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Abstract

Purpose: This research aims to probe the interaction of α-crystallin with a model of human, 

porcine, and mouse lens-lipid membranes.

Methods: Cholesterol/model of human lens-lipid (Chol/MHLL), cholesterol/model of porcine 

lens-lipid (Chol/MPLL), and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes 

with 0 to 60 mol% Chol were prepared using the rapid solvent exchange method and probe-tip 

sonication. The hydrophobicity near the surface of model lens-lipid membranes and α-crystallin 

association with these membranes were investigated using the electron paramagnetic resonance 

spin-labeling approach.

Results: With increased Chol content, the hydrophobicity near the surface of Chol/MHLL, Chol/

MPLL, and Chol/MMLL membranes, the maximum percentage of membrane surface occupied 

(MMSO) by α-crystallin, and the association constant (Ka) decreased, showing that surface 

hydrophobicity of model lens-lipid membranes modulated the α-crystallin association with these 

membranes. The different MMSO and Ka for different model lens-lipid membranes with different 

rates of decrease of MMSO and Ka with increased Chol content and decreased hydrophobicity 

near the surface of these membranes suggested that the lipid composition also modulates α-

crystallin association with membranes. Despite different lipid compositions, complete inhibition of 

α-crystallin association with model lens-lipid membranes was observed at saturating Chol content 

forming cholesterol bilayer domains (CBDs) with the lowest hydrophobicity near the surface of 

these membranes. The decreased mobility parameter with increased α-crystallin concentration 

suggested that membranes near the surface became less mobile due to α-crystallin association. 
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The decreased mobility parameter and increased maximum splitting with increased Chol content 

suggested that membranes became less mobile and more ordered near the surface with increased 

Chol content.

Conclusions: This study suggested that the interaction of α-crystallin with model lens-lipid 

membranes is hydrophobic. Furthermore, our data indicated that Chol and CBDs reduce α-

crystallin association with lens membrane, likely increase α-crystallin concentration in lens 

cytoplasm, and possibly favor the chaperone-like activity of α-crystallin maintaining lens 

cytoplasm homeostasis.
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Introduction

Approximately 40% of the eye lens protein is α-crystallin,1,2 which works as a molecular 

chaperone3,4 by preventing precipitation of denatured proteins and increasing tolerance 

to stress.5 There are hydrophobic regions on the surface of α-crystallin.6,7 The surface 

hydrophobicity of α-crystallin is believed to be significant for chaperone-like activity7,8 

because these hydrophobic regions may associate with exposed hydrophobic sites of 

denatured proteins, preventing their aggregation. The hydrophobic sites of two subunits 

of α-crystallin, i.e., αA- and αB-crystallin,9,10 have been reported to play a crucial role 

in the chaperone-like activity.11–13 Plater et al. reported that N-terminal phenylalanine-rich 

regions in αB-crystallin, which are primarily hydrophobic, are necessary for the chaperone-

like activity.14 In addition, the temperature-dependent experiments8,15–19 provided robust 

supporting evidence for the hydrophobicity of α-crystallin playing a significant role in the 

chaperone-like activity. The increased temperature increased the chaperone-like activity of 

α-crystallin, mainly because heating caused structural changes in α-crystallin following 

increased exposure of additional hydrophobic sites.8,15–19 Therefore, hydrophobic regions 

of α-crystallin are possibly crucial for maintaining lens transparency by preventing the 

aggregation of denatured proteins and cataract formation and progression.20

The most general cause of cataract, which causes blurred vision, is aging, in which 

the association of α-crystallin with the eye lens membrane increases continuously.21–28 

Water-soluble α-crystallin gradually depletes, becoming insoluble aggregates with age 

and onset of cataract;23,25,29 however, more studies are needed to explore the nature 

of such insoluble aggregates.30–34 An important factor in cataract development is α-

crystallin aggregation.35,36 Most water-insoluble crystallins, even in transparent lenses, 

are self-associated and remain associated with other crystallins within the core of the 

cytoplasm, whereas some are membrane-associated.23 α-Crystallin associates with other 

lens proteins forming higher molecular weight complexes (HMWC) with aging.37–39 Some 

HMWC may form in the cytoplasm away from the membranes, and others may associate 

with membranes,29 perhaps as anchoring points. How these HMWC form, accompanied 

by light scattering and cataract formation21,22,40 is still not well understood. A clinical 

study24 showed a higher level of membrane-associated α-crystallin, accompanied by a 
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corresponding decline of soluble α-crystallin in lens cytoplasm, caused nuclear cataract 

formation and progression. There is a hypothesis that membrane-associated α-crystallin 

obstructs the membrane pores, forms a diffusion barrier, and contributes to nuclear cataracts 

formation.25,26,41

The studies on the association of α-crystallin with lens membranes6,42–47 and lipid 

vesicles42,48–53 have gained substantial attention. However, the exact nature of the 

association of α-crystallin with lens membranes and lipid vesicles remains unclear. A few 

earlier studies reported that the association of α-crystallin with the lens plasma membrane 

is affected by the ionic interaction between α-crystallin and membrane lipids.6,54 The 

studies on the association of α-crystallin with bovine lens-lipid membranes40,42,55 and 

synthetic lipid membranes29,46,51,56,57 suggested a noncovalent association of α-crystallin to 

these lipid membranes. An earlier infrared spectroscopy study58 and our recent electron 

paramagnetic resonance (EPR) studies50,52,53 reported that polar headgroup regions of 

the lipids strongly influence the interaction of α-crystallin with membranes. A few 

studies reported that the surface hydrophobicity of α-crystallin affects the association 

of α-crystallin with membranes.43,50–53,59 A study performed using resonance energy 

transfer reported a deep association of α-crystallin into the lens lipid vesicles, and the 

association increased with the increased preincubation temperature.40 This is likely due 

to increased exposure of hydrophobic regions when α-crystallin was preincubated at a 

higher temperature,40 indicating hydrophobic interaction of α-crystallin with lipid vesicles. 

A fluorescence study60 showed that α-crystallin association with lens plasma membranes 

increased in acidic pH and with removed intrinsic membrane proteins; however, it did not 

depend on the ionic strength, implying the association of α-crystallin with membranes 

is through hydrophobic interaction. Our EPR spin-labeling studies also suggested that 

α-crystallin associates with lipid membranes,50,52,53 and cholesterol-containing lipid 

membranes28,53 through hydrophobic interactions. Likely due to the denaturation of α-

crystallin in older lenses, the hydrophobic regions of α-crystallin become more exposed 

with increased association with lens lipids,25 accompanied by light scattering and cataracts 

formation.

In this study, we varied Chol content from 0 to 60 mol% within cholesterol/model of 

human lens-lipid (Chol/MHLL), cholesterol/model of porcine lens-lipid (Chol/MPLL), 

and cholesterol/model of mouse lens-lipid (Chol/MMLL) membranes and monitored the 

hydrophobicity near the surface of these membranes and the influence of change in 

hydrophobicity to the percentage of membrane surface occupied (MSO) by α-crystallin 

and association constant (Ka) of α-crystallin association with these membranes using the 

EPR spin-labeling method. Chol content modulates the hydrophobicity of membranes.61–64 

In the eye lens membranes, dramatic changes in the Chol content occur with age and 

cataracts65,66 and among species.67,68 Moreover, dramatic changes in lipid composition in 

the eye lens membranes occur with age and cataracts67,69–75 and among species.67,69,76,77 

The study reported in this paper examines the association of α-crystallin with the model 

lens-lipid membranes in a controlled Chol content and lipid composition and shows that 

such association is modulated by the surface hydrophobicity of membranes, suggesting 

hydrophobic interaction of α-crystallin with membranes.
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Materials and methods

Materials

Cholesterol (Chol), egg sphingomyelin (SM), 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphatidylcholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylserine (POPS), 

and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) were obtained from 

Avanti Polar Lipids, Inc. (Alabaster, AL, USA). The cholesterol analog cholestane spin-label 

(CSL), bovine eye lens α-crystallin (C4163), HEPES, and sodium chloride (NaCl) were 

obtained from Sigma Aldrich (St. Louis, MO, USA). Bovine α-crystallin purchased from 

Sigma Aldrich was used without further purification. The average molecular weight of the 

α-crystallin subunit was determined to be 20.35 kDa based on the information αA = 19.8 

kDa, αB = 22 kDa, and αA:αB = 3:1 from Sigma Aldrich.

Preparation of samples

The unique sphingolipids and phospholipids (PLs) compositions to prepare MHLL, MPLL, 

and MMLL membranes were taken from the previously reported study by Deeley et al.76 

We used 66% SM, 11% POPC, 8% POPS, and 15% POPE to prepare MHLL membrane. 

Similarly, 29% SM, 35% POPC, 21% POPS, and 12% POPE were used to prepare MPLL 

membrane, and 15% SM, 46% POPC, 17% POPS, and 17% POPE were used to prepare 

MMLL membrane. The 1 mol% CSL spin-label was maintained in mixed Chloroform 

solutions of Chol and lipids (SM, POPC, POPC, and POPE). The mixing ratios of Chol/

MHLL were maintained at 0, 0.5, 1.0, and 1.5 and Chol/MPLL and Chol/MMLL were 

maintained at 0, 0.5, and 1.0. The detailed method to prepare small unilamellar vesicles 

(SUVs) using the rapid solvent exchange method78–80 followed by probe tip-sonication was 

described in our previous studies.50,52,53 α-Crystallin, model lens-lipid membranes, and 

mixtures of α-crystallin and model lens-lipid membrane samples were prepared in HEPES 

buffer containing 10 mM HEPES, 100 mM NaCl, pH 7.4. Chol plus lipids (SM and three 

PLs) concentration in membrane samples was maintained at 40 mM. The three PLs include 

POPC, POPS, and POPE.

α-Crystallin at varying concentrations from 0 to 52.6 μM was mixed with each of Chol/

MHLL, Chol/MPLL, and Chol/MMLL membrane at 11.4 mM concentration of Chol plus 

lipids (SM and three PLs). The mixed samples in a total of 70 μL were incubated for 16 h at 

37 °C with gentle shaking in an incubator (Corning, NY, USA) to allow saturable association 

of α-crystallin with membranes, as explained in our previous studies.50,52,53

EPR measurements

The incubated model lens-lipid membranes with varied Chol content and in the absence 

of α-crystallin were loaded into a 0.8 mm i.d. gas permeable methylpentene polymer 

(TPX) capillary81 for EPR measurements at about −165 °C using X-band Bruker ELEXSYS 

500 spectrometer. The z-component of the hyperfine interaction tensor (Az) for CSL in 

model lens-lipid membranes at different Chol concentrations was measured from EPR 

spectra recorded with an incident microwave power of 2.0 mW and modulation amplitude 

of 2.0 G for samples frozen at about −165 °C.62,63,82–84 The 2Az is the measure of 

hydrophobicity.62,63,82–84 A controlled flow of liquid nitrogen was used to maintain the 
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temperature at about −165 °C. The 2Az value increases with the decrease in hydrophobicity 

around the nitroxide moiety of CSL.62,63,84 As shown in Figure 1, the horizontal distance 

(2Az) between the low and high field lines in EPR spectra of frozen samples at about −165 

°C gives hydrophobicity.62,82–84 The 2Az value can be measured with a precision of ±0.25 

G.

The incubated mixed samples (membranes and α-crystallin) were loaded into a 0.8 mm 

i.d. gas-permeable methylpentene polymer (TPX) capillary81 for EPR measurements at 37 

°C using an X-band Bruker ELEXSYS 500 spectrometer connected with the temperature-

control accessories. EPR measurements were taken after thorough deoxygenation of samples 

by nitrogen gas. The same nitrogen gas controls the temperature. EPR spectra were recorded 

with an incident microwave power of 8.0 mW and modulation amplitude of 1.0 G. The 

detailed method to calculate the percentage of membrane surface occupied (MSO) by 

α-crystallin and the association constant (Ka) was described in our previous studies.50,52,53

Physical properties of model lens-lipid membranes after α-crystallin association

The physical properties, i.e., mobility parameter and maximum splitting, of model lens-lipid 

membranes after the association of α-crystallin were measured. The mobility parameter 

provides information about the mobility (dynamics) of CSL spin-label in membranes.85 

The maximum splitting provides information about the order of CLS spin-label in 

membranes.62,83,86 Since the nitroxide moieties of CSL spin-label remain close to the 

surface of membranes, the mobility parameter and maximum splitting provide information 

about mobility and order, respectively, near the surface of membranes. The mobility 

parameter and maximum splitting were measured as explained in earlier studies.50,52,53,62,83

Statistics

All the data are expressed as mean ± standard deviation (SD) from three independent 

experiments. For the same model lens-lipid membrane with different Chol content, 

statistically significant differences between hydrophobicity values, between MMSO values, 

and between Ka values were determined using the Student’s t-test with p ≤ 0.05 as the 

significance criterion.

Results and discussion

Hydrophobicity near the surface of model lens-lipid membranes

Figure 1 displays representative EPR spectra of CSL in frozen solutions of Chol/MHLL 

membrane at Chol/MHLL mixing ratios 0 and 1.5 and shows the method of measuring 

2Az values. The higher 2Az value represents the lower hydrophobicity near the surface of 

the membrane. Thus, an increase in 2Az in spectra of CSL in Chol/MHLL membrane at 

Chol/MHLL mixing ratio of 1.5 compared to Chol/MHLL mixing ratio of 0 indicates that 

the membrane near the surface becomes less hydrophobic in the presence of Chol.

Figures 2A, B, and C display hydrophobicity near the surface of Chol/MHLL, Chol/

MPLL, and Chol/MMLL membranes, respectively. These membrane samples were the same 

samples in the absence of α-crystallin that were used as a control in α-crystallin-membrane 
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association studies (see sections below). The almost equal 2Az values for the MHLL, MPLL, 

and MMLL membranes in the absence of Chol suggested almost equal hydrophobicity 

near the surface of these model lens-lipid membranes. This result suggested that even with 

different lipid compositions in MHLL, MPLL, and MMLL membranes, the hydrophobicity 

near the surface of these membranes was approximately the same. The increased 2Az with 

increased Chol/MHLL, Chol/MPLL, and Chol/MMLL mixing ratios suggested decreased 

hydrophobicity near the surface of these model lens-lipid membranes. This is because 

Chol moves the polar headgroups apart, increasing water penetration near the surface of 

these membranes.84 Hydrophobicity decreased in a similar trend near the surface of Chol/

MHLL, Chol/MPLL, and Chol/MMLL membranes with increased Chol content, suggesting 

that Chol content is a major factor modulating the hydrophobicity of membranes near 

the surface. The differences between the hydrophobicity values for each model lens-lipid 

membrane at different Chol content were statistically significant with p ≤ 0.05. Previously, 

the EPR spin-labeling studies showed decreased hydrophobicity near the surface of Chol/

POPC62, Chol/SM63, and Chol/POPS64 multilamellar vesicles with increased Chol content.

Percentage of membrane surface occupied (MSO) by α-crystallin on model lens-lipid 
membranes

Figures 3A, B, and C display MSO as functions of α-crystallin concentration for Chol/

MHLL, Chol/MPLL, and Chol/MMLL membranes, respectively. The MSO for these 

model lens-lipid membranes increased initially with increased α-crystallin concentration, 

suggesting the increased association of α-crystallin with these membranes. The MSO 

became constant above certain α-crystallin concentrations, suggesting that the association 

of α-crystallin with these membranes was saturable. Approximately 11%, 8.7%, and 7.8% 

MMSO for the MHLL, MPLL, and MMLL membranes in the absence of Chol represented 

that the amount of α-crystallin associated with these membranes followed the trends: MHLL 

> MPLL > MMLL. The MMSO values obtained for MHLL, MPLL, and MMLL membranes 

were comparable to the MMSO values obtained for individual and two-component lipid 

membranes.50,52,53 Our previous EPR studies50,52,53 and a fluorescence spectroscopy 

study51 showed that the amount of α-crystallin associated with the SM membrane was 

higher than the PC membrane. The SM content used in the MHLL, MPLL, and MMLL 

membranes was 66%, 29%, and 15%, respectively, and the POPC content used in the 

MHLL, MPLL, and MMLL membranes was 11%, 35%, and 46%, respectively. Therefore, 

the highest amount of SM and the lowest amount of POPC in the MHLL membrane 

was likely why the amount of α-crystallin associated with the MHLL membrane was the 

largest. Similarly, the lowest amount of SM and the highest amount of POPC in the MMLL 

membrane was likely why the amount of α-crystallin associated with the MMLL membrane 

was the smallest. The MMSO for model lens-lipid membranes reported in this paper agree 

with the result that approximately 10% of α-crystallin associated with the PC vesicles 

reported by Mulders et al.6

The decreased MMSO for model lens-lipid membranes with increased Chol content and 

decreased hydrophobicity near the surface of these membranes suggested that the amount 

of α-crystallin associated with these membranes decreased. The differences between the 

MMSO values (Figure 3) for each model lens-lipid membrane at different Chol content 
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and hydrophobicity were statistically significant with p ≤ 0.05. The results of this study 

agree with our previous results that MMSO decreased with increased Chol content in 

the cholesterol-containing individual lipid membranes.53 Based on our earlier data of 

decreased hydrophobicity near the surface of Chol/POPC,62 Chol/SM,63 and Chol/POPS64 

multilamellar vesicles with increased Chol content, previously we proposed that decreased 

MMSO for unilamellar cholesterol-containing individual lipid membranes with increased 

Chol content might be due to the decreased hydrophobicity near the surface of these 

membranes.53 However, the study reported in this paper clearly showed that increased 

Chol content decreased hydrophobicity near the surface of model lens-lipid membranes, 

accompanied by the decreased MMSO (see Figures 2 and 3). Therefore, this study showed 

that α-crystallin association with model lens-lipid membranes was modulated by the surface 

hydrophobicity of these membranes, suggesting hydrophobic interaction of α-crystallin with 

membranes.

The rate of decrease of MMSO for different model lens-lipid membranes with increased 

Chol content and decreased hydrophobicity near the surface of these membranes was 

different (see Figure 3). The MMSO decreased rapidly for Chol/MMLL membrane and 

slowly for Chol/MHLL membrane. Even though Chol content modulates the hydrophobicity 

near the surface of model lens-lipid membranes in a similar trend, the MMSO was zero 

for Chol/MHLL membrane at a mixing ratio of 1.5 (60 mol% Chol) and for Chol/MPLL 

and Chol/MMLL membranes at mixing ratios of 1.0 (50 mol% Chol). These results 

signify the importance of different lipid compositions of these model lens-lipid membranes. 

Phospholipid cholesterol domain (PCD) forms when cholesterol (Chol) saturates the 

membrane.53,72,87,88 With a further increase in Chol content, cholesterol bilayer domains 

(CBDs) form within the PCD.72,82,87,88 CBDs start to form above ∼46 mol% Chol within 

Chol/HMLL, Chol/MPLL, and Chol/MMLL membranes. As described by us earlier,89 the 

assumption used to estimate the formation of CBDs within the model lens-lipid membrane 

is the weighted sum of the individual Chol content values for each lipid (SM, POPC, POPS, 

and POPE), with the weight equal to the mol% of each lipid in the membrane. At 48, 

50, 46, and 33 mol% Chol within SM, POPC, POPS, and POPE membranes, respectively, 

CBDs start to form.89 The study reported in this paper and previous studies62–64 showed 

increased Chol content within the membranes decreased hydrophobicity on the membrane 

surface. Moreover, CBDs have significantly lower hydrophobicity on the membrane surface 

than the surrounding PCD.62 This may be why, irrespective of lipid composition, high Chol 

content and CBDs significantly decreased surface hydrophobicity of membranes resulting in 

MMSO to be zero in all these model lens lipid membranes (see Figure 3). Therefore, this 

study suggests that Chol and CBDs in the lens membrane decrease hydrophobicity near the 

surface of the membrane, accompanied by the decreased association of α-crystallin with the 

membrane.

Association constant (Ka) of α-crystallin association with model lens-lipid membranes

Figures 4A, B, and C display the Ka as functions of α-crystallin concentration for Chol/

MHLL, Chol/MPLL, and Chol/MMLL membranes, respectively. The decreased Ka with 

increased Chol content and decreased hydrophobicity near the surface of model lens-lipid 

membranes suggested that the strength of α-crystallin association with these membranes 
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decreased. This result further showed that α-crystallin association with model lens-lipid 

membranes was modulated by the surface hydrophobicity of these membranes, suggesting 

hydrophobic interaction of α-crystallin with membranes. Cobb and Petrash et al.60 used 

fluorescent tag (Alexa350) in α-crystallin and suggested a hydrophobic interaction of 

α-crystallin with plasma membranes using fluorescence approach. Tang et al.40 used 

tryptophan of α-crystallin as the energy donor and fluorescence probe dansyl DHPE 

incorporated in lens cortex lipid vesicles as an energy acceptor and suggested a hydrophobic 

interaction of α-crystallin with lipid vesicles using a resonance energy transfer method. 

Tjondro et al.90 showed that heat treatment of αA-crystallin produced larger oligomers 

with increased association with lipid monolayer. Such increased association90 was likely 

facilitated by the increased exposure of hydrophobic sites of αA-crystallin upon heat 

treatment, suggesting the hydrophobic interaction of αA-crystallin with lipid monolayer. 

In the study reported in this paper, we used the EPR spin-labeling methods and measured 

the decreased surface hydrophobicity of membranes with increased Chol content. Our results 

showed that the decreased surface hydrophobicity of membranes accompanied the decreased 

association of α-crystallin with membranes, suggesting the hydrophobic interaction of α-

crystallin with membranes.

The differences between the Ka values (Figure 4) for each model lens-lipid membrane at 

different Chol content and hydrophobicity were statistically significant with p ≤ 0.05. The 

Ka values reported in this study agree with the Ka values reported for individual and two-

component lipid membranes50,52 as well as for cholesterol-containing lipid membranes.53 

Mulders et al.6 reported the Ka of 7.69 μM−1 for the association of α-crystallin with 

alkali-washed lens plasma membranes containing intrinsic lens membrane proteins. The Ka 

values reported in this study are slightly less than those reported by Mulders et al.6, likely 

because our model lens-lipid membranes consist of Chol and lipids only without intrinsic 

lens membrane proteins.

The Ka for the association of α-crystallin with model lens-lipid membranes in the absence of 

Chol followed the trends: Ka (MPLL) > Ka (MHLL) > Ka (MMLL) (see Figure 4). The Ka 

for α-crystallin association with the MPLL membrane was approximately two times larger 

than the MHLL membrane. However, the Ka for α-crystallin association with the MPLL 

membrane was approximately 3.5 times larger than the MMLL membrane. Like MMSO 

(Figure 3), the Ka decreased rapidly for Chol/MMLL membrane and slowly for Chol/MHLL 

membrane (Figure 4) with increased Chol content and decreased hydrophobicity near the 

surface of these membranes. The Ka became zero when the mixing ratios reached 1.5 (60 

mol% Chol) for Chol/MHLL membrane and 1 (50 mol% Chol) for Chol/MPLL and Chol/

MMLL membranes. The zero Ka represents no association of α-crystallin with these model 

lens-lipid membranes at these saturating Chol content with CBDs within these membranes 

and the lowest hydrophobicity near the surface of these membranes. The difference between 

Ka values (see Figure 4) and MMSO values (see Figure 3) with different rates of decrease of 

Ka and MMSO with increased Chol content and decreased hydrophobicity near the surface 

of model lens-lipid membranes were likely due to different lipid compositions in these 

membranes. The difference in lipid compositions in different model lens-lipid membranes 

may cause a difference in the capacity of the mixture of lipids to modulate the likely 

hydrophobic interaction between α-crystallin and these membranes, with the synergic effect 
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of size and charge of headgroup of lipid, hydrogen bonding between headgroups, and 

lipid curvature playing a crucial role. However, irrespective of the lipid composition of the 

model lens-lipid membranes, the MMSO and Ka became zero at saturating Chol content 

forming CBDs within these membranes with the lowest hydrophobicity near the surface of 

these membranes (see Figures 3 and 4). Therefore, results reported in this paper suggested 

that Chol and CBDs in the lens membrane decrease hydrophobicity near the surface of 

the membrane, inhibit α-crystallin association with the membrane, and likely increase the 

concentration of water-soluble α-crystallin in the lens cytoplasm favoring its chaperone 

function and maintaining lens cytoplasm homeostasis.

Physical properties of model lens-lipid membranes

Figures 5A, B, and C display the mobility parameter profiles as functions of α-crystallin 

concentration for Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, respectively. The 

mobility parameter of model lens-lipid membranes in the absence of Chol and α-crystallin 

followed the trends: MMLL > MPLL > MHLL, suggesting that the MMLL membrane 

has the largest and the MHLL membrane has the smallest mobility near the surface. The 

decreased mobility parameter of MHLL, MPLL, and MMLL membranes with increased 

α-crystallin concentration suggested that these membranes became less mobile near the 

surface due to α-crystallin association. Two significant changes in the mobility parameter of 

Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes have been observed with increased 

Chol content and decreased hydrophobicity near the surface of these membranes. First, the 

mobility parameter of model lens-lipid membranes decreased with increased Chol content 

and decreased hydrophobicity near the surface of these membranes. With an increased Chol/

MHLL mixing ratio from 0 to 1.5 for Chol/MHLL membrane, accompanied by decreased 

hydrophobicity near the surface of this membrane, the mobility parameter decreased 

significantly (see Figure 5A). Similarly, with increased Chol/MPLL and Chol/MMLL 

mixing ratio from 0 to 1.0 for Chol/MPLL and Chol/MMLL membranes, accompanied 

by decreased hydrophobicity near the surface of these membranes, the mobility parameter 

decreased significantly (see Figure 5B and C). Second, with increased Chol content and 

decreased hydrophobicity near the surface of model lens-lipid membranes, the decreased 

mobility parameter with increased α-crystallin concentration was less noticeable. This was 

because the amount of α-crystallin associated with model lens-lipid membranes became 

less with increased Chol content and decreased hydrophobicity near the surface of these 

membranes, resulting in a reduced ability of α-crystallin to decrease the mobility of these 

membranes near the surface. At a mixing ratio of 1.5 for Chol/MHLL membrane and 1 

for Chol/MPLL and Chol/MMLL membranes, and with the lowest hydrophobicity near 

the surface of these membranes, the mobility parameter of these membranes remained 

constant with increased α-crystallin concentration. This was because such high Chol content 

with the formation of CBDs within model lens-lipid membranes significantly decreased 

hydrophobicity near the surface of these membranes, accompanied by complete inhibition of 

α-crystallin association with these membranes. Using the EPR spin-labeling approach, we 

observed a similar decrease in the mobility parameter of the individual and two-component 

lipid membranes50,52 as well as cholesterol-containing lipid membranes53 after α-crystallin 

association. Using fluorophore NBD-PE, which partitions near the surface of the membrane, 
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Borchman and Tang et al.42 found that the mobility of bovine lens-lipid vesicles near the 

surface decreased with the α-crystallin association.

Intuitively, the strength of α-crystallin association (Ka) and the maximum amount of α-

crystallin association with the membrane (MMSO) determine how rapidly the mobility 

parameter decreases and the total decrease in the mobility parameter, respectively. The larger 

the Ka, the rapid the mobility parameter decrease, and vice-versa. The larger the MMSO, 

the higher the total decrease in mobility parameter, and vice-versa. Because the Ka for the 

association of α-crystallin with the MPLL membrane was the largest and MMLL membrane 

was the smallest, the decrease in the mobility parameter was rapid for the MPLL membrane 

and was slow for the MMLL membrane. Because the MMSO was the largest for the MHLL 

membrane and the smallest for the MMLL membrane, the total decrease in the mobility 

parameter was higher for the MHLL membrane and lower for the MMLL membrane.

Figures 6A, B, and C display the maximum splitting profiles as functions of α-crystallin 

concentration for Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, respectively. The 

maximum splitting of model membranes in the absence of Chol and α-crystallin followed 

the trends: MHLL > MPLL > MMLL, implying that the MHLL membrane has the highest 

and the MMLL membrane has the lowest order near the surface. SM content is high in 

the MHLL membrane, and POPC content is high in the MMLL membrane. Our results 

imply that the lipid composition strongly modulates the order near the surface of model 

lens-lipid membranes. Previously, we observed higher order near the surface of the SM 

membrane than that of other PL membranes.50,52,53 Moreover, SM content increases, and 

PC content decrease in the eye lens membrane during aging.75,91 Our observation that 

high order near the surface of the MHLL membrane and low order near the surface of 

MMLL membrane supports the increased order of lens membranes with aging.92,93 The 

same trends of the maximum splitting and MMSO in the absence of Chol in model lens-

lipid membranes suggested that highly ordered membranes near the surface can facilitate 

more association of α-crystallin. Most interestingly, the maximum splitting of model lens-

lipid membranes increased with increased Chol content, suggesting that Chol and CBDs 

increased the order of these membranes near the surface. Previously, we observed a similar 

increase in the maximum splitting of cholesterol-containing individual lipid membranes with 

increased Chol content.53 No significant change in the maximum splitting of model lens-

lipid membranes with increased α-crystallin concentration suggested that the association of 

α-crystallin with these membranes did not significantly change the order near the surface. 

Previously, except for the SM and SM/POPE membranes,52 we observed no significant 

change in the maximum splitting of the individual, two-component lipid membranes,50,52 

and cholesterol-containing lipid membranes53 with increased α-crystallin concentration.

EPR spectra for all Chol concentrations in model lens-lipid membranes showed the typical 

lipid bilayer spectra (spectra not shown) with only Chol-dependent changes. The Chol-

dependent changes in EPR spectra observed were decreased mobility parameter (see Figure 

5) and increased maximum splitting (see Fig. 6) with increased Chol concentration. We 

did not observe any distortions in the EPR line shapes at high Chol content with CBDs 

within the model lens-lipid membranes. For example, Figure 2C in our previous study53 

showed typical bilayer spectra with no distortions in the EPR line shapes, where SUVs were 
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prepared at Chol/SM* mixing ratio of 1.5 (60 mol% Chol). Moreover, as in our previous 

studies,50,52,53 no significant changes in EPR signals have been observed for membranes 

with and without Chol incubated for 0 h and 16 h at 37 °C, indicating the stability of SUVs. 

All these observations ensured that our SUVs remained intact during the experiment.

Conclusions

Most importantly, this study showed that the association of α-crystallin with model 

lens-lipid membranes was modulated by the surface hydrophobicity of these membranes, 

suggesting hydrophobic interaction of α-crystallin with membranes. In addition, our results 

showed that the lipid composition strongly modulated the interaction of α-crystallin with 

model lens-lipid membranes. However, irrespective of the lipid composition, the high 

Chol content forming CBDs decreased hydrophobicity near the surface of model lens-

lipid membranes, leading to complete inhibition of α-crystallin association with these 

membranes. Moreover, our results showed that the increased association of α-crystallin 

with model-lens lipid membranes decreased mobility near the surface of these membranes, 

and increased Chol content increased order near the surface of these membranes. The results 

reported in this paper suggested that Chol and CBDs in the eye lens membrane decrease the 

hydrophobicity near the surface of the membrane, inhibit the association of α-crystallin with 

the lens membranes, and likely increase α-crystallin concentration in the lens cytoplasm 

favoring its chaperone activity and maintaining lens cytoplasm homeostasis.
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Figure 1. 
EPR spectra of CSL in Chol/MHLL membrane at Chol/MHLL mixing ratios of 0 and 1.5 

taken at about −165 °C canceling the effects due to motion. The dotted lines show that the 

2Az value increases with the increased Chol/MHLL mixing ratio from 0 to 1.5, representing 

decreased hydrophobicity near the surface of Chol/MHLL membrane with increased Chol 

content.
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Figure 2. 
(A), (B), and (C) The hydrophobicity (2Az) near the membrane surface at different 

Chol content obtained using cholesterol analog spin-label (CSL) in Chol/MHLL, Chol/

MPLL, and Chol/MMLL membranes, respectively. The decreased 2Az represents increased 

hydrophobicity near the surface of membranes. The hydrophobicity near the surface of these 

model lens-lipid membranes decreased with increased Chol content.
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Figure 3. 
(A), (B), and (C) The percentage of membrane surface occupied (MSO) as functions of 

α-crystallin concentration for Chol/MHLL, Chol/MPLL, and Chol/MMLL membranes, 

respectively. The MMSO decreased with increased Chol content and decreased 

hydrophobicity near the surface of these model lens-lipid membranes.
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Figure 4. 
(A), (B), and (C) The association constant (Ka) at different Chol content for Chol/MHLL, 

Chol/MPLL, and Chol/MMLL membranes, respectively. The Ka was calculated by fitting 

the MSO as functions of α-crystallin concentration data shown in Figure 3. The Ka 

decreased with increased Chol content and decreased hydrophobicity near the surface of 

these model lens lipid membranes.
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Figure 5. 
(A), (B), and (C) Mobility parameter profiles as functions of α-crystallin concentration 

obtained at 37 °C using cholesterol analog spin-labels (CSL) in Chol/MHLL, Chol/MPLL, 

and Chol/MMLL membranes, respectively. The mobility parameter decreased with both 

increased α-crystallin association and Chol content.
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Figure 6. 
(A), (B), and (C) Maximum splitting profiles as functions of α-crystallin concentration 

obtained at 37 °C using cholesterol analog spin-labels (CSL) in Chol/MHLL, Chol/MPLL, 

and Chol/MMLL membranes, respectively. The maximum splitting increased with increased 

Chol content.
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