.21 

(4.44) 

−7.42 

(5.26) 

Quarantine/isolation 0.47 

(0.60) 

0.62 

(0.79) 

−7.12 ∗∗∗

(2.34) 

−9.39 ∗∗∗

(2.79) 

p-value, 3 NPIs same 

coefficients 

0.05 0.06 0.74 0.90 

p-value, 3 NPI 

coefficients = 0 

0.10 0.11 0.001 0.002 

Flu-related gross 

death rate 1910–16 

4.07 ∗∗∗

(0.99) 

4.27 ∗∗∗

(1.21) 

– –

R-squared 0.40 0.40 0.32 0.26 

Standard error of 

regression 

0.26 0.26 1.13 1.18 

Number of 

observations 

45 45 45 45 

Dependent variable: Overall Flu-Related Excess Death Rate Relative Peak Death Rate 

(9) (10) (11) (12) 

Method: OLS TSLS OLS TSLS 

Constant 0.14 

(0.30) 

−0.20 

(0.53) 

6.69 ∗∗∗

(0.51) 

7.40 ∗∗∗

(0.73) 

Non-pharmaceutical 

interventions, NPI 

0.51 

(0.47) 

1.13 

(0.91) 

−7.46 ∗∗∗

(1.52) 

−9.79 ∗∗∗

(2.29) 

Public-health response 

time, PHRT 

4.29 ∗

(2.40) 

6.33 ∗

(3.54) 

−17.7 ∗

(9.0) 

−25.2 ∗∗

(10.7) 

p-value, NPI & PHRT 

jointly 

0.22 0.19 0.000 0.000 

Flu-related gross death 

rate 

1910–1916 

4.53 ∗∗∗

(1.09) 

5.42 ∗∗∗

(1.57) 

– –

R-squared 0.35 0.33 0.37 0.34 

Standard error of 

regression 

0.262 0.267 1.07 1.10 

Number of observations 45 45 45 45 

∗∗∗Significant at 1% level. 
∗∗Significant at 5% level. 
∗Significant at 10% level. 

Notes to Table 2 . 

The sample applies to 45 large U.S. cities observed from week ending September 14, 1918 to that ending February 22, 1919. The 

dependent variable in columns 1, 2, 5, 6, 9, and 10 is the cumulative flu-related excess death rate, given in Appendix Table A1 , 

column 1. The dependent variable in columns 3, 4, 7, 8, 11, and 12 is the relative peak death rate, given in Appendix Table A1 , 

column 2. Standard errors of coefficients are in parentheses. OLS is ordinary least-squares. TSLS is two-stage least-squares. In 

column 2, the instrumental variables are the distance from Boston and its square and the flu-related gross mortality rate for 

the September-February periods of 1910–1916. In column 4, the instrumental variables are the distance from Boston and its 

square. In columns 6 and 8, the instrument lists include also the difference between school closings and prohibitions of public 

gatherings and between school closings and quarantine. In columns 11 and 12, the instrument lists include also the PHRT 

variable. All variables are shown in Appendix Table A1 . 
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Fig. 3. Relationship between NPIs and Cumulative Flu-Related Excess Death Rate. Note: The sample is for 45 U.S. cities. NPIs from September 1918 to 

February 1919 is from Markel et al. (2007 , Table 1 ), updated to include Atlanta and Detroit. The cumulative flu-related excess death rate for September 

1918 to February 1919 is calculated from Collins et al. (1930 , Appendix, Table B). NPIs are days in effect (in units of years) for school closings, prohibitions 

of public gatherings, and quarantine/isolation. See Appendix Table A1 . 

Fig. 4. Relationship between NPIs and Relative Peak Death Rate. Note: The sample is for 45 U.S. cities. NPIs from September 1918 to February 1919 is from 

Markel et al. (2007 , Table 1 ), updated to include Atlanta and Detroit. The relative peak death rate, defined as the ratio of the peak weekly flu-related excess 

death rate to the overall flu-related excess death rate, is calculated from Collins et al. (1930 , Appendix, Table B). NPIs are days in effect (in units of years) 

for school closings, prohibitions of public gatherings, and quarantine/isolation. See Appendix Table A1 . 

 

 

 

 

 

 

 

 

Table A1 , column 8, is calculated from information in Collins et al. (1930 , appendix Table A). The idea is that this measure

would reflect city characteristics such as demographics and healthcare facilities to the extent that they influence flu-related 

deaths in general and, therefore, likely also the flu-related excess deaths experienced during the 1918-1919 period. 

The pair-wise association between NPIs and cumulative flu-related excess death rates during the study period is in Fig. 3 .

This relationship is negative, as expected (simple correlation coefficient equals −0.28). Regression results in columns 1 and 

2 of Table 2 show the estimated effects of NPIs on the cumulative flu-related excess death rate (holding constant flu-related

mortality for 1910–1916). For the OLS regression in column 1, the estimated coefficient on NPI is close to zero and insignif-

icantly different from zero at the 10% level. In the two-stage least-squares (TSLS) regression in column 2, 8 the estimated

coefficient on NPI has the “wrong” sign (positive) and is still insignificantly different from zero at the 10% level. Therefore, 

there is no evidence that the variations in cumulative flu-related excess death rates across cities reflect variations in NPIs. 9 

The estimated coefficient of the flu-related gross death rate for 1910–1916 is positive and statistically significant at the 1% 

level in columns 1 and 2. As mentioned, these coefficients likely pick up effects from demographics and healthcare facilities. 

The pairwise association between NPIs and the relative peak flu-related excess death rate is in Fig. 4 . This relation-

ship is negative, as expected, with a simple correlation coefficient of −0.56. Regression results in columns 3 and 4 of

Table 2 show the estimated effects of NPIs on the relative peak death rate. The estimated coefficients on the NPI vari-
8 The instrumental variables are those shown on the right-hand side of equation (1) along with the median gross flu-related death rate for the 

September-February months of 1910-1916. 
9 The same conclusion applies if the dependent variable is the excess all-cause mortality rate for September 1918-February 1919 (see Appendix Table A1, 

column 14.). The estimated coefficient on the NPI variable is then 0.38 (s.e. = 0.60) with OLS and 0.48 (s.e. = 1.04) with TSLS. 
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Fig. 5. Relationship between Distance from Boston (thousands of miles) and Public-Health Response Time (PHRT in years). Note: The sample is for 45 U.S. 

cities. Distance from Boston is the minimum distance shown by Google Maps . The public-health response time or PHRT is from Markel et al. (2007 , Table 1 ), 

updated to include Atlanta and Detroit. See Appendix Table A1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

able are −5.9 (s.e. = 1.3) in column 3 (OLS) and −8.5 (s.e. = 2.0) in column 4 (TSLS). Hence, the coefficients are negative and

highly statistically significant, with the coefficient under TSLS notably larger in magnitude. 10 A larger magnitude under TSLS 

makes sense because a higher relative peak death rate likely encouraged the enactment of NPIs with longer duration. That 

is, this reverse causation likely resulted in an upward bias (less negative) in the OLS coefficient. In terms of magnitudes,

the point estimate of the coefficient on the NPI variable of −8.6 in column 4 implies that a one-standard-deviation change

in NPI (by 0.13 in Table 2 ) implies a change in the relative peak death rate by 1.1, compared to the respective mean and

standard deviation of 4.6 and 1.3 (as shown in Table 2 ). Hence, the variations in NPI likely account for a substantial part of

the observed variations in relative peak death rates. 11 

Overall, there is clear evidence that an increase in NPIs flattens the pattern of flu-related excess death rates, gauged by

the drop in the ratio of the peak weekly flu-related excess death rate to the overall rate. This result indicates that NPIs, as

measured, do matter for flu-related mortality. But this influence shows up in the relative peak death rate, not in the overall

rate. 

Columns 5–8 of Table 2 consider the separate roles of the three types of NPIs—school closings, prohibitions of public 

gatherings, and quarantine/isolation (shown in Appendix Table A1 , columns 4–6). There are insufficient instruments to allow 

for endogeneity of all three types of NPI individually. However, it seems plausible that, while the overall duration of NPIs

is endogenous with respect to flu-related excess death rates, the distribution among the three types would be exogenous. 

Therefore, the TSLS estimation in columns 6 and 8 includes on the instrument list the variables used before in columns 2

and 4, respectively, along with the differences between the durations of the various NPIs (school closings minus prohibitions 

of public gatherings and school closings minus quarantine/isolation). 

For the cumulative flu-related excess death rate, the OLS results are in column 5 and the TSLS results in column 6. The

only coefficients related to NPIs that are statistically significant at the 5% level are the negative ones on prohibitions of

public gatherings. The results in columns 5 and 6 accept the hypothesis with p-values of 0.10 and 0.11, respectively, that the

coefficients of the three NPI variables are all zero. Therefore, there is still little evidence that longer-duration NPIs reduce 

overall flu-related excess death rates. 

For the relative peak flu-related excess death rate, the OLS results are in column 7 and the TSLS results in column 8.

As in columns 3 and 4, the allowance for endogeneity of overall NPIs makes a substantial difference, with the magnitudes

of the estimated coefficients notably larger under TSLS (column 8) compared to those under OLS (column 7). The results 

accept the hypothesis that the coefficients of each form of NPI are equal, with a p-value of 0.74 for OLS and 0.90 for TSLS.

Thus, it is satisfactory to combine the three types of NPIs into a single additive form, as in columns 3 and 4. 

Effects from public-health response time. Columns 9–12 of Table 2 consider another measure of how NPIs were 

implemented—the public-health response time or PHRT constructed by Markel et al. (2007 , Table 1 ) and shown in Appendix

Table A1 , column 7. 12 The idea is that a higher PHRT indicates more delay in a city implementing the first intervention

intended to retard flu-related deaths. Fig. 5 shows from the pair-wise relationship that the PHRT variable is negatively but 

weakly associated with distance from Boston, with a simple correlation coefficient of -0.20. Thus, while being further from 
10 The instrumental variables are those shown on the right-hand side of equation (1) . 
11 Results for the relative peak all-cause flu-related excess death rate are similar. (See Appendix Table A1, column 15.) The coefficients on the NPI variable 

are -5.3 (s.e. = 1.3) under OLS and −8.4 (s.e. = 2.0) under TSLS. 
12 The definition of PHRT is the days between the date when the flu-related excess death rate reached twice a baseline death rate and the (usually later) 

date of the first non-pharmaceutical intervention. Their baseline corresponded to the date at which the excess flu-related death rate equaled twice the 

average gross flu-related death rate for 1910-1916. 
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Boston clearly raises the number of NPIs employed ( Fig. 2 ), it has a weaker association with acting quickly to install some

form of NPI. The PHRT also has positive but small simple correlation coefficients with the cumulative flu-related excess 

death rate (0.17) and the relative peak death rate (0.10). 

The available instruments are insufficient to distinguish the effects from the NPI and PHRT variables—moreover, the first- 

stage regression for PHRT analogous to Eq. (1) has an F-Statistic of only 1.9. For this reason, the TSLS results shown in

Table 2 , columns 10 and 12, include as instruments the variables discussed before related to NPI along with the PHRT

variable itself. 

For the cumulative flu-related excess death rate, when the PHRT variable is included in columns 9 and 10, the only

coefficients related to NPIs that are statistically significant are the positive ones on PHRT. A positive value here suggests that

a longer delay in implementing some form of intervention leads to a higher death rate. However, these coefficients differ 

significantly from zero only at the 10% level, and the coefficients for NPI and PHRT jointly differ insignificantly from zero at

the 10% level. Thus, the inclusion of the PHRT variable still does not provide much statistical support for the hypothesis that

NPIs influence cumulative flu-related excess death rates. 

For the relative peak death rate, in columns 11 and 12, the regressions still show significantly negative effects from the

NPI variable. The results also show, surprisingly, negative estimated coefficients on the PHRT variable; that is, a longer delay 

is estimated to reduce the relative peak death rate. The estimated coefficient is significant at the 10% level in the case of

OLS (column 11) and at the 5% level for TSLS (column 12). These results reflect interactions between PHRT and NPI—these

two forms of interventions are inversely related (simple correlation coefficient of -0.54), meaning that places with more 

NPIs tended to respond with a shorter delay. Therefore, the simple correlation (0.10) between PHRT and the relative peak 

death rate reflects partly a proxying of larger PHRT for lower NPI (which has a substantially positive estimated effect on the

relative peak death rate). Once the NPI variable is held fixed, as in columns 11 and 12, the coefficient on PHRT becomes

negative. 

To interpret these results, imagine that an NPI is put into place with a duration of 30 days. If PHRT = 0, the NPI is present

from a point near the beginning of the epidemic. In contrast, if the start of the NPI is delayed by a week, so that PHRT = 0.02

years, the NPI is still in effect for 30 days but begins one week later and lasts one week further into the future. The results

indicate that this rise in PHRT reduces the relative peak death rate. This effect likely arises because, with a higher PHRT (up

to a point), the NPIs in place match up better with the highest death rates. 

Additional effects of distance from Boston. A concern with the TSLS results in Table 2 is that greater distance from

Boston may impact cumulative flu-related deaths directly, not just through influencing choices of NPIs. One idea is that 

cities further from Boston, for which the Great Influenza tended to arrive later, have fewer weeks in the study period from

the local onset of the Great Influenza until the fixed end point, which is the week ending February 24, 1919. For that reason,

there could be a mechanical inverse relation between distance from Boston and the cumulative flu-related excess death rate. 

In fact, as is clear from Fig. 1 , the mortality rates experienced in each city in the later weeks of the study period are all

negligible compared to those from the peak weeks. This point is even stronger if the study period is extended out to the

week ending May 31, 1919 (in which case the magnitudes in the later weeks are not only small but many appear as negative

excess death rates). Thus, this mechanical effect of distance from Boston on excess death rates turns out to be unimportant.

Other concerns involve effects on mortality from a city’s having more time to prepare for the disease. Since develop-

ment of medical treatments (including a vaccine that turned out to be ineffective) would not have been relevant, the main

possibility here is through preparation of healthcare facilities. 13 However, it is unclear in 1918–1919 that better healthcare 

facilities mattered a lot for flu-related mortality. Thus, this form of benefit from delaying the onset of disease may have

been unimportant. 

Another conjecture is that cities further from Boston tended to be those that suffered more from the first wave of the

Great Influenza—roughly January to April 1918—and, thereby, had more immunity against the second wave. 14 This idea can 

be checked by using the flu-related excess mortality rate for each city from January to April 1918 (available from Collins,

et al. [1930, Appendix Table A] and shown in appendix table A1 , column 13). The correlation of this excess death rate with

distance from Boston turns out to be weakly negative, -0.12, not positive as conjectured. The excess death rate for January

to April 1918 can be added to the regressions in Table 2 , columns 1 and 2, for explaining the cumulative flu-related excess

death rate from September 1918 to February 1919. The estimated coefficients on the January-April 1918 variable are 0.40 

(s.e. = 0.68) for column 1 (OLS) and 0.47 (0.70) for column 2 (TSLS); that is, the coefficients differ insignificantly from zero.

Hence, there is no evidence at the level of cities that greater exposure to the flu in the first wave diminished mortality

rates in the second wave. (Note that these regressions hold fixed the flu-related gross mortality rate for the September-to- 

February periods of 1910–1916.) 

Measured quarantine in New York City. As mentioned before, Barry (2007) has raised objections to the NPI data con- 

structed by Markel et al. (2007) for New York City. 15 The Markel data (supplement, slide 30) show that New York imposed a
13 In a more general context, delay could help by raising the chance of spontaneous disappearance of the virus during the relevant timeframe. 
14 The first wave of the Great Influenza appeared in the United States at least by the end of February 1918 at an army base in Kansas—see Barry (2004 , 

p. 169). 
15 Barry (2007) also raises objections about measurements for Chicago, but these points seem mainly to concern the form of presentation. Markel’s (2007, 

supplement, slide 12) numbers for prohibitions of public gatherings and quarantine/isolation in Chicago are similar to those of Bootsma and Ferguson 

(2007 , appendix, pp. 2-4). 
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mandatory quarantine starting September 26, 1918, effective for 73 days. There were no school closings and no prohibitions 

of public gatherings. Barry (2007) argues that the quarantine, while announced, was likely never seriously implemented, in 

which case it would be appropriate to treat New York as having an NPI of zero. However, Aimone’s (2010) discussion indi-

cates that some aspects of a quarantine did operate in New York. Given these uncertainties, it seems appropriate to compare

the initial results, with New York’s NPI data reflecting a quarantine, with those modified to have no quarantine operating in

New York. 

The regressions in Table 2 , cols. 1–8, were redone after modifying the NPI variable and the quarantine/isolation compo- 

nent for New York to equal 0, rather than the 0.2 years used before. This modification has minor effects on all of the results.

In Table 2 , columns 1 and 2, the estimated effects of the NPI variable on cumulative flu-related excess death rates remain

statistically insignificantly different from zero. In columns 3 and 4, the estimated effects of the NPI variable on the relative

peak death rate are still negative and highly statistically significant. The estimated coefficient falls in magnitude from -5.9 

(s.e. = 1.3) to −5.5 (1.3) in column 3 and from -8.5 (2.0) to −8.2 (1.9) in column 4. Similarly, in columns 5–8, the results

change only in minor ways with the revised treatment of New York. 16 Thus, the inference is that, even if Barry (2007)’s

criticism of the measurement of quarantine in New York City is valid, a modification to account for this objection leaves the

main findings intact. 

3. Effects of NPIs during the COVID-19 pandemic 

NPIs have also been used during the COVID-19 Pandemic. Specifically, mandated wearing of facemasks has been used 

extensively to attempt to reduce cases and deaths. 

Herby et al. (2022) carried out a meta-analysis of 24 studies of the effects of facemask mandates on COVID-19 mortality.

These studies applied across a large group of countries, within Europe, or within the United States. Their overall conclusion is

“lockdowns have had little to no effect on COVID-19 mortality” (op. cit., Abstract). However, many of the studies considered 

lack clear causal evidence. Moreover, some studies with convincing methods of identification were excluded and seem to 

provide more support for the efficacy of facemasks. 

Probably the most convincing analysis of the effects of facemask usage on COVID-related outcomes comes from the large- 

scale randomized control trial carried out from November 2020 to April 2021 in rural Bangladesh by Abaluck, et al. (2022) .

This study covered 342,0 0 0 adults from 600 villages, which were randomly assigned between an intervention group 

(178,0 0 0 persons) and a control group (164,0 0 0 persons). The intervention group “received free masks, information on the

importance of masking, role modeling by community leaders, and in-person reminders for 8 weeks” (op. cit., Summary). 

The frequency of proper mask wearing observed in the treatment group was much higher, 42.3%, than that in the control,

13.3%. That is, the interventions raised substantially the usage of facemasks. 

The fraction of persons reporting COVID-like symptoms was 7.6% in the treatment group, compared to 8.6% in the control; 

that is, the difference was 11.6%, which is highly statistically significant. Somewhat weaker results applied to results from 

blood tests on symptomatic persons (although only 40% of these persons consented to having the tests). Overall, the findings 

reveal clear negative causal effects of facemask usage on COVID-related cases. However, the study did not cover mortality. 

Two observational studies for the United States seem to provide convincing identification of the effects of facemask man- 

dates or usage on COVID-19 outcomes. First, Hansen and Mano (2021) used a regression-discontinuity design applied to U.S. 

counties across state borders to assess the effects of facemask mandates on mortality. 17 They found a significantly negative 

effect, although Barro (2022, pp. 7–8) observes that this effect is quantitatively much weaker than that from vaccinations. 

Second, Welsch (2020) relied on instrumental estimation, using the Republican share of voting in each state in the 

2016 U.S. Presidential election as an instrument for facemask usage. This usage was measured in July 2020 in a large survey

conducted by The New York Times . Welsch found that facemask usage had a significantly negative effect on COVID-19 mortal-

ity. Moreover, consistent with the findings in Herby et al. (2022) , this relationship did not show up in OLS regressions. That

is, estimation that did not allow for the endogeneity of facemask usage found little impact of facemasks on COVID-related 

deaths. 

4. Concluding observations 

The main results for the Great Influenza Pandemic applied to 45 large U.S. cities during the peak of the Pandemic from

September 1918 to February 1919. The regressions demonstrate that NPIs—in the forms of school closings, restrictions of 

public gatherings, and quarantine/isolation—had large and statistically significant negative effects on relative peak flu-related 

excess death rates; that is, more interventions clearly flattened the curve for mortality. However, the impacts on cumulative 

flu-related excess death rates were statistically insignificantly different from zero. That is, the NPIs delayed deaths but did 

not ultimately avoid them. 

One possible explanation for the results is that the NPIs were not maintained long enough to have a clear negative effect

on cumulative deaths. 18 Table 1 shows that the mean durations of school closings and prohibitions of public gatherings were 
16 The regressions in columns 9-12 were not rerun because it was unclear how to define the PHRT variable for New York when it is viewed as having 

never implemented an NPI. 
17 Goolsbee and Syverson (2021) used a similar approach to gauge the effects of facemask mandates on economic activity. 
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only 36 days (0.10 years), whereas that for quarantine/isolation was even shorter, 18 days (0.05 years). In this view, NPIs

maintained for longer periods would have had more payoff in terms of avoiding overall deaths. 

In contrast to the results from the Great Influenza, NPIs in the form of facemask mandates and usage seem to have

negative impacts on cases and deaths during the COVID-19 pandemic. One possible reason for the different results is that 

COVID-era NPIs in the form of facemask mandates and usage are more effective than the NPIs employed during the Great

Influenza. The present study emphasized school closings, prohibitions of public gatherings, and quarantine/isolation. Face- 

masks were, in fact, used extensively during the Great Influenza, although they were not typically mandated. However, as 

argued by Barry (2004 , especially pp. 374–375), these facemasks were constructed from gauze and were ineffective. 

This last result is analogous to findings about vaccines. As argued in Barro (2022) , vaccinations have been highly effective

against COVID-related mortality. In contrast, vaccines against the Great Influenza, while widely developed and used, proved 

to be useless (see Barry [2004, especially pp. 356–358]). 
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Appendix 

Table A1 

Data Used in Regressions. 

City (1) (2) (3) (4) (5) 

Flu-related excess 

death rate 9/18–2/19 

Relative peak flu-related 

excess death rate 

NPI School closings Public gatherings 

Albany 1.25 6.92 0.129 0.090 0.038 

Atlanta 0.79 3.30 0.240 0.112 0.049 

Baltimore 1.43 7.84 0.118 0.071 0.047 

Birmingham 1.38 2.82 0.132 0.071 0.060 

Boston 1.58 5.33 0.137 0.071 0.066 

Buffalo 1.19 6.35 0.134 0.077 0.058 

Cambridge 1.18 5.60 0.134 0.071 0.063 

Chicago 0.85 5.40 0.186 0.000 0.107 

Cincinnati 1.01 3.51 0.337 0.173 0.164 

Cleveland 1.09 4.22 0.271 0.063 0.077 

Columbus 0.71 3.65 0.403 0.186 0.216 

Dayton 0.94 5.02 0.427 0.093 0.222 

Denver 1.42 2.83 0.414 0.219 0.093 

Detroit 0.67 4.09 0.077 0.030 0.047 

Fall River 1.40 6.18 0.164 0.088 0.077 

Grand Rapids 0.47 4.02 0.170 0.044 0.077 

Indianapolis 0.66 3.22 0.225 0.104 0.066 

Kansas City MO 1.35 2.94 0.466 0.205 0.115 

Los Angeles 1.14 3.14 0.422 0.290 0.132 

Louisville 0.93 4.22 0.397 0.162 0.162 

Lowell 1.15 5.66 0.162 0.082 0.079 

Milwaukee 0.63 3.13 0.362 0.107 0.148 

Minneapolis 0.62 3.26 0.318 0.156 0.148 

Nashville 1.38 6.13 0.151 0.071 0.079 

New Haven 1.32 4.49 0.107 0.000 0.107 

New Orleans 1.65 5.59 0.214 0.112 0.101 

New York 1.03 4.71 0.200 0.000 0.000 

Newark 1.20 4.53 0.090 0.052 0.038 

Oakland 1.17 5.09 0.348 0.110 0.088 

Omaha 1.27 3.48 0.384 0.077 0.118 

Philadelphia 1.69 7.93 0.140 0.077 0.063 

Pittsburgh 1.78 3.89 0.145 0.068 0.077 

Portland OR 1.13 2.82 0.444 0.101 0.096 

Providence 1.28 4.35 0.115 0.060 0.055 

Richmond 1.13 5.33 0.164 0.082 0.082 

Rochester 0.84 4.65 0.148 0.074 0.074 

San Francisco 1.50 5.14 0.184 0.101 0.082 

Seattle 0.93 2.92 0.460 0.099 0.101 

( continued on next page ) 
18 This explanation is favored by Hatchett, Mecher, and Lipsitch (2007 , p. 7582) and Bootsma and Ferguson (2007 , p. 7588). 
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Table A1 

( continued ) 

City (1) (2) (3) (4) (5) 

Flu-related excess 

death rate 9/18–2/19 

Relative peak flu-related 

excess death rate 

NPI School closings Public gatherings 

Spokane 1.04 3.82 0.449 0.189 0.181 

St. Louis 0.81 3.66 0.392 0.200 0.192 

St. Paul 0.91 3.25 0.077 0.033 0.044 

Syracuse 1.24 6.36 0.107 0.058 0.049 

Toledo 0.68 4.43 0.279 0.142 0.137 

Washington DC 1.40 5.42 0.175 0.088 0.088 

Worcester 1.39 4.88 0.121 0.060 0.060 

(6) (7) (8) (9) (10) 

City Quarantine Public-health response 

time, PHRT 

Flu-related gross death 

rate, Sep-Feb 1910–16 

Distance from Boston Population 1910 

Albany 0.000 0.008 0.186 0.169 100.3 

Atlanta 0.079 0.000 0.208 1.076 154.8 

Baltimore 0.000 0.027 0.230 0.401 558.5 

Birmingham 0.000 0.025 0.220 1.182 132.7 

Boston 0.000 0.036 0.220 0.000 670.6 

Buffalo 0.000 0.033 0.160 0.455 423.7 

Cambridge 0.000 0.038 0.196 0.003 104.8 

Chicago 0.079 −0.005 0.222 0.983 2185.3 

Cincinnati 0.000 0.005 0.182 0.869 363.6 

Cleveland 0.132 −0.005 0.134 0.640 560.7 

Columbus 0.000 0.014 0.148 0.763 181.5 

Dayton 0.112 −0.014 0.156 0.833 116.6 

Denver 0.101 0.025 0.172 1.972 213.4 

Detroit 0.000 0.027 0.166 0.707 465.8 

Fall River 0.000 0.027 0.216 0.053 119.3 

Grand Rapids 0.049 0.047 0.090 0.837 112.6 

Indianapolis 0.055 0.019 0.152 0.936 233.6 

Kansas City MO 0.145 0.000 0.162 1.410 248.4 

Los Angeles 0.000 0.014 0.120 2.983 319.2 

Louisville 0.074 0.016 0.166 0.969 223.9 

Lowell 0.000 0.030 0.194 0.030 106.3 

Milwaukee 0.107 0.014 0.132 1.074 373.9 

Minneapolis 0.014 0.016 0.134 1.391 301.4 

Nashville 0.000 0.003 0.244 1.105 110.4 

New Haven 0.000 0.060 0.238 0.138 133.6 

New Orleans 0.000 0.019 0.228 1.526 339.1 

New York 0.200 −0.030 0.206 0.215 4767.9 

Newark 0.000 0.027 0.176 0.225 347.5 

Oakland 0.151 0.011 0.128 3.089 150.2 

Omaha 0.189 0.003 0.146 1.435 124.1 

Philadelphia 0.000 0.022 0.182 0.308 1549.0 

Pittsburgh 0.000 0.019 0.294 0.572 533.9 

Portland OR 0.247 0.011 0.090 3.088 207.2 

Providence 0.000 0.052 0.198 0.051 224.3 

Richmond 0.000 0.019 0.216 0.556 127.6 

Rochester NY 0.000 0.008 0.146 0.392 218.1 

San Francisco 0.000 0.030 0.148 3.095 416.9 

Seattle 0.260 0.014 0.080 3.039 237.2 

Spokane 0.079 0.003 0.110 2.762 104.4 

St. Louis 0.000 0.003 0.196 1.171 687.0 

St. Paul 0.000 0.096 0.106 1.383 214.7 

Syracuse 0.000 0.052 0.154 0.312 137.2 

Toledo 0.000 0.005 0.132 0.754 168.5 

Washington DC 0.000 0.027 0.172 0.440 331.1 

Worcester 0.000 0.041 0.192 0.043 146.0 

(11) (12) (13) (14) (15) 

City Area Population Density 1910 Flu-related excess 

death rate 1/18–4/18 

All-cause excess death 

rate 9/18–2/19 

Relative peak all-cause 

excess death rate 

9/18–2/19 

Albany 10.8 9.29 −0.03 0.83 6.26 

Atlanta 25.7 6.02 0.61 0.43 2.90 

Baltimore 30.1 18.55 0.43 0.98 5.75 

Birmingham 48.3 2.75 1.42 1.00 2.18 

Boston 41.1 16.32 0.42 1.39 2.68 

( continued on next page ) 
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Table A1 

( continued ) 

(11) (12) (13) (14) (15) 

City Area Population Density 1910 Flu-related excess 

death rate 1/18–4/18 

All-cause excess death 

rate 9/18–2/19 

Relative peak all-cause 

excess death rate 

9/18–2/19 

Buffalo 38.7 10.95 0.27 1.10 4.28 

Cambridge 6.3 16.63 0.35 1.24 2.58 

Chicago 185.1 11.81 −0.22 0.65 4.79 

Cincinnati 49.8 7.30 0.39 0.88 2.62 

Cleveland 45.6 12.30 0.37 1.11 2.06 

Columbus 20.3 8.94 0.22 0.59 2.30 

Dayton 15.7 7.43 0.12 0.62 5.07 

Denver 57.9 3.69 0.27 1.20 2.25 

Detroit 40.8 11.42 0.31 0.47 2.66 

Fall River 33.9 3.52 −0.35 1.33 4.98 

Grand Rapids 16.8 6.70 0.16 0.21 5.40 

Indianapolis 33.0 7.08 0.38 0.39 3.00 

Kansas City MO 58.5 4.25 0.76 1.08 2.09 

Los Angeles 99.2 3.22 −0.06 0.91 1.95 

Louisville 20.7 10.82 0.78 1.01 2.93 

Lowell 13.0 8.18 0.54 1.03 4.35 

Milwaukee 22.8 16.40 0.26 0.46 3.41 

Minneapolis 50.1 6.02 0.19 0.52 2.21 

Nashville 17.1 6.46 1.09 1.33 4.24 

New Haven 17.9 7.46 0.09 1.02 4.12 

New Orleans 196.0 1.73 0.17 1.33 3.85 

New York 286.8 16.62 0.32 0.75 4.35 

Newark 23.2 14.98 0.44 0.99 4.16 

Oakland 45.7 3.29 0.27 1.00 2.17 

Omaha 24.1 5.15 0.23 2.87 1.87 

Philadelphia 130.2 11.90 0.60 1.46 5.51 

Pittsburgh 41.4 12.90 1.51 1.90 2.69 

Portland OR 48.4 4.28 0.16 1.09 1.99 

Providence 17.7 12.67 0.24 1.26 3.54 

Richmond 10.0 12.76 −0.04 0.68 4.99 

Rochester NY 20.1 10.85 0.25 1.40 2.63 

San Francisco 46.5 8.97 0.19 1.30 2.41 

Seattle 55.9 4.24 0.17 0.86 1.86 

Spokane 36.8 2.84 0.16 0.84 2.42 

St. Louis 61.4 11.19 0.44 0.58 2.87 

St. Paul 52.2 4.11 0.14 0.76 2.76 

Syracuse 17.3 7.93 0.39 0.79 5.75 

Toledo 25.0 6.74 0.25 0.45 3.10 

Washington DC 60.0 5.52 0.52 0.92 4.60 

Worcester 37.0 3.95 0.28 1.18 3.89 

Notes to Table A1 . 

The sample comprises 45 of the 50 U.S. cities with center-city populations in 1910 above 10 0,0 0 0. These 45 have weekly data on flu-related excess death 

rates over the second and most deadly wave of the Great Influenza Pandemic: the 24 weeks from week ending September 14, 1918 to week ending February 

22, 1919. The remaining 5 large cities lack parts of the weekly data over this period. 

Flu-related excess death rates, including deaths attributed to pneumonia, are calculated as percent of city population and expressed at an annual rate. The 

cumulative flu-related excess death rate 9/18–2/19 refers to the 24-week sample from the week ending September 14, 1918 to the week ending February 

22, 1919. These values are calculated from the weekly data given in Collins et al. (1930 , Appendix Table B). (A typo in the data for Pittsburgh for November 

23, 1918 was corrected based on the information in Davis, 1918 ). The flu-related excess death rate is calculated by Collins, op.cit. , as the difference between 

the flu-related gross death rate for each city and week and the median of the flu-related gross death rates for the corresponding city and week for 1910–

1916. The relative peak death rate is the ratio of the highest weekly flu-related excess death rate in the 24-week sample to the overall flu-related excess 

death rate. 

The flu-related gross death rate for 1910–1916 is calculated from the median values shown for the September-February months in Collins et al. (1930 , 

Appendix Table A). Excess death rate 1/18-4/18 is the cumulative flu-related excess death rate from January 1918 to April 1918, calculated from the monthly 

data given in Collins et al. (1930 , Appendix Table A). The all-cause excess mortality rate is the gross death rate for all causes from September 1918 to 

February 1919 from U.S. Department of Commerce, 1920 and 1921 ( Mortality Statistics 1918 , pp. 123–132; Mortality Statistics 1919 , pp. 109–118), less the 

average of the gross death rate for all causes for 1910–1916 ( Mortality Statistics 1919 , pp. 12–13). The relative peak all-cause death rate uses the peak 

monthly death rate from September 1918 to February 1919 from the same sources. 

NPI is the duration in years of three forms of non-pharmaceutical interventions—school closings, prohibitions of public gatherings, and 

quarantine/isolation—over the 24-week sample, as estimated by Markel et al. (2007 , Table 1 and supplemental figures). Data on NPIs for Atlanta and 

Detroit were obtained from information in, respectively, The Atlanta Constitution and The Detroit Free Press , Public Health Reports for the two cities, and the 

Influenza Encyclopedia , available at influenzaarchive.org. The three forms of NPIs are shown separately, and NPI is the sum of these three. The public-health 

response time or PHRT, defined in Markel et al. (2007 , Table 1 ), is the difference in years between the date of the first NPI implementation and the time 

when the weekly flu-related excess death rate reached twice the median gross death rate applicable to the corresponding month in 1910–1916. 

Distance from Boston is the minimum distance in thousands of miles from Google Maps . Population 1910 (in thousands) and area (in square miles) are for 

central cities from 1910 U.S. Census. Population density is the ratio of population to area. 
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