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Abstract

Studies of critically ill, hospitalized patients often follow participants and characterize daily health 

status using an ordinal outcome variable. Statistically, longitudinal proportional odds models are 

a natural choice in these settings since such models can parsimoniously summarize differences 

across patient groups and over time. However, when one or more of the outcome states is 

absorbing, the proportional odds assumption for the follow-up time parameter will likely be 

violated, and more flexible longitudinal models are needed. Motivated by the VIOLET Study1, 

a parallel-arm, randomized clinical trial of Vitamin D3 in critically ill patients, we discuss and 

contrast several treatment effect estimands based on time-dependent odds ratio parameters, and 

we detail contemporary modeling approaches. In VIOLET, the outcome is a four-level ordinal 

variable where the lowest ‘not alive’ state is absorbing and the highest ‘at-home’ state is nearly 

absorbing. We discuss flexible extensions of the proportional odds model for longitudinal data that 

can be used for either model-based inference, where the odds ratio estimator is taken directly from 

the model fit, or for model-assisted inferences, where heterogeneity across cumulative log odds 

dichotomizations is modeled and results are summarized to obtain an overall odds ratio estimator. 
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We focus on direct estimation of cumulative probability model parameters using likelihood-based 

analysis procedures that naturally handle absorbing states. We illustrate the modeling procedures, 

the relative precision of model-based and model-assisted estimators, and the possible differences 

in the values for which the estimators are consistent through simulations and analysis of the 

VIOLET Study data.
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1 | INTRODUCTION

Ordinal health status scales are common in medical and public health research because 

they capture naturally ordered severity categories that reflect specific physical or mental 

health states. Statistical analysis of ordinal data often relies on a comparison of category 

frequencies or on rankings based on the outcome ordering. Comprehensive multivariable 

analysis is often facilitated by regression models tailored for ordinal outcomes including 

the proportional odds (PO) model2. With a K state ordinal response, the PO model 

provides a unique and ordered intercept for each of the K − 1 dichotomizations of 

the cumulative response distribution, while independent variable associations with the 

cumulative log odds are assumed to be constant across such dichotomizations. When the PO 

assumption is violated, or when one seeks to increase the flexibility of the model, one could 

adopt a partial proportional odds (PPO) model3, or a saturated model that characterizes 

each possible dichotomization separately. PPO models represent a measured compromise 

between flexibility and parsimony by permitting users to choose covariate associations 

that depend on the outcome dichotomization, while the other covariates have constant 

associations across dichotomizations of the response.

In settings where repeated measures data have been collected, longitudinal analyses 

can offer important advantages over cross-sectional analyses even when time-specific 

associations are ultimately of interest. For example, in a parallel-arm randomized clinical 

trial, cross-sectional estimates of intervention effects at the end of the study can be estimated 

with greater precision using longitudinal data analyses than with cross-sectional analyses4,5. 

PO models for longitudinal data have been discussed extensively, and several authors6,7,8 

have developed ordinal data extensions to the generalized estimating equations (GEE) 

procedure for binary data9,10,11. These approaches estimate marginal model parameters, 

and because they are semiparametric, they only require correct specification of the 

exposure-response relationship, but not higher order moments of the multivariate response 

variable, to ensure valid inferences. Uncertainty estimates are most often calculated with 

robust, ‘sandwich-based’ methods9 or bootstrap methods12. In settings where one seeks to 

estimate marginal model parameters using likelihood-based procedures, Lee and Daniels13 

proposed marginalized models for ordinal data which extend the marginalized models 

class originally proposed for binary response data14,15,16. Like GEE, marginalized model 

estimation separates the exposure-response model from higher order moment models; 

Schildcrout et al. Page 2

Stat Med. Author manuscript; available in PMC 2023 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



however, inferences are based on a likelihood which can be advantageous if one has interest 

in model selection, prediction, or improved robustness to missing data patterns (e.g., missing 

at random).

Our research is motivated by the VIOLET Study1, the analysis of which involves 

longitudinal ordinal response data where the PO model assumption is clearly violated; we 

will approach the problem with marginal PPO models. VIOLET is a parallel-arm, placebo-

controlled randomized clinical trial of Vitamin D3 for treating critically ill, hospitalized 

patients. In the VIOLET Study data analyzed in this paper, patients were observed daily 

over the course of a four-week period to be in one of four ordered outcome states: 1) not 

alive, 2) with acute respiratory distress syndrome (ARDS) or on mechanical ventilator, 3) 

in the hospital but without ARDS or on a ventilator, and 4) at-home. For this four-week 

follow-up period, VIOLET reported the difference in the proportion of patients alive on the 

last day, the difference in the average number of ventilator-free days, and the difference in 

the average hospital length of stay, comparing Vitamin D3 and placebo arm groups. While 

the outcomes are irrefutably clinically important, each analysis was conducted separately 

and so none of them took full advantage of the ordinal and longitudinal data that were 

collected. The motivation for this paper is to promote flexible analyses that fully utilize 

ordinal and longitudinal data collected in parallel-arm randomized clinical trials. Rather than 

estimate conditional models (e.g., mixed models or Markov transition models) that must be 

summarized to obtain group contrasts that are of interest in randomized clinical trials, we 

extend the fully parametric, marginalized transition model, that intentionally reparametrizes 

the Markov structure to estimate group effects directly with a marginal model.

While longitudinal analyses of ordinal outcome states can efficiently exploit the information 

contained in the VIOLET Study data, they must consider an important feature of the data 

that to our knowledge has not been addressed extensively, namely that at least one of the 

outcomes states is absorbing (i.e., being in state k on day t implies being in state k for 

all t′ > t). Specifically, in the VIOLET Study data, the lowest state (k = 1; not alive) was 

absorbing, and the highest state (k = 4; at-home) probability increased over the course of 

follow-up and behaved to an approximation like an absorbing state. As we will show, in 

settings where we seek to study associations with ordinal longitudinal response data, the 

presence of at least one absorbing state is likely to lead to severe violations of the PO 

assumption over time, thus requiring an extension of the marginalized transition model 

from the PO specification to a PPO specification. Our overall inferential strategy is to 

identify models that have good fidelity to the data under study and do not necessarily rely 

on a restrictive model for parsimonious characterization of treatment group differences. 

Rather, in order to summarize “overall intervention effects” either across time or at the end 

of the follow-up period, we initially fit a flexible PPO model to estimate dichotomization-

specific intervention effects as functions of follow-up time. Subsequently, time- and/or 

dichotomization-specific intervention effects are summarized to obtain estimates of pre-

defined global intervention effects. Considerations for summarizing intervention effects 

across distinct outcome levels are similar to those of composite endpoints17 in that one must 

choose an appropriate weighting scheme to capture a meaningful, global intervention effect. 

If additional covariates are included in regression models then we can choose to construct 

marginal summaries through additional standardization strategies18.
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This paper is organized as follows. Section 2 describes the VIOLET Study and highlights 

key features that motivate this line of research. Section 3 describes cumulative probability 

models including the PO and PPO models and parsimonious estimands for intervention 

effects. In Section 4, we discuss first-order marginalized transition models13, their 

appropriateness for estimating model parameters in the presence of absorbing states, and 

some of their challenges. We then describe simulation experiments that resemble VIOLET 

Study data analyses in Section 5. In Section 6, we return to the VIOLET Study to conduct 

analyses using the methods described in this paper. Finally, we conclude with a discussion in 

Section 7.

2 | VIOLET STUDY OF VITAMIN D3 IN CRITICALLY ILL PATIENTS

The VIOLET Study1 was a parallel-arm, placebo-controlled randomized clinical trial of the 

efficacy of Vitamin D3 supplements in critically ill patients. For the purpose of this analysis, 

we consider data from the first four weeks of the study (with 27 follow-up days), where 

at each follow-up day, participants were observed to be in one of four, ordered outcome 

states: not alive, on mechanical ventilator or with ARDS, hospitalized, or at-home. For the 

remainder of the paper, we will refer to the second most severe state as Vent/ARDS. The 

overall goal of the intervention is to improve outcomes over the course of follow-up and 

particularly at the end of the follow-up period. We approach this problem using ordinal 

longitudinal regression models that we summarize to capture intervention effects over time 

or at individual follow-up times.

We consider 1351 of the 1360 participants in the VIOLET Study with follow-up data 

and whose baseline, pre-randomization state was Vent/ARDS or in-hospital. Baseline 

characteristics for participants are described elsewhere1, though the median (interquartile 

range) age was 58 (31, 75) years, and 36% of the participants were enrolled in the Vent/

ARDS state. Figure 1 shows outcome state empirical cumulative log-odds for the placebo 

and intervention arms during follow-up. The log odds of being in the baseline outcome 

states (hospitalized or Vent/ARDS) decreased dramatically over time in both arms, and the 

log odds of being not alive or at-home increased. This is not surprising because death is 

an absorbing state, and therefore the prevalence of death must be non-decreasing over the 

course of follow-up. The home state is nearly absorbing as the study did not observe any 

transitions from the home state to either of the hospitalized or Vent/ARDS states. A total 

of 21 participants passed away after being discharged home. Table 1 shows day to day 

transition probabilities, and as we can see, beyond the absorbing death state, and the nearly 

absorbing at-home state, outcome states on successive days are very highly associated with 

one another. Ten, eight, 28, and 54 percent of all person-days were observed to be in the not 

alive, Vent/ARDS, in-hospital, and at-home states, respectively.

The presence of the absorbing death state combined with the nearly absorbing at-home state 

induces a severe violation of the PO assumption for parameters associated with study day. 

Under the PO assumption, the outcome association with follow-up day is captured with a 

single functional across outcome dichotomizations which would imply that the cumulative 

log-odds curves in Figure 1 would be parallel to one another. This is clearly not the case. 

Because the PO assumption is severely violated, PPO models will be implemented in the 
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VIOLET Study data analysis. What is not clear from these plots is whether the treatment 

effect violates the PO assumption across study days; we show how to address this issue with 

our model specification.

3 | CUMULATIVE PROBABILITY MODELS

For the analysis of VIOLET1, we will implement marginally-specified cumulative 

probability models (CPM). Let i ∈ {1, … , N} denote subject, tij ∈ {1, … , mi} denote 

follow-up day on visit j, Y i be a mi–vector of ordinal response values with Yi(tij) ∈ {1, … , 

K}, and Xi be a mi ×p design matrix with Xi(tij) a p–vector corresponding to day tij. In the 

VIOLET Study data, tij = j and K = 4 with k = 1 implying death and k = 4 implying the 

home state. The marginal CPM is given by πi(tij) = pr[Yi(tij) ≤ k | Xi(tij)] and we make the 

full covariate conditional mean or no interference assumption that pr[Yi(tij) ≤ k | Xi(tij)] = 

pr[Yi(tij) ≤ k | Xi]19,20,21.

The marginal CPM is “marginal” in the sense that it does not include observed or latent 

response values as independent variables in the regression model. That is, the model for 

the relationship between the response and the intervention indicator is separated from the 

model for the relationship among the responses at different follow-up times. In contrast, 

conditional CPMs capture the intervention-response relationship and higher order moments 

of the response in the same regression model. Generalized linear mixed models use latent 

random effects in the intervention-response regression to capture response dependence (i.e., 

the second moment) and higher order moments, while standard Markov, semi-Markov 

models, and partly conditional models22,23,24 explicitly condition on response history in 

the regression model for the intervention effect. Even though one could estimate these 

conditional models and then marginalize over the random effects distribution or response 

history to estimate marginal intervention effects25, the present paper studies models that 

deliberately reparameterize a first-order Markov model to estimate intervention effects 

directly while borrowing the Markov characterization in a separate response dependence 

model. We believe marginalized models have much potential for use in medical and public 

health research, and research regarding their performance in real-world settings is needed.

All estimators from the models discussed herein will be derived from the marginal CPM. 

While there are many ways to summarize intervention effects in a longitudinal parallel-

group randomized clinical trial for ordinal response data (odds ratios, risk ratios, or risk 

differences) we focus on intervention effects on the odds ratio scale. In many common 

settings, and with careful consideration, one may convert estimates from the odds ratio scale 

to other scales.

3.1 | Proportional Odds and Partial Proportional Odds Models

The marginal CPM from a longitudinal PO model is a reasonable choice for the analysis of 

a parallel-arm randomized clinical trial with ordinal outcomes. This logit link transformed 

CPM captures treatment associations with the cumulative odds using a main effect of 

treatment and a treatment by time interaction. We refer to this model as po1. It is given by,
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logit πi, k
po tij = αk, 0

po + f1 tij βt
po

αk
po tij

+ βx, 0
po + f2 tij βxt

po

βxpo tij

xi, k ∈ 1, …, , K − 1
(1)

where f1(tij) and f2(tij) are known flexible functions of study day. Importantly, in this paper 

we deliberately choose f1(tij) and f2(tij) to be functions that are 0 when tij = 1, so that 

αk, 0
po  and βx, 0

po  capture the kth intercept and the intervention effect, respectively, on the first 

follow-up day tij = 1. The αk
po tij  function captures the tij–specific log odds that the response 

is at level k or lower in the control arm (xi = 0), and it can also be thought of as a tij–specific 

intercept. In this model, parameters βt
po and βxt

po may be scalar or vector values depending on 

the functional forms of f1(tij) and f2(tij). Function βx
po tij  quantifies the difference in the log 

odds between the treatment (xi = 1) and control (xi = 0) arms at tij (i.e., treatment effect). 

Note that βx
po tij  does not depend on threshold k, and so the treatment effect satisfies PO 

assumptions even while varying over time. This model could include other non-treatment 

covariates and confounders though we exclude them here for simplicity.

As one can see from (1), we assume in this model that for each k < K, 

αk + 1
po tij − αk

po tij = αk + 1, 0
po − αk, 0

po  is constant over tij. That is, this model assumes that the 

time effect for xi = 0, f1(tij), satisfies the PO assumption. By examining the left panel of 

Figure 1, it is clear that the αk
po tij  are not parallel over time, and so the PO assumption 

for f1(tij) is severely violated. To address non-proportional odds in the cumulative log odds 

association with f1(tij), we increase the flexibility of the model by writing it as a PPO model 

that relaxes the PO assumption on f1(tij). We refer to the following model,

logit πi, k
ppo1 tij = αk, 0

ppo1 + f1 tij βt
ppo1 + βt, 2

ppo1c2 + βt, 3
ppo1c3

αk
ppo1 tij

+ βx, 0
ppo1 + f2 tij βxt

ppo1 xi

βxppo1 tij

(2)

as ppo1, where ck is an indicator for the dichotomization Yi(tij) ≤ k. We 

may think of this PPO model using concatenated, time-specific proportional-odds 

models where the time-specific intercepts are given by, α1
ppo1 tij = α1, 0

ppo1 + f1 tij βt
ppo1, 

α2
ppo1 tij = α2, 0

ppo1 + f1 tij βt
ppo1 + βt, 2

ppo1 , and α3
ppo1 tij = α3, 0

ppo1 + f1 tij βt
ppo1 + βt, 3

ppo1  and the 

time-specific intervention effect (i.e., the log odds ratio) is forced to satisfy the PO 

assumption with βx
ppo1 tij = βx, 0

ppo1 + f2 tij βxt
ppo1.

We can increase flexibility even further by relaxing PO assumptions on xi and/or f2(tij)xi for 

at least one of the outcome dichotomizations. For the purpose of analyses discussed in this 

paper, we will permit distinct treatment by time interactions for all dichotomizations of the 

outcome value using the following model which we refer to as ppo2,
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logit πi, k
ppo2 tij = αk, 0

ppo2 + f1 tij βt
ppo2 + βt, 2

ppo2c2 + βt, 3
ppo2c3

αk
ppo2 tij

+ βx, 0
ppo2 + f2 tij βxt

ppo2 + βxt, 2
ppo2c2 + βxt, 3

ppo2c3

βxppo2 tij

xi .
(3)

Similar to ppo1 we think of this model as a set of cross-sectional, tij–specific models 

that are concatenated, but in addition to dichotomization-specific intercepts, this model 

yields dichotomization-specific intervention effects given by, βx, 1
ppo2 tij = βx, 0

ppo2 + f2 tij βxt
ppo2, 

βx, 2
ppo2 tij = βx, 0

ppo2 + f2 tij βxt
ppo2 + βxt, 2

ppo2 , and βx, 3
ppo2 tij = βx, 0

ppo2 + f2 tij βxt
ppo2 + βxt, 3

ppo2 . 

Though one could consider another model that permits non-proportional odds on βx, 0
ppo2, 

we can see from Figure 1, nearly all subjects are in the hospitalized or Vent/ARDS states on 

day tij = 1 of follow-up. There are effectively only two observed response states when tij = 1, 

and so there is no evidence to suggest a PO assumption violation at that time point.

It is important to note that while in this paper we discuss PO and PPO models for analysis 

of the VIOLET Study data, there is a literature on flexible and parsimonious alternatives to 

both models. PO models are cumulative “link” models specifically with a logit link. Other 

cumulative link models include the proportional hazards (log-log link) and ordered probit 

(probit link) models. Further, other classes of models for ordinal data include continuation 

ratio models, adjacent category models, and stereotype models (see e.g.,26,27,28). Among 

all of these model choices, the most popular is probably the cumulative probability model 

with the logit link (i.e., the PO model). Alternatives to the PPO model specification include 

location-scale models29 and trend odds models30 that parameterize non-proportional odds 

to be shifts not only in the means of the latent logistic distribution, but also shifts in the 

scales. Specifically, the trend odds model can be viewed as a PPO model but with the 

non-proportionality parameters (e.g., βxt, 2
ppo2 and βxt, 3

ppo2) constrained to be linear or at least 

monotonic (e.g., βxt, 3
ppo2 = λβxt, 2

ppo2). These modeling approaches are viable alternatives to the 

ones discussed in this paper.

3.2 | Estimands: Parsimonious model-based and model-assisted intervention effects

Parsimonious intervention associations on day tij can be captured directly with (2). Because 

the association is taken directly from the model, we refer to it is as a model-based estimand 

and the estimator as a model-based estimator. If equation (2) is correct, this is an efficient 

way of estimating the intervention effect. Even if the PO assumption for the intervention 

effect is incorrect, one could argue that βx
ppo1 tij  is a reasonable summary of the relationship 

between the intervention variable and the ordered outcome. Alternatively, we may seek to 

strike a balance between a parsimonious intervention association and model flexibility by 

defining model-assisted estimands that take a weighted average of dichotomization-specific 

estimates from model (3), ∑k = 1
3 wk tij ⋅ βx, k

ppo2 tij . The weight wk(tij) is assigned to the kth 
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dichotomization-specific intervention association and should be chosen carefully based on 

study goals.

Table 2 shows three distinct weighting schemes for model-assisted estimands as they could 

apply to the VIOLET Study. MAs(tij) uses a simple average of dichotomization-specific 

parameters on day tij and has been proposed previously for cross-sectional analyses of 

ordinal outcomes25. MA613(tij) gives relative weights of 6, 1, and 3 to the first, second and 

third dichotomizations, thus reflecting the value placed on each of the dichotomizations. 

For example, in the VIOLET Study, the MA613(tij) weighting scheme gives the intervention 

effect for the not alive (k = 1) versus alive (k > 1) dichotomization six times the weight 

of the intervention effect for the Vent/ARDS or worse (k ≤ 3) versus in-hospital or better 

(k > 2) dichotomization and twice the weight of the intervention effect for the in-hospital 

or worse (k ≤ 3) versus at-home (k = 4) dichotomization. This weighting scheme can 

and should be modified based on pre-specified utilities. MAp(tij) places weights that are 

proportional to the precision with which dichotomization-specific parameters are estimated. 

In addition to summarizing dichotomization-specific intervention effects to obtain the global 

summary at time tij, one could also summarize / average across all k and tij though such 

summaries are not addressed here.

4 | MARGINALIZED MODELS FOR ORDINAL LONGITUDINAL DATA

The πi, k
po tij , πi, k

ppo1 tij , and πi, k
ppo2 tij  values from equations 1, 2, and 3, respectively, are 

examples of marginal CPMs. They capture the univariate distribution [Yi(tij) | Xi(tij)], while 

being agnostic to the joint, multivariate distribution [Y i | Xi]. To conduct a likelihood-based 

analysis with marginal CPMs, we need to identify higher-order, joint moments of the 

multivariate distribution. For the purpose of the analyses discussed here, we appeal to 

the first-order marginalized transition model for ordinal response data (OMTM1) proposed 

by Lee and Daniels13, and for ease of exposition, we will make the proportional odds 

assumption and will suppress the superscripts. The general form of the OMTM1 model is 

given by two regression equations,

logit πi, k tij = ηi, k tij = αk + Xi tij β

log 
μi, k

c tij
μi, K

c tij
= Δi, k Xi tij + ∑

l = 1

K − 1
γklI Y i tij − 1 = l ,

where the first is a marginal cumulative logit model with Yij considered as a univariate 

response as described in equation (1), μi, k
c tij = pr Y i tij = k ∣ Y i tij − 1 , Xi tij  is a 

(conditional) Markov transition probability, and γkl is a log relative risk ratio parameter 

for the transition from state l to state k. The intercept, Δi,k[Xi(tij)], is an implicit function 

that links the first and second regression equations. For each subject and time, (i, tij), 
and at each iteration of the maximization algorithm, the K − 1 elements of {Δi,1[Xi(tij)], 
… , Δi,K−1[Xi(tij)]} are calculated simultaneously13. Specifically, because the marginal 
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distribution is equal to the marginalized [over Yi(tij−1)] conditional distribution, then 

Δi,k[Xi(tij)] are the values that solve

μi, k tij ≡ ∑
g = 1

K
ℎi, kg tij ⋅ μi, g tij − 1 (4)

where

ℎi, kg tij = pr Yi tij = k ∣ Yi tij − 1 = g, Xi =
exp Δi, k Xi tij + γkg

1 + ∑l = 1
K − 1exp Δi, l Xi tij + γlg

,

is a transition probability from state g to k. Value μi,k(tij) = πi,k(tij) − πi,k−1(tij) is the 

marginal probability of being in state k, and πi,K (tij) = 1. When fitting these models, each 

step of the Newton Raphson algorithm alternates between updating (α, β, γ) and updating 

Δi,k[Xi(tij]. Given (α, β, γ), the Δi,k[Xi(tij)] are computed by solving the equation (4), and 

once the values of Δi,k[Xi(tij)] have been calculated for all (j, k), subject i’s contribution to 

the likelihood can be identified directly with

Li θ; Y i, Xi = ∏
k = 1

K
μi, k ti1

I Yi ti1 = k ⋅ ∏
j = 2

ni
∏

k = 1

K
μi, k

c tij
I Y i tij = k

.

The first term only includes the marginal probability at the first observed timepoint μi,k(ti1) 

because lagged response values are unavailable, and the second term include the dependence 

model probability μi, k
c tij , that explicitly conditions on the lagged response value. Score and 

information calculations for this model are detailed in the text and web appendices of Lee 

and Daniels (2007)13.

4.1 | Absorbing state: technical details

In the presence of an absorbing state, some hi,kg(tij) will take on values of 1 and 0. For 

example, because death (k = 1) is absorbing, hi,11(tij) = 1 and hi,k1(tij) = 0 for k > 1. 

Examining equation (4), we observe an important restriction on the model, namely that the 

marginal probability of being in an absorbing state must be non-decreasing with follow-up 

time, i.e., μi,1(tij) ≥ μi,1(tij−1). While this makes intuitive sense, in studies such as VIOLET, 

where μi,1(tij) increases slowly towards the end of the follow-up period (see Figure 1), 

one must ensure that the fitting algorithm, e.g., Newton-Raphson, does not jump to a set 

of parameter estimates that violate this restriction. This can be achieved by forcing small 

jump-size or by using monotonic study day functionals.

Since state k = 1 is absorbing in VIOLET, then γ11 = ∞ and γk1 = −∞ for k > 1. By 

examining the likelihood, one can see that if Yi(tij) = 1, then the subject i contribution to 

the likelihood is degenerate for all tij′ > tij. This fact implies that one would make the same 

inferences whether one analyzed the data by keeping all observations after an absorbing 

state is observed or by removing all post-absorbing state observations. If one chooses to 

keep all observations following an absorbing state, our experience has been that the OMTM1 
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fitting algorithm is able to appropriately estimate γ11 to be a large positive number and 

the γk1s to be large negative numbers. However, such an approach requires fixed follow-up 

times and a well-defined follow-up period in order to include the post absorbing state 

observations. Most often, one would remove all observations after an absorbing state is 

entered. In such cases, one must set γ11 to be an appropriately large value, say 25, and the 

γk1s to be appropriately large in magnitude but negative, say −25, for valid calculations of 

Δi,k[Xi(tij)].

Remark 1: The response dependence model described above explicitly captures each of the 

K × K transitions separately. Due to this flexibility, we are able to appropriately address 

absorbing states. In the absence of a parameter that allows the state transition model to equal 

one for absorbing states, the model will not be coherent at the time an absorbing state is 

observed. Specifically, the ordinal marginalized transition model described above captures a 

data generating model that applies both before and after the absorbing state has occurred.

Remark 2: If one seeks to use a semi-parametric procedure such as GEE to estimate 

parameters from the marginal CPM in the presence of an absorbing state, observations 

following absorbing state entry must be retained. Otherwise marginal state probability 

estimates will be biased. Though not studied extensively here, such estimators could be used 

to analyze the VIOLET data. We do not focus on GEE methods here primarily because our 

interest is in likelihood-based procedures that permit model comparison with an objective 

function. Further, as discussed in Lee and Daniels13, the first-order marginalized transition 

model has the same robustness to response dependence misspecification that GEE estimators 

have, namely, valid marginal CPM estimation is possible even in the presence of dependence 

model misspecification. Valid inferences are possible with robust standard errors31,32,33.

5 | SIMULATIONS

We now explore the behavior of marginalized model estimators of model-based and model-

assisted estimands in the presence of an absorbing state in scenarios similar to the VIOLET 

Study. We simulate a parallel-arm RCT of n=1000 patients with 20 equally spaced follow-up 

visits across a time-period that ranges from ti1 = 1 to ti20 = 10. For the purpose of generating 

and fitting the data, we set f1(tij) = f2(tij) = f(tij) = log10(tij) so that f(1) = 0 and f(10) = 1. Let 

Xi be a binary treatment indicator (1 for intervention and 0 for control), xi be the observed 

value, and Yi(tij) ∈ {1, 2, 3, 4} be a four level outcome variable with the lowest state k = 1 

being absorbing. We generate data according to the ppo2 CPM in equation (3) with α = (−4, 

−1.5, 2) so that the vast majority of subjects are in states k = {2, 3} at tij = 1 [when f(tij) = 

0], βt
ppo2, βt2

ppo2, βt3
ppo2 = (2.5, − 2, − 2.5) so that, similar to VIOLET Study data, pr[Yi(tij) ∈ 

{1, 4}] increases substantially and pr[Yi(tij) ∈ {2, 3}] decreases substantially over the course 

of follow-up. The intervention effect at f(tij = 1) = 0 is βx, 0
ppo2 which is set to −0.1, and we fix 

βxt
ppo2 = 0.2.

To examine operating characteristics of model-based and model-assisted estimators of 

intervention associations over time, we vary the extent to which the PO assumption for the 

intervention effect is violated and the degree of response dependence in the data generating 
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mechanism. Specifically, we examine βxt, 2
ppo2, βxt, 3

ppo2 ∈ (0, 0), ( − 0.1, − 0.2), ( − 0.2, − 0.4)  to 

study no violation, moderate violation, and severe violation of the PO assumption for the 

intervention effect. Notice that when βxt, 2
ppo2, βxt, 3

ppo2 = (0, 0) the ppo2 model simplifies to 

ppo1. Figure 2 shows the functional form for the dichotomization-specific intervention 

associations under the three scenarios. In the left panel, all dichotomization-specific 

intervention associations are equal to one another with the log odds ratio equal to −0.1 

at tij = 1 and 0.1 at tij = 10. In right panel, where the PO assumption is severely violated, the 

intervention association differs for Yi(tij) ≤ 1, Yi(tij) ≤ 2, and Yi(tij) ≤ 3, and for Yi(tij) ≤ 3 

the log odds ratio is equal to −0.1 at tij = 1 and −0.3 at tij = 10.

To study the impact of response dependence on the estimators, let Γ denote the 3×3 

dependence model parameter matrix with elements γkl denoting the log relative risk ratio 

for transitioning from state l to state k with state k = 4 being the reference state for both 

the response [Yi(tij)] and the lagged response [Yi(tij−1)] in the response dependence model. 

We study Γ values equal to 
20 3 1

−20 7 3
−20 1 7

 and 
20 2 1

−20 4 2
−20 1 4

, in order to capture high and moderate 

degrees of response dependence, respectively, recognizing that the presence of an absorbing 

state itself represents a very high degree of response dependence. High values along the 

diagonal [e.g., (20, 7, 7) in the left matrix] induce large log relative risk ratios of remaining 

in the same state on successive days. We set (γ11, γ21, γ31) = (20, −20, −20) to generate 

the absorbing state for k = 1 where the probability of transitioning on successive days from 

state 1 to 1, 1 to 2, and 1 to 3 is effectively 1, 0, and 0, respectively. Table 3 shows a 

realization of the transition matrices from Yi(tij−1) (columns) to Yi(tij) (rows) for high and 

moderate response dependence with N = 5000 simulated subjects. As we can see, values 

along the diagonals decline when response dependence is reduced. For each of the six data 

generating mechanisms (none, moderate and severe violations of the PO assumption and 

high and moderate response dependence), we fit the data using ppo1 and ppo2 to capture 

the model-based and model-assisted estimates of the target estimands. We summarize results 

across 1000 replicates.

Table 4 shows average parameter estimates, empirical standard errors, and coverage 

probabilities across replicates for ppo1 and ppo2 model fits in all scenarios. Notice 

that for all of the properly specified models [i.e., ppo2 in all scenarios and ppo1 

when βxt, 2
ppo2, βxt, 3

ppo2 = (0, 0)], inferences appears to be approximately valid, with parameter 

estimates approximately unbiased and with coverage probabilities nearly equal to their 

95% nominal level. In settings where the PO assumption is violated, the ppo1 model 

estimate for βxt
ppo1 is not expected to yield the same quantity as the ppo2 estimate for 

βxt
ppo2. Whereas the ppo2 model is estimating the treatment by time interaction [xi · 

f(tij)] effect for the k ≤ 1 response dichotomization, the ppo1 model is making the 

PO assumption and is therefore estimating an “across-dichotomization” interaction effect. 

As one might expect, in the scenarios shown here, the ppo1 estimator appears to be 

a weighted average of dichotomization-specific treatment by time interactions from the 
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ppo2 model fits. For example, for the scenario with high response dependence and with 

βxt, 2
ppo2, βxt, 3

ppo2 = ( − 0.2, − 0.4), the average ppo1 estimator for βxt
ppo1 was −0.063, which is a 

weighted average of the dichotomization-specific estimates from the ppo2 model, i.e., 0.212 

(k = 1), 0.212 − 0.204 = 0.008 (k = 2), and 0.212 − 0.400 = −0.188 (k = 3). However, 

in a setting shown in the appendix with lower response dependence, the across-replicate 

average ppo1 estimator was −0.297 which is not an average of the dichotomization-specific 

estimates. While such a scenario is highly divergent from the VIOLET Study data, it is 

worth being aware of and checking the extent to which the PO assumption is violated when 

using the ppo1 estimator.

Figures 3 a and 3 b show time-specific summaries of intervention effects for the model-

based and model-assisted analysis approaches. Figure 3 a corresponds to the high response 

dependence setting and Figure 3 b corresponds to moderate response dependence. The 

top-left panels of the figures show that when the proportional odds assumption for the 

intervention effect is met, the model-based and model-assisted approaches estimate the same 

quantity since all of the estimated effects are stacked on top of one another. However, 

when the PO assumption is not met, the estimators are consistent for distinct quantities. 

When response dependence is high and PO assumption violations are moderate (top central 

panel in Figure 3 a), the different global estimators still capture similar quantities. However, 

with moderate response dependence or with severe violations of the PO assumption, the 

estimators capture distinct quantities. In particular the model-based estimator of MBppo1(tij) 
not only estimates a different value at each timepoint, but it can also estimate a different 

trend as shown in the top right panels of Figures 3 a and 3 b.

In the bottom row of panels in Figures 3 a and 3 b we observe that all estimators were most 

precisely estimated towards the middle of the follow-up period. In all cases, MBppo1(tij) 
was estimated with the greatest precision over time, followed by MAp(tij), MAs(tij), and 

MA613(tij). MA613(tij) was estimated with the least precision in the scenarios studied here 

because the estimator gives the largest weight to the intervention effect corresponding to 

Yi(tij) ≤ 1 which is relatively rare. The extent of precision differences among the estimators 

is highly related to the strength of response dependence in the data. The precision of the 

estimators is similar in the high response dependence settings that most closely resemble 

the VIOLET study data and differs substantially in the moderate response dependence data 

setting.

6 | ANALYSIS

We now conduct analyses of the VIOLET Study data with the broad goal of estimating 

the potential benefit of Vitamin D3 administration in critically ill patients. We seek to 

base inferences on parsimonious intervention effects using odds ratios across outcome 

dichotomizations and at distinct follow-up times (tij ∈ {7, 14, 21, 27}). We fit the 

ppo1 and ppo2 models from equations 2 and 3, respectively, and for comparison the 

corresponding cross-sectional estimators from scalar response analyses that do not exploit 

the longitudinal structure of the data, which is commonly done in randomized clinical trials1. 

We then summarize the results to make inferences on the day-specific MBppo1(tij), MAs(tij), 
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MA613(tij), and MAp(tij). In all cases, f1(tij) = f2(tij) = f(tij) is a restricted cubic spline (three 

degrees of freedom) on the log of follow-up day, so that f(1) = 0.

One benefit of the OMTM1 is that inference is based on an objective likelihood function, 

and Table 5 shows maximized likelihoods for three OMTM1 models, po1, ppo1, and ppo2 

that correspond to equations 1, 2, and 3, respectively. By comparing ppo1 to po1, it is very 

clear (p < 0.0001) that relaxing the PO assumption on the f(tij) association is crucial for 

these models. This is consistent with Figure 1. However, by comparing ppo2 to ppo1, we 

observe insufficient evidence to suggest that relaxing the PO assumption on the xi · f(tij) 
interaction association improves model fit (p = 0.2677). Further, using a likelihood ratio 

test (not shown) on ppo1 there is insufficient evidence to suggest that the intervention is 

associated with the ordered outcome states over time (p = 0.2695).

Figure 4 shows that ppo1 and ppo2 estimated the cumulative probabilities for the placebo 

and Vitamin D3 arms well, although upon close inspection we can see the ppo2 fit 

appears slightly better calibrated than ppo1. Towards the end of follow-up, ppo1 slightly 

overestimates log odds of being in the not alive state (k = 1) and of being in the Vent/ARDS 

or lower states (k ≤ 2) in the placebo arm, while it somewhat underestimates them in the 

Vitamin D3 arm. Further, towards the middle and end of the study, ppo2 appears to align 

more closely to the observed pr[Yi(tij) ≤ 3 | Xi(tij)] (right panel) than does ppo1. Overall, 

the added flexibility provided by ppo2 appears to improve model fit (slightly) even though it 

does not represent a statistically significant improvement at the two-sided 0.05 significance 

level.

The top panel of Figure 5 shows the log odds ratio (Vitamin D3 versus placebo) for each 

of the response dichotomizations from ppo2. As stated earlier, according to a likelihood 

ratio test, there is insufficient evidence to suggest that these estimates are different from 

one another; however, we estimated that Vitamin D3 tended to lower the odds of being in 

the hospital or worse state [Yi(tij) ≤ 3] across most of the follow-up period as compared to 

placebo, but after day 10, it increased the odds of being in the Vent/ARDS or worse states 

[Yi(tij) ≤ 2] and the odds of being not alive [Yi(tij) ≤ 1]. It is worth noting the difference 

in the precision of the three dichotomization-specific treatment effect estimators. Overall, 

the in-hospital or worse versus at-home dichotomization [Yi(tij) ≤ 3] was estimated with the 

greatest precision while the not alive versus alive [Yi(tij) ≤ 1] dichotomization was estimated 

with the least precision. This is caused by differences in the four outcome state prevalences 

over time.

The middle panel of Figure 5 shows the estimated log odds ratios and confidence intervals 

for being in the lower (worse) outcome state for any of the outcome dichotomizations 

(Vitamin D3 versus placebo) at follow-up days 7, 14, 21, and 27. The bottom panel 

shows confidence interval widths. The longitudinal OMTM1 estimates are denoted with 

circles while corresponding cross-sectional estimates, based on conducting PO or PPO 

model analyses cross-sectionally at each time using the VGAM package34 in the R 

programming language35, are denoted with diamonds. Because the evidence suggesting 

non-proportional odds on the intervention effect was weak, model-based and model-assisted 

estimators yielded quite similar results. Similar to simulation results, the MBppo1(tij) 
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estimator yielded the tightest confidence intervals, although the MAp(tij) was nearly as 

precise. Not surprisingly, the value-based weighted estimator, MA613(tij), yielded the widest 

confidence intervals. We also note efficiency losses when using cross-sectional estimators 

compared to the analogous longitudinal estimators. The estimated variances associated with 

cross-sectional analyses were 2% to 28% larger than they were for the corresponding 

longitudinal analyses, although most were in the range of 5% to 10%. Simulations shown 

in the Online Supplement depict scenarios where efficiency gains of longitudinal over 

cross-sectional analyses are more pronounced (e.g., with lower response dependence and in 

the presence of missing data).

7 | DISCUSSION

We discussed model-based and model-assisted approaches to analyses of parallel-arm, 

longitudinal clinical trials in settings where the outcome is ordinal and at least one state 

is absorbing. Estimands were derived from marginal partial proportional odds (PPO) models 

that were made appropriately flexible to align with study goals (e.g., using splines in time). 

Estimation was based on ordinal, first-order marginalized transition models that capture 

marginal model parameters directly and are well suited to address challenges associated 

with absorbing outcome states. We found that when the PO assumption for the intervention 

parameter is correct, or even when mildly incorrect, making the PO assumption and using 

estimates derived from ppo1 are highly efficient. However, in realistic settings, the model-

assisted estimators can be nearly as efficient as the model based-estimator when the PO 

assumption is correct. When the PO assumption is incorrect, model-assisted estimands 

may be more interpretable because the weighting scheme used to derive the weighted 

averages of dichotomization-specific intervention effects is explicit and can be specified by 

the user. Importantly, the weighting schemes can be based on study goals that either give 

higher weights to dichotomizations that are deemed of greater importance or that seek high 

estimation efficiency.

We note that one could approach this problem by fitting conditional, Markov models and 

then marginalizing over lagged responses to estimate marginal intervention effects25. While 

both marginal and conditional model approaches are reasonable, this paper seeks to estimate 

marginal model parameters directly. In future research, we will study the extent to which 

marginal intervention effects derived from conditional models agree with direct marginal 

model estimates over a broad range of study scenarios. In particular, it will be interesting to 

compare relative efficiencies and robustness under misspecification.

We believe that the modeling approaches described in this paper are broadly applicable 

and can be summarized to ascertain other estimands that may be of interest. A primary 

motivation for studying these procedures was that death was a natural outcome state for the 

VIOLET Study (i.e., the most severe one). However, modeling choice becomes much more 

nuanced when death is not a natural outcome state that clearly takes on a value at one end 

of the ordinal scale. For example, if one seeks to study, say an ordinal outcome scale for 

glucose concentration in a wearable insulin pump intervention study of participants with 

uncontrolled type II diabetes, then the outcome value of death does not fall naturally at one 

end or the other of the glucose concentration scale. That is, death could result from severe 
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hyperglycemia or severe hypoglycemia. In such cases, it could be argued that one should 

view death as a competing event and then potentially examine intervention association with 

glucose levels conditioned on being alive.

A challenge associated with specifying the marginal CPM and response dependence models 

separately occurs in the presence of absorbing states. The value Δi,k[Xi(tij)] is a function that 

renders the first and second OMTM1 models coherent, and it must be calculated for all i, 
j, and k to identify the likelihood. However, if the two models are not coherent, Δi,k[Xi(tij)] 
cannot be calculated. As an example, if we assume that state k = 1 is absorbing, then the 

marginal probability of being in state 1 must never decrease with time. If, in fact, the true 

marginal state k = 1 probability increases very slowly, it is possible for the fitting algorithm 

to step to a set of parameter values that yield a decrease in the marginal state probability. In 

that case, the fitting procedure will fail. One must either force monotonicity in the k = 1 state 

probability as a function of time or one must force the fitting algorithm to take very small 

steps. Another challenge arises when state probabilities are low. In such circumstances, 

the fitting algorithm may take a step that leads to time-specific intercepts “crossing.” 

This, in turn, yields cumulative probabilities that appear to decrease (i.e., negative state 

probabilities) which also leads to the algorithm failing. For this reason, and because the 

procedure we described estimates (K −1)2 dependence model parameters, we are uncertain 

of the extent to which this fitting procedure will be able to address a large number of ordered 

outcome states. Finally, due to the large number of dependence model parameters being 

estimated, this approach may be challenged by non-stationarity of the dependence structure 

or a dependence structure that is modified by baseline covariates. In both cases, additional 

dependence model parameters are required to properly specify the model. Lee and Daniels13 

discuss more parsimonious response dependence models which could be required to expand 

these models to other settings.

While the VIOLET Study had minimal amounts of missing follow-up data, in future work 

we will also seek to explore challenges associated with missing data. Even though the 

OMTM1 is robust to dependence model misspecification, it requires complete data, and 

we will need to explore the operating characteristics of the OMTM1 in the presence 

of absorbing states and intermittently missing data. Code used to generate and analyze 

data from the models described in this paper are available at https://github.com/schildjs/

OMTM1/.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
VIOLET Study data: Empirical cumulative log odds across 27 follow-up days
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FIGURE 2. 
Dichotomization-specific functional form of the intervention association [i.e., log odds ratio 

(LOR)] across no βxt, 2
ppo2, βxt, 3

ppo2 = (0, 0), moderate βxt, 2
ppo2, βxt, 3

ppo2 = ( − 0.1, − 0.2), and severe 

βxt, 2
ppo2, βxt, 3

ppo2 = ( − 0.2, − 0.4) violations of the PO assumption for the simulation studies, 

where subscripts 2 and 3 indicate contrasts for k = 2 and k = 3 versus k = 1.
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FIGURE 3. 
Model-based and model-assisted summaries: For high (a) and moderate (b) response 

dependence settings, we report averages of the tij–specific estimates of intervention effects 

using a global log odds ratio [LOR(tij)] and the empirical standard errors (ESE) across 

1000 replicates. We includes scenarios with no violation βxt, 2
ppo2 , βxt, 3

ppo2  = (0, 0) , moderate 

violation βxt, 2
ppo2, βxt, 3

ppo2 = ( − 0.1, − 0.2) , and severe violation βxt, 2
ppo2, βxt, 3

ppo2 = ( − 0.2, − 0.4)

of the proportional odds assumption for the intervention effect.
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FIGURE 4. 
Calibrations plots for the cumulative pr[Yi(tij) ≤ k | Xi(tij)] over the 27 follow-up days. For 

models ppo1 and ppo2 we display the predicted minus the observed probabilities of falling 

at or below state k ∈ {1, 2, 3}.
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FIGURE 5. 
VIOLET Study results: Intervention effect estimates and confidence interval widths for 

model-based, model-assisted, and cross-sectional model fits
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TABLE 1

Day to day state transition probabilities across 1351 VIOLET Study participants

Yi(tij−1)

Yi(tij) Not alive Vent/ARDS In-hospital Home Overall

Not alive 1.000 0.0266 0.0057 0.0016 0.1024

Vent/ARDS 0.0000 0.8645 0.0029 0.0000 0.0802

in-hospital 0.0000 0.0936 0.9117 0.0000 0.2812

Home 0.0000 0.0153 0.0797 0.9984 0.5363
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TABLE 2

Estimands for longitudinal analyses of ordinal outcome data

Estimand Definition Description

MBppo1(tij) βx
ppo1 tij Model (2) intervention parameter under PO assumption for the 

intervention effect

MAs(tij) ∑k = 1
3 βx, k

ppo2 tij /3 Simple average of dichotomization-specific parameters from 
Model (3)

MA613(tij) 0.6 ⋅ βx, 1
ppo2 tij + 0.1 ⋅ βx, 2

ppo2 tij + 0.3 ⋅ βx, 3
ppo2 tij Value-based weighting of dichotomization-specific parameters 

from Model (3)

MAp(tij) ∑k = 1
3 wk

p tij βx, k
ppo2 tij Precision-based weighting with wk

p tij  proportional to the 

precision of the βx, k
ppo2 tij  estimator from Model (3).

MB = model-based, MA = model-assisted.
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TABLE 3

Transition matrices for the high and moderate response dependence settings in the simulation studies

Yi(tij) High Response Dependence: Yi(tij−1) Moderate Response Dependence: Yi(tij−1)

1 2 3 4 1 2 3 4

1 1.000 0.020 0.002 0.012 1.000 0.024 0.005 0.010

2 0.000 0.904 0.017 0.006 0.000 0.689 0.057 0.045

3 0.000 0.002 0.900 0.010 0.000 0.068 0.792 0.072

4 0.000 0.074 0.081 0.972 0.000 0.220 0.146 0.872
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TABLE 4

Average parameter estimates, empirical standard errors, and coverage probabilities across 1000 replicates for 

model fits from ppo1 and ppo2. In all cases, data were generated from a ppo2 model and fit with ppo2 and 

ppo1 models. In settings where βxt, 2
ppo2, βxt, 3

ppo2 = (0, 0), the ppo1 model is correctly specified. When this is not 

the case, it is misspecified and estimated coefficients differ from ppo2 model.

ppo2 estimates ppo1 estimates

Dependence
βxt, 2

ppo2, βxt, 3
ppo2 βx, 0

ppo2 βxt
ppo2 βxt, 2

ppo2 βxt, 3
ppo2 βx, 0

ppo1 βxt
ppo1

High (0,0) True value −0.1 0.2 0 0 −0.1 0.2

Average Estimate −0.101 0.203 −0.004 −0.008 −0.101 0.198

Standard Error [0.128] [0.183] [0.098] [0.128] [0.127] [0.159]

Coverage (0.951) (0.945) (0.953) (0.947) (0.955) (0.934)

(−0.1, −0.2) True value −0.1 0.2 −0.1 −0.2 NA NA

Average Estimate −0.102 0.205 −0.102 −0.203 −0.116 0.068

Standard Error [0.127] [0.180] [0.097] [0.126] [0.126] [0.156]

Coverage (0.948) (0.961) (0.949) (0.951) NA NA

(−0.2, −0.4) True value −0.1 0.2 −0.2 −0.4 NA NA

Average Estimate −0.106 0.212 −0.204 −0.400 −0.132 −0.063

Standard Error [0.123] [0.188] [0.095] [0.119] [0.122] [0.161]

Coverage (0.954) (0.935) (0.933) (0.946) NA NA

Moderate (0,0) True value −0.1 0.2 0 0 −0.1 0.2

Average Estimate −0.102 0.200 0.000 0.000 −0.102 0.200

Standard Error [0.114] [0.190] [0.090] [0.122] [0.113] [0.156]

Coverage (0.948) (0.953) (0.939) (0.947) (0.948) (0.954)

(−0.1, −0.2) True value −0.1 0.2 −0.1 −0.2 NA NA

Average Estimate −0.097 0.196 −0.101 −0.201 −0.120 0.026

Standard Error [0.115] [0.186] [0.080] [0.113] [0.115] [0.158]

Coverage (0.947) (0.950) (0.954) (0.950) NA NA

(−0.2, −0.4) True value −0.1 0.2 −0.2 −0.4 NA NA

Average Estimate −0.101 0.200 −0.201 −0.400 −0.146 −0.150

Standard Error [0.117] [0.192] [0.080] [0.110] [0.117] [0.163]

Coverage (0.942) (0.947) (0.946) (0.944) NA NA
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TABLE 5

VIOLET Study data analysis: Likelihood ratio tests for the po1, ppo1 and ppo2 model fits

Model Parameters Log-Likelihood p-value

po1 15 −8449.51 NA

ppo1 21 −6185.93 <0.0001 (vs po1)

ppo2 27 −6182.12 0.2677 (vs ppo1)
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