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Abstract

The anatomy and morphology of gonadotropin-releasing hormone (GnRH) neurons

makes them both a joy and a challenge to investigate. They are a highly unique popu-

lation of neurons given their developmental migration into the brain from the olfac-

tory placode, their relatively small number, their largely scattered distribution within

the rostral forebrain, and, in some species, their highly varied individual anatomical

characteristics. These unique features have posed technological hurdles to overcome

and promoted fertile ground for the establishment and use of creative approaches.

Historical and more contemporary discoveries defining GnRH neuron anatomy

remain critical in shaping and challenging our views of GnRH neuron function in the

regulation of reproductive function. We begin this review with a historical overview

of anatomical discoveries and developing methodologies that have shaped our under-

standing of the reproductive axis. We then highlight significant discoveries across

specific groups of mammalian species to address some of the important comparative

aspects of GnRH neuroanatomy. Lastly, we touch on unresolved questions and

opportunities for future neuroanatomical research on this fascinating and important

population of neurons.
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1 | A BRIEF HISTORICAL OVERVIEW

A major force in the understanding of systems neuroscience and the

system regulating reproduction arose from the concept that “function
follows form.” Studies of neuron morphology reveal changes during

development, maturation, senescence, experience and plasticity fol-

lowing injury. Information about these important components leads to

understanding of normal function and how dynamic changes alter the

way the system works. For neuroendocrinology, anatomy has had a

seminal role. First and foremost, discovery of neurosecretion and its

unique role in endocrine processing changed the perspective of the

roles that neurons play in homeostasis and brought to light how neu-

rons can work as secretory units directed into the peripheral circula-

tion. The acceptance of the concept of neurosecretion arose from the

results of anatomical studies that began in the late 1930s and

extended through the 1960s. Those studies established that neurose-

cretory material originated from neurons that extended their axons

from the brain to the posterior lobe of the pituitary. The
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neurohormones released from the axon terminals near fenestrated

blood vessels were transported by the blood circulation to distant

sites. As the cited reviews indicate,1,2 these seminal studies initiated

the field of neurosecretion and provided key insights into the unique

roles of neuroendocrine neurons in the control of both posterior and

anterior pituitary functions. However, the study of the reproductive

neuroendocrine system would still be a black box had it not been for

the discovery of GnRH. There is little doubt that the award of the

Nobel Prize to Andrew Schally and Roger Guillemin in 1977 set the

stage for unravelling the mysteries of reproductive physiology.

For the control of anterior pituitary-related functions (regulation

of growth hormone, thyroid hormone, gonadotropin, prolactin and

corticosteroids secretion), anatomical studies led to the primary role

of the median eminence and pituitary stalk as the sites of factor

release. The unique blood vessels forming loops within the median

eminence3 were found to collect into “private” vessels that led exclu-

sively to the anterior pituitary to control adenohypophyseal functions.

As evidence mounted suggesting that the brain made the factors reg-

ulating the anterior pituitary, anatomical studies describing the repro-

ductive function upon transplantation of the anterior pituitary into

the medial basal hypothalamus (MBH)4,5 compared to the kidney cap-

sule led to the initial evidence of where the neural control systems

resided. They emphasized the need for the pituitary gland to have a

close proximity to the hypothalamus and its portal blood system and

that placement of median eminence extracts into the pituitary enabled

ovulation.4–8 While these early studies indicated that the anterior

pituitary needed close proximity to the median eminence, data did not

reveal where the brain cells providing the stimulating factors for

gonadotropins resided.

Use of reproductive function assays (ovulation or eventually mea-

surement of LH or FSH) after brain stimulation9 or knife cuts placed

stereotaxically into the brain10 began to suggest that reproductive

control in a number of species required an intact preoptic area (POA)

connection to MBH. While it is beyond the scope of this article to

review each of those studies in all the species that have been used

with these approaches, one must be cognizant of the fact that inter-

pretation of studies using knife cuts, lesions or electrical stimulation

were impaired or easily misinterpreted when the locations of the sys-

tem and its pathways were not yet defined. An understanding of

where the GnRH neurons were located and where their axons projec-

ted were required for a deeper understanding of how the neurons

controlled LH and FSH secretion. In the 1970s, as antibodies against

GnRH were produced and techniques for visualizing GnRH became

available, scientists began to search for the elusive GnRH neurons.

Few of those early studies were successful due to suboptimal tissue

processing conditions and antibody qualities. Investigators tried to

apply the same preparations for hypothalamic tissue that were used

for routine histology both in terms of selection of fixatives and prepa-

ration of tissue blocks in paraffin for cutting. GnRH was easily

extracted during tissue dehydration in EtOH and embedment in paraf-

fin which resulted in a striking loss of the GnRH antigen in paraffin-

embedded material. If embedding in paraffin was avoided by

processing free-floating sections, staining greatly improved.11 Fixation

known to be optimal for routine histology (Bouin's) included

formaldehyde, picric acid and acetic acid and had a pH close to 1.0. It

turned out that staining of tissue fixed in a neutral formaldehyde -

picric acid fixative (Zamboni's) preserved GnRH better and provided

clear locations of the cells and their axons compared to staining of tis-

sue fixed with the more acidic fixative. Moreover, initial recommenda-

tions for fixation of peptides suggested short fixation times and cold

solutions. Missed was the fact that formaldehyde-based fixatives are

not able to complex proteins quickly. If the fixative was cool, the pro-

cess became even slower. It was later learned that fixatives that pene-

trated better and reacted more readily than buffered formaldehyde/

formalin fixatives markedly improved the detection.12 Once GnRH

antisera with high titres were produced or purified after production,

antigen detection improved further. Scientists could then distinguish

immunoreaction products and details of cell morphology. It is essen-

tial, however, that one considers the method selected for detection.

Methods that generate few molecules of product not only

require more antibody but may disable detection of structures with

lower expression. Comparisons of methods13 reveal the striking dif-

ferences in antigen detection, especially using immunofluorescence

approaches.

Early studies often assumed that the cells of the GnRH system

would be found in the MBH. Some may not have probed carefully

other brain areas or based their conclusions on assays of extracts that

showed high activity in the MBH, in virtually all species. Some

attempts to stain those cells had used an antibody later found con-

taminated by proopiomelanocortin antibodies. Arcuate nucleus (ARC)

stained cells ended up being opiate cells since the antibodies had

been repurposed after first immunizing the rabbits with pro-

opiomelanocortin peptides and not GnRH.14 As localization improved

it was realized that the high GnRH concentrations in the ARC were

due to the axons converging into the median eminence rather than

cells (if present in the area, the cells were often positioned lateral to

the ARC). Once descriptions of cell locations accumulated, locations

widely scattered in the forebrain seemed to contradict the notion that

neurons developed from the ventricular surfaces and migrated to their

final destination in a programmed fashion like most other CNS neu-

rons. GnRH neurons were different. Diverse species were found to

have GnRH neurons in different sites, and initially this made no sense.

It was then the seminal studies of Schwanzel-Fukuda and Pfaff15 and

Wray et al.15 both in 1989, that lit the light bulb indicating those neu-

rons developed from the olfactory placode unlike most neurons of the

central nervous system. That discovery also paved our way for under-

standing how genetic disorders of olfactory placode cell migration

linked anosmia to reproductive dysfunction (Kallmann's Disease).

Once the manner in which the olfactory system generated GnRH neu-

rons was uncovered15 we could better recognize that GnRH cells all

fell into a part of what we now know as the rostral migratory stream.

Table 1 shows site variation in a variety of species.16 Note there are

vast differences in the location of cells, ranging from small ganglia at

the interface of the olfactory nerve whose cells extended into the ros-

tral septum in the opossum,17 to the midbrain in primates and dogs.

Cells were positioned in the lateral anterior tuberal hypothalamus

(along the lateral borders of the ARC) in species where the forebrain is

vertically shifted (primates, sheep, ferrets and guinea pigs), whereas a
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dominance of medial POA and septal cells were found in rodents, cats,

hamsters, voles, and pigs. Nonetheless, there are a small number of

GnRH neurons in the latter group that migrate into the arcuate

nucleus and sometimes the pituitary stalk along with the axons from

more rostrally positioned neurons. While not yet known why the cells

move further along the migratory stream in some but not all species,

the association of the neuroendocrine members of the GnRH system

do seem to follow the known roads from the nose into the brain.16 A

feature of the GnRH cells that travel into more caudal brain areas is

that they often reside between rather than within the resident nuclei.

This phenomenon might be explained by the fact that in those ani-

mals, GnRH neurons arrive in those areas at the time when the nuclei

have already formed. For example, in the rat, migration of GnRH neu-

rons is completed by embryonic day 16.5,18 whereas at that time,

neurons of the medial POA have already left the mitotic cycle and

occupy their adult locations.19

The fact that the axons of GnRH neurons reached the pituitary

portal blood supply provided an opportunity for anatomy to reveal

which of the GnRH cells have the ability to influence the pituitary. In

the late 1980s and 1990, application of retrogradely transported mol-

ecules administered into the median eminence, and taken up by the

axons of the portal blood supply or injected into the peripheral circu-

lation, gave insight into which GnRH cells were potentially able to

release GnRH into the peripheral circulation (horseradish

peroxidase,20 wheat germ agglutinin,21 and fluorogold22,23). In all

those studies, only a portion of the GnRH neurons possessed the

tracer. The fact that some GnRH cells lacked connection to the

median eminence is noteworthy in that it stresses the fact that sub-

sets of GnRH neurons have a neuroendocrine role not shared by all

GnRH cells in the area. Comparisons across species speak to a similar-

ity of subsets of neuroendocrine GnRH cells in mice, guinea pigs,

sheep, and primates.

Scientists were then faced with the question of whether exam-

ining the GnRH neuron architecture could provide insight into the

transitions across reproductive status. Do the cells visibly change

during the transition to puberty or senescence? Overall, the data are

inconsistent and with high variation in the quality of staining. When

changes are observed, such as development of spines in rats during

adolescence as an indicator of the pubertal period, some of those

changes do not accurately reflect the functional status of the GnRH

cells24,25 but may instead reflect the capacity to cycle rather than

the actual presence of altered cyclic hormone function. In contrast,

studies in mice elegantly revealed that at the time of activation of

GnRH neurons spines were increased by 60% over quiescent

times.26 Studies of this type address the plasticity of spines on neu-

rons and emphasize the importance of knowing the details of the

animal's physiological status when probing for morphological

changes.

TABLE 1 Diversity of distribution of GnRH neurons in mammals. Note these data are derived from use of antibodies that appeared not to
stain truncated or modified forms of GnRH. Modified from Hoffman and Berghorn16

Septum Preoptic area Anterior hypothalamus Tuberal hypothalamus Premammalian

Rodents

Mouse ++ ++++ ++ +/� �
Hamster +++ ++++ + � �
Rat ++ ++++ ++ +/� �
Guinea pig + +++ ++ + �

Lagomorphs

Rabbit ++ +++ + + +

Chiroptera

Bat �/+ �/+ + ++++ �
Carnivores

Ferret �/+ + + ++++a �
Dog + ++ ++ ++ +

Cat + +++ ++ � �
Ungulates

Sheep ++ ++++ + + �
Pig ++ ++++ + � �

Marsupials

Opposum +/� � � � �
Primates

Rhesus monkey ++ ++++ +++ +++a +

Baboona ++ ++++ +++ +++a +

aLateral to the Arcuate nucleus.
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Where neuroanatomy has been valuable in reflecting functional

changes in the GnRH system arose from the observations that many

neurons, when stimulated, express immediate early gene proteins.

FOS is one of these proteins and has the advantage that it is

expressed within 30–45 min after the cells are stimulated. Fortu-

nately, the FOS protein is also highly conserved across species. The

induction of FOS is the consequence of sharp changes in second mes-

senger signals arising from synaptic activity. Baseline cell firing alone

often cannot reach the threshold for FOS induction. FOS has enabled

the identification of those GnRH neurons that give rise to the preovu-

latory LH surge in female rats, mice, sheep, and ferrets. In rats, taking

into account the time it takes for FOS translation (30–60 min), the

number of cells displaying FOS is tightly coupled to the rise in LH that

triggers ovulation.27 In these species FOS is not triggered by hormonal

signalling in males. This reflects the absence of the oestrogen-

sensitive cells driving GnRH secretion.28 Surprisingly, a study

attempting to show that FOS identified activated GnRH neurons in

primates during the preovulatory LH surge did not show evidence of

activation of the GnRH system.29 However, the primate LH surge per-

sists for days due to pituitary drive of LH. Also, since FOS will only

remain in stimulated cells for 2–3 h after onset of stimulation the fact

that the time of examination was not linked to the onset of LH secre-

tion could explain why the cells did not show signs of recent stimula-

tion. Indeed, examination of GnRH release from the median eminence

of cycling female rhesus monkeys showed a marked surge in GnRH at

the time of the preovulatory LH surge.30 What this reinforces is that

unless accompanied by careful monitoring of LH secretion at the

onset of LH surges, FOS can appear unreliable as an activity marker.

Another consideration is the fact that FOS induction does not persist,

but rather initial induction of second messenger signals turns on the

c-fos gene. FOS then appears to turn off its own mRNA production

and protein turnover stops the signal within a couple of hours even

when stimulation persists for days. Only after the system normalizes

can FOS be induced again. Repeated surges of LH if separated by

24 h permit the re-expression of FOS in the GnRH neurons.31 An

important problem unresolved for a long time was how GnRH

neuronal function enables GnRH pulsatile release at times other than

the preovulatory surge. Both males and females in multiple species

show pulses of GnRH and LH that are spaced between 30 and 60 min

apart. It has been suggested that pulses might simply represent the

random firing of two GnRH neurons, but the timing of pulsatile

release seems too regular for events to be random. Over the years it

has also been hypothesized that GnRH–GnRH synapses (axodendritic,

dendrodendritic) could link cell activity or that gap junctional

dendrodendritic connections suggested by Witkin et al.32 from inter-

cellular bridges could provide synchronous activity between GnRH

neurons. An additional explanation for the function of the dendritic

interactions could be ephaptic transmission but the diffuse organiza-

tion of the cells and challenge of knowing which cells should be

assessed have made it difficult to determine the nature of connections

that underlie the pulses. The interaction of cellular processes in GnRH

neurons is seen in both primates and rat and could be the result of

dendron or dendritic interactions in mice. Examples of dendritic asso-

ciations in a primate and a rat is presented in Figure 1.33 The advent

of genetic animal models expressing reporter proteins under the con-

trol of the GnRH promoter has since richly contributed to our under-

standing of the connectedness of GnRH neurons. As discussed in

detail below, the absence of electrical coupling between GnRH neu-

rons was initially reported in mice expressing GFP in GnRH neurons,34

and later confirmed in other reports.35 Evidence accumulated in

recent years now indicates that kisspeptin (KP) release from MBH KP

neurons which cosynthesize KP, neurokinin B (NKB) and dynorphin

(Dyn; aka “KNDy neurons”), plays a pivotal role in shaping the pat-

terned secretion of GnRH into the hypophysial portal circulation.36,37

Another challenge in the studies of the GnRH system is with little

doubt that while the male control of gonadotropin section is vastly

different from that of the female, scientists have found little evidence

of GnRH neuron sexual dimorphisms. In that domain, a major clue

arose from the fact that the alpha oestrogen receptor isoform (ER-α)

was essential for cyclic release of GnRH and gonadotrophins, but

GnRH neurons had no ER-α.38 Further investigation of oestrogen's

site of action led to the KP neurons which not only possess ER-α but

also display striking sexually dimorphic distributions.39

2 | SPECIES SPECIFIC GNRH
NEUROANATOMY: RODENTS

The first visualisation of GnRH neurons with immunohistochemistry

was reported in the guinea pig40 (reviewed in41) and described as a dif-

fuse distribution of bipolar neurons and their fibre processes through

the basal forebrain. Since that time, the distribution and morphology of

GnRH neurons has been described and studied most frequently in the

rat42,43 and mouse,44 but also in several other rodent and small mammal

species, for example the hamster,45–47 bat,48 and rabbit,49 and in larger

mammal species (see further below). In general, rodent GnRH neurons

are found dispersed throughout the septal, preoptic and anterior hypo-

thalamic areas.50 They are evident along a rostral to caudal continuum,

from the olfactory bulbs to the medial basal hypothalamus, following

F IGURE 1 Dendrodendritic interactions of GnRH neurons.
Intercellular bridges are seen between GnRH dendrites. (A) Examples
of dendritic processes from a rhesus monkey whose bridges between
immunoreactive GnRH neurons appear as fine ladders. (B) Example of
two intercellular bridges across GnRH neurons in a rat brain (red
circle). Figure reproduced from Hoffman33
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their developmental migratory path into the brain.15,18 In the rat and

mouse, the diffuse somata of GnRH neurons are frequently described

by three anatomical subpopulations, including a rostral most population

that is found to run in dorsoventral bilateral streams from the medial

septum to the rostral POA, a central population in an inverted Y distri-

bution around the organum vasculosum of the lamina terminalis

F IGURE 2 Transgenic approaches to reveal GnRH neuron morphology in the rodent brain. (A) A sagittal brain schematic depicts the scattered
distribution of GnRH neurons in a mouse brain (green dots). Coloured regions correspond to commonly referenced anatomical zones, that is, the
medial septal region (MS, blue), the rostral preoptic area (rPOA, pink) and the anterior hypothalamic area (AHA, yellow). Vertical lines indicate the
location of representative confocal images in the coronal plane of a GnRH-green fluorescent protein transgenic mouse (i–v). (B) GnRH neuron
spines can be visualised in confocal images of the GnRH-GFP mouse brain. Fixed labelled brain sections and following neurobiotin cell-filling in
ex vivo brain slices from GnRH-GFP mice. Bar = 10 μm. (C) Neurobiotin filling of GnRH neurons in GnRH-GFP muse brain slices reveals long
dendritic projections, found to bundle with other GnRH dendrites (D) and exhibit proximal and distal spiny protrusion (E). (F) An individual GnRH
neuron originating in the rPOA and terminating in the median eminence can be visualised through sparse viral mediated transfection of
membrane linked fluorophores in GnRH-Cre transgenic mice coupled with optical clearing techniques. Together with functional evidence, the
long dendritic processes of GnRH neurons that transition into axonal processes supports the presence of a blended dendron. Bar = 100 μm in
(A) and (C) and 10 μm in (B) and (E); fx: fornix, ac: anterior commissure, cc: corpus callosum. OVLT: organum vasculosum of the lamina terminalis,
3v: third ventricle, ME: median eminence, pit: anterior pituitary gland. Parts of figure adapted from Campbell51
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(OVLT), and a smaller lateral population that sits ventrally on both sides

of the third ventricle in the anterior hypothalamus (Figure 2A). While it

is not clear whether GnRH neurons residing in different locations pos-

sess specialised functions, a large proportion of those neurons sur-

rounding the OVLT colabel with the immediate early gene marker FOS

at the time of the LH surge in rodents,52 suggesting that this subpopula-

tion of neurons is particularly important in surge generation. GnRH neu-

ron axon processes in rodents can be visualised along the rostral to

caudal continuum of the GnRH neuron soma, extending into the OVLT

and densely infiltrating the external zone of the median eminence.

GnRH projections have also been described in a number of hypotha-

lamic and extra hypothalamic regions outside of this zone, including the

olfactory system, amygdala, limbic cortex and midbrain45,53,54

supporting the notion for extra-hypophysiotropic roles for GnRH neu-

rons as a central nervous system neurotransmitter.

Studies of GnRH neuron morphology in rodents, through both

classical and transgenic approaches, have advanced and challenged

our understanding of GnRH neuron function. Collectively, these ana-

tomical discoveries have formed a foundation for understanding how

GnRH neurons are regulated by upstream networks, behave across

different physiological states, and operate in a synchronized fashion

for pulsatile release.

2.1 | Distinct regulation zones

As the final downstream effector neurons driving the central regula-

tion of fertility, a large focus has been on understanding how GnRH

neurons are regulated by higher order inputs. Early ultrastructural

studies described GnRH neuron somata and proximal dendrites in sev-

eral species as largely ensheathed by glial membrane and very sparsely

innervated relative to surrounding neurons.42,46,55,56 These early stud-

ies promoted the idea that the integration of synaptic input required

for successful pituitary-gonadal axis control probably occurs upstream

from the GnRH neurons themselves. This idea has been both chal-

lenged and reframed with the development of new ways to visualise

GnRH neuron morphology and the discovery of the KP system.

Filling murine GnRH neurons in brain slices with low molecular

weight dyes57–59 or expressing membrane bound fluorescent markers

in small numbers of GnRH neurons in vivo60 has expanded our view of

GnRH neurons beyond regions limited by GnRH peptide detection

(Figures 2C–E). GnRH neurons have been found to extend exception-

ally long processes that possess dendritic morphology, suggesting large

anatomical zones important in receiving and processing afferent infor-

mation. Most GnRH neurons extend two of these long dendrites, and in

many cases, both project ventrally and caudally toward the median emi-

nence, with dorsally oriented dendrites frequently taking a hairpin turn

to follow other projection toward the median eminence.61,62 Labelling

for ankyrin G has identified the axon initiation zone in one of these

dendrites, typically 50–150 μm away from the soma.61 Histological evi-

dence for synaptic inputs places the majority of inputs within this den-

dritic zone between the soma and the axon initiation zone,58,61,63 and

quantification of apposed vesicular transporters suggests that

glutamatergic inputs are twice as likely as GABAergic inputs within this

zone.63 In addition, the number of putative synapses to the GnRH neu-

ron proximal dendrite drops precipitously beyond about 50 μm.58,63

These data suggest that although the GnRH neuron dendrite can

extend for millimetres through the mouse brain, there is still a concen-

trated area in the proximal dendrite where the majority of synaptic

input is received, at least at this “end” of the GnRH neuron.

Cell-filling and reporter expression in GnRH neurons also discov-

ered that as dendrites approach the ME, they branch into multiple pro-

cesses with axonal morphology that extend to and terminate on blood

vessels60,62 (Figure 2F). This was not entirely new, as early morphologi-

cal studies also described dendritic projections that appeared to transi-

tion into axonal projections.42 More recently, the blended dendritic and

axonal features of this process, have been confirmed with electrophysi-

ology and electron microscopy,62 and led to the term “dendron”
(reviewed in Herbison64). Morphological evidence suggests that this dis-

tal region of the GnRH neuron is much more densely innervated than

the proximal dendrite,60,65 and that synaptic inputs are restricted to the

dendritic portion of the dendron and absent from axons.60 Expansion

microscopy suggests that dendrons are also responsive to short-

diffusion volume transmission, as local KP-expressing axons do not

appear to make synaptic contacts with the dendron.66 Evidence for a

dendron-like structure has also been described in the rat,67 although

ultrastructural studies will be required to confirm this morphology.

The identification of these two distinct input zones, at opposite

poles of the GnRH neuron, has evolved alongside the discovery of

two distinct anatomical and functional populations of KP neurons in

the mouse. Selective viral-mediated tracing has identified that the

most rostral population of KP neurons, associated with surge genera-

tion, project most heavily to the proximal zone of GnRH neurons,

while the KNDy neurons of the ARC, the putative pulse generators,68

project exclusively to the distal zone.69 This morphology, supported

by functional evidence,65 suggests that the proximal zone is critical

for surge generation and the distal dendron is a separately regulated

domain critical for pulsatile GnRH secretion.

To date, evidence for a GnRH dendron-like process has only been

described in the mouse,62 and the rat67 and it remains unclear whether

the same feature is exists in other mammals. Of interest, the GnRH

neurons of the small brown bat, which have a distribution that is more

similar to the primate pattern than the rodent pattern, is described to

have one thin and one thicker process leaving the soma, both of which

give rise to fine varicose fibres.48 Presumably the thicker process is

dendritic in nature and the varicose fibres are axonal, describing a simi-

lar morphology to that seen in the mouse. Another clue that this feature

may be more universal comes from the ewe, where median eminence

explants are found to respond to KP,70 suggesting that distal GnRH

neuron elements are responsive to neurotransmission.

2.2 | Function-related morphological plasticity

Visualisation of rodent GnRH neurons has repeatedly demonstrated

morphological plasticity associated with changes in circuitry, function
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and physiological state. Morphological plasticity of the GnRH neuron

soma and proximal dendrite was suggested by early immunodetection

studies reporting somatic profiles of GnRH neurons as “smooth” or

“thorny.” These shape-types were found to vary with age and hormonal

status71–73 and with the number of ultrastructurally identified synaptic

inputs,42 suggesting that these ‘spines’ were presumptive sites of excit-

atory input, as in other neuronal populations.74,75 Later studies, using

transgenic mice and rats expressing green fluorescent protein (GFP) in

GnRH neurons,34,76–78 afforded an enhanced view of spine morphology

(Figure 2B) and found the density of these putative spines to increase in

several physiological states, including over pubertal development,79 in

FOS activated neurons at the time of the preovulatory LH surge,26 and

in association with hyperactivity in prenatally androgenised mice.80

Although the presence of these spines correlates with physiological

states in which greater synaptic inputs may be anticipated, and in some

case has been shown,81 there is currently limited evidence to support

that the spines identified on GnRH neuron soma or dendrites are

indeed sites of synaptic input or reflect morphological rearrangements

in synaptic inputs, in particular over the female oestrous cycle.63,82 In

contrast, seasonal breeders, including the ewe and hamster, have been

found to exhibit dramatic plasticity synaptic input density to GnRH neu-

rons.83 It remains unknown whether GnRH neurons in these species

possess spines similar to the rat and mouse and whether they exhibit

morphological plasticity. To date, all evidence for morphological plastic-

ity comes from the proximal input zone of the GnRH and it remains to

be determined whether morphological plasticity occurs in the distal

region of the dendron.

The nerve terminal zone of rat GnRH neuron axons has also been

well described to undergo morphological plasticity to facilitate

hypophysiotropic peptide release into the perivascular space.84 Ultra-

structural studies show GnRH nerve terminals in the external zone of

the median exhibit neuro-glial remodelling over the estrous cycle,

dependent upon the actions of semaphorin 7A expressed in local tan-

ycytes.85 Similar structural rearrangements have been shown in the

ewe between the breeding and anoestrus seasons86 and with altered

metabolic status.87

2.3 | Dendritic bundling: A morphology to support
synchronisation or simply a product of migration?

Ultrastructural evidence for closely associated GnRH neuron dendrites

and shared synaptic input (a single axon synapsing with two GnRH neu-

ron dendrites) was first described in rats in the mid 80s.88 More

recently, colabelling of biocytin-filled GnRH neurons and GFP in brain

tissue from GnRH-GFP transgenic mice also identified several examples

of these ‘bundled’ GnRH neuron processes, where the dendritic pro-

cesses of 2–4 distinct GnRH neurons were found intertwining and com-

ing in close contact with one another89 (Figure 2D). At the

ultrastructural level, these bundles are found frequently connected via

zonula adherens and contacted by shared synaptic input from single

afferents.89 While tempting to speculate that GnRH neurons are electri-

cally coupled via these close associations to support synchronised

activity, GnRH neurons do not express gap junctions.35 This suggests

that the main function of these bundles may serve as sites for efficient

innervation by upstream regulators, aimed at simultaneously targeting

several GnRH neurons. To date, these elements have only been

described for more proximal regions of the GnRH neuron dendrite and

it remains to be determined whether similar features exist in more distal

regions where pulse generation appears to be predominantly regu-

lated.65 While postulated as a potential morphological substrate for

synchronisation, an alternative hypothesis is that the bundling morphol-

ogy of GnRH neurons is a byproduct of early migration and dendritic

pathfinding. While dendritic bundling suggests a mechanism by which

the largely scattered rodent GnRH neurons can be in physical contact

with one another, it remains to be determined if or how this morphol-

ogy is important for GnRH neuron function.

3 | SPECIES SPECIFIC GNRH
NEUROANATOMY: SHEEP

Early work in the sheep provided some of the seminal observations

characterizing the morphology of GnRH neurons and their neuroen-

docrine functions. These include initial observations of the close,

intimate anatomical relationship of GnRH neurons with surrounding

glia, as well as evidence suggesting regional differences among

GnRH subpopulations in their activation during pulsatile versus

surge secretion of LH. In addition, because sheep are seasonal

breeders, they have provided a model demonstrating seasonal plas-

ticity of inputs onto GnRH neurons, work that has more recently

been extended into plasticity of specific sets of afferents. Finally, it

is worth noting that because of the unique ability in sheep to directly

monitor GnRH in portal blood in awake animals,90 it has been possi-

ble to directly correlate patterns of GnRH neuronal activity using

FOS and other markers with their neurosecretory output. In the fol-

lowing sections, we will briefly review some of these key observa-

tions, and how they formed a foundation and, in some cases,

presaged more recent findings.

3.1 | GnRH neuron morphology and projections
in sheep

Early immunocytochemical work using free-floating, unembedded sec-

tions, and including the use of detergent (Triton-X100) in processing,

revealed a complex morphology of GnRH neurons in the sheep brain,

with significant numbers of multipolar neurons91 in contrast to the

predominantly bipolar morphology of GnRH neurons in rodents (see

above). While the majority of GnRH neurons in the sheep were seen

in the POA, smaller but significant numbers were seen more caudally

in the anterior hypothalamus and MBH.91,92 Subsequent tract tracing

studies in sheep,93 similar to such studies in rodents, showed that

despite the regional variation in GnRH cell number, the percentage of

GnRH cells in each area projecting to the median eminence remained

consistent across regions, suggesting that GnRH neurons in all areas
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were capable of controlling the release of pituitary LH. Perhaps the

most remarkable observation of these early studies in sheep was the

degree to which GnRH cells, unlike adjacent non-GnRH neurons, were

found to be almost entirely ensheathed by the processes of adjacent

astrocytes.94 Afferent axon terminals were seen to penetrate this glial

sheath before synapsing upon preoptic GnRH somata and dendrites.94

This observation set the stage for subsequent studies of plasticity of

inputs to ovine GnRH neurons, related to neuroendocrine control by sea-

son86 as well as alterations in the adult GnRH system due to prenatal

androgen treatment.95 Interestingly, it also complemented work in

rodents documenting the loose functional relationship between glial and

GnRH cells in sexual maturation, including recent demonstration of

mechanisms by which GnRH neurons “recruit” astrocytes in postnatal

development to ensure appropriate wiring and firing of GnRH neurons.96

3.2 | Seasonal plasticity of the GnRH system in
sheep

Sheep and other seasonally breeding mammals display a reversible

annual cycle of fertility in which GnRH neurons are the critical, final

common output controlling reproduction. In sheep and most other

mammals, the key factor responsible for seasonal reproduction is a

profound change in the ability of estradiol to inhibit pulsatile secretion

of GnRH.97 The early recognition that GnRH neurons in sheep and

other species lacked nuclear ER-alpha,98 the isoform required for

oestradiol's negative feedback influence, implied that the influence of

estradiol must be conveyed to GnRH via afferents. Given the striking

degree of glial ensheathment of GnRH cells in the sheep, it was logical

to compare the ultrastructure and synaptic inputs of GnRH neurons

between the breeding and nonbreeding (anoestrous) animals as a pos-

sible structural basis for seasonality. The results of an incredibly

labour-intensive, electron microscopic analysis revealed that GnRH

neurons in the breeding season received more than twice the density

of synaptic inputs onto their dendrites and somas.86 These changes in

synaptic density were complemented by a reciprocal change in the

amount of glial ensheathment of GnRH cells, with cells in anestrous

animals being more completely surrounded by glial processes. Impor-

tantly, both the changes in synaptic input and glial ensheathment

were only in GnRH cells and not in adjacent nonidentified neurons in

the POA. Later studies provided details of the neurochemical pheno-

type of the seasonally changing inputs,99 including work showing

increased number of KP, and decreased GnIH, contacts into GnRH

neurons during the breeding season.100 This demonstration of sea-

sonal plasticity in the GnRH system also provided a conceptual foun-

dation for other studies documenting changes in the number and

phenotype of afferents onto adult GnRH neurons, including studies of

changes associated with the preovulatory GnRH/LH surge,101 and

long-term changes seen as a result of prenatal androgen exposure in

female sheep.95,102 Finally, seasonal synaptic changes in the reproduc-

tive neuroendocrine system of sheep are not limited to GnRH neu-

rons, but also seen in inputs onto upstream afferent neurons, notably

KNDy cells of the ARC.103 Upstream changes in the number and den-

sity of synaptic inputs onto KNDy cells are also seen in prenatally

androgenized ewe95,102 and prenatal androgen mouse104 models of

polycystic ovary syndrome (PCOS).

3.3 | Functional subpopulations of GnRH neurons
in sheep

As discussed above, when used in conjunction with monitoring of

secretory LH patterns, FOS has been a useful marker for GnRH neu-

ron activation in a number of species. This has been particularly true

in the sheep, where discrete and repeated measurements of portal

GnRH are possible over long periods of time in unanaesthetized ani-

mals.90 Indeed, the ability to precisely monitor the dynamics of GnRH

pulses and surge has allowed for examination of the activation of

GnRH and other upstream neurons (e.g., KNDy neurons) during both

pulsatile105,106 and surge secretion.92,101,107 Whereas about half of all

GnRH neurons across the entire range of their distribution, including

the POA and MBH, expressed FOS during the preovulatory LH

surge,107 using two models that acutely induced an LH pulse, FOS

expression was seen to be limited to GnRH cells located in MBH.105

Interestingly, in the latter experiment, the occurrence of endogenous (not

induced) LH pulses was also accompanied by FOS activation in MBH but

not POA GnRH neurons.105 More recent work in the sheep has

reinforced the view that MBH GnRH neurons are functionally involved in

pulse generation. First, unlike POA GnRH cells, they are heavily inner-

vated by Dyn terminals108 presumably arising from KNDy neurons which

constitute a core component of the GnRH pulse generator.36 In addition,

recent work using internalization of kappa opioid receptor as a marker

has shown that Dyn is released onto MBH, but not POA, GnRH neurons

at the time of the termination of each GnRH pulse.103 Thus, at least in

sheep, there is strong evidence for the most caudal subpopulation of

GnRH neurons in the MBH being selectively involved in pulsatile secre-

tion, perhaps in parallel to actions at the GnRH “dendron”, also located in

the MBH, as a locus of pulse regulation in rodents.

4 | SPECIES SPECIFIC GNRH
NEUROANATOMY: PRIMATES

While the bulk of the neuroanatomical literature is available from

rodents and ruminants, immunohistochemical and in situ hybridization

experiments on monkeys and humans have revealed some interesting

species-specific anatomical characteristics of the GnRH neuronal sys-

tem in primates. Results of these studies may become particularly use-

ful for the understanding of the central regulation of human fertility

and its disorders. This chapter aims to highlight some unique features

of primate GnRH cells.

4.1 | Presence of two GNRH genes in the primate
genome

Reproduction in nearly all mammals is controlled by the mammalian

form of GnRH decapeptide (mGnRH) encoded by the sole GNRH1
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gene. Unlike laboratory rodents, primates contain a second GNRH

gene (GNRH2) in their genome.109 This gene is inactivated in the

orangutan and the chimpanzee, whereas it remains fully functional in

rhesus monkeys, humans and several other primates.109 In situ hybrid-

ization studies of the macaque brain localized GNRH2 mRNA

expressing neurons in the midbrain, hippocampus and the hypotha-

lamic supraoptic, paraventricular and suprachiasmatic nuclei and the

ARC.110 The oestrogenic induction of GNRH2 expression in this spe-

cies raised the intriguing possibility that, in some primates, GnRH-II

neurons may contribute to oestradiol-positive feedback and the

midcycle preovulatory LH surge.110 We note that the biosynthesis of

the functional GnRH-II peptide in mesencephalic and hypothalamic

neurons of the rhesus monkey brain still awaits confirmation.110 Map-

ping the distribution of GNRH2 expressing neurons in the human brain

remains an interesting challenge for future research. The following

sections will focus on the neuroanatomy of the primate GnRH-I

system.

4.2 | GnRH neuron development in primates

As reported for different mammals, GnRH neurons in primates

develop in the olfactory placodes and migrate to the brain prena-

tally.18 The detailed spatiotemporal profile of this migration in the

human embryo has been characterized recently by the Giacobini labo-

ratory.111 These authors confirmed the existence of a ventral migra-

tory pathway also known in other species which carries �2,000

neurons to the developing human hypothalamus to regulate reproduc-

tion after puberty. In addition, they discovered and reported a second

dorsal route previously known only in monkeys112 whereby �8,000

neurons migrated toward extrahypothalamic structures of the human

brain.111 It is currently unclear where these neurons finally settle and

whether they survive into adulthood. Interestingly, it has only been

established recently that the number of extrahypothalamic GnRH

neurons in the adult human brain is much higher than 8,000

(104,000–229,000 in different brain samples),113 suggesting that the

majority of extrahypothalamic GnRH neurons in humans might be

brain-born, instead of originating from the olfactory placodes.113

4.3 | Topography and morphology of GnRH
neurons in the primate hypothalamus

The majority of the anatomical studies in the primate brain used immu-

nohistochemistry to localize GnRH neurons.113–119 Perikaryon distribu-

tion in monkeys and humans was found to be even looser than in

rodents. The large hypothalamic volume contains cell bodies from the

septal-preoptic to the retromammillary region. GnRH neurons were

reported within the preopticoseptal region, diagonal band of Broca,

lamina terminalis, periventricular and infundibular nuclei and the mam-

millary region.115,116,119,120 Some investigators observed a few cell bod-

ies in the ventromedial nucleus.118 Unlike in laboratory rodents, the

OVLT contained relatively few GnRH cells.119 Morphologically, the

majority of GnRH neurons in primates are fusiform and bipolar, with

two processes emanating from the opposite poles of a thin

soma116,119,121 (Figure 3A). A smaller subpopulation are multipolar, with

triangular or rounded cell body.118–120 GnRH neurons were found to be

considerably larger in adult human males (37� 14 μm) and in rhesus

F IGURE 3 Hypothalamic and extrahypothalamic GnRH neurons
of the adult human brain. (A) Hypothalamic GnRH neurons regulating
reproduction are typically fusiform. In 1 mm-thick slices made
transparent with the 3DISCO clearing technology, lengthy GnRH
dendrites can be followed occasionally for several millimetres.
Dendrites may represent the main cellular compartment receiving
afferent inputs. (B) Kisspeptin-immunoreactive inputs to GnRH
neurons (turquoise) from the infundibular (arcuate) nucleus convey
information about circulating sex steroid levels. High-power insets
show orthogonal views of a neuronal apposition. (C) Unlike rodents,
humans contain hundreds of thousands of GnRH-immunoreactive
(red) neurons in extrahypothalamic brain regions. The dendritic tree of
GnRH cells in the putamen can be visualized post mortem using the
lipophilic dye DiI (shown in white) delivered to the sections with the
aid of a Gene Gun. Labelled GnRH neurons exhibit smooth surfaced
dendrites and correspond to a subpopulation of cholinergic
interneurons immunoreactive to choline acetyltransferase (ChAT;
blue). Scale bar: 20 μm in (A) and (C), 16 μm in (B) (insets: 5 μm).
Photograph courtesy of Dr Katalin Skrapits, Institute of Experimental
Medicine, Budapest
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monkeys (28� 12 μm) than in bats (16 � 9 μm) or rats (16 � 6 μm).50

Information about the fine structure of primate GnRH neurons is lim-

ited to the subcellular compartments visualized with immunohisto-

chemistry, in the absence of efficient cell filling and 3D neuronal

reconstruction techniques to study dendritic arborization, filopodia,

spines and network connectivity.

Rance and coworkers analysed the distribution of human GnRH

neurons with in situ hybridization. Based on perikaryon size and label-

ling density, they classified GNRH1 mRNA expressing neurons into

three main categories.122 The highest levels of GNRH1 mRNA signal

were observed in small oval or fusiform (“type 1”) GnRH neurons in the

medial basal hypothalamus, ventral POA and periventricular zone. These

cells probably correspond to the bulk of hypothalamic GnRH neurons

detectable with immunohistochemistry.119 Interestingly, in situ hybridi-

zation also revealed thousands of additional “type 2” and “type 3”
GNRH1 mRNA expressing neurons at various extrahypothalamic sites

of the human brain.122

4.4 | GnRH fibre projections

As described in different species,50,123 several circumventricular organs,

including the ME, the OVLT and the subfornical area, receive input from

GnRH neurons in primates.50,116,120 As shown in monkeys, POA as well

as MBH GnRH neurons contribute to the neuroendocrine regulation of

the pituitary because both populations can be labelled by microinjection

of retrograde tracers into the median eminence.117 The anatomical

route of neurosecretory GnRH fibres in primates shows some impor-

tant species-specific features. Accordingly, the median eminence con-

taining the neurohemal junction is positioned rostral to the infundibular

stalk in laboratory rodents, whereas it is postinfundibular in primates.124

In humans, some neuroendocrine GnRH cell bodies can be more than a

centimetre away from this site. Further, neuroendocrine GnRH axons

all terminate within the external zone of the median eminence in

rodents, whereas a considerable subset enter the infundibular stalk and

some travel all the way down to the neurohypophysis in pri-

mates.50,121,125 In humans, these descending GnRH fibres are accompa-

nied and occasionally contacted by other peptidergic fibres containing

KP, NKB and Substance P (SP).126 GnRH secreted from these processes

may have access to adenohypophysial gonadotrophs via the short por-

tal veins.125 Neuroendocrine GnRH projections outside the blood–brain

barrier are exposed to blood-born substances which also explains the

mechanism whereby systemic KP injection causes prompt LH secretory

responses also in humans.127

Presence of nonhypophysiotropic GnRH fibres in the

habenula, amygdala, hippocampus and around the mamillary

bodies50,115,119,120,128 indicates that GnRH also serves as a neuro-

transmitter at hypothalamic and extrahypothalamic sites. This non-

neuroendocrine role is supported by the electron microscopic demon-

stration of symmetrical synapses between GnRH-immunoreactive

axons and GnRH-immunoreactive perikarya and dendrites in mon-

keys129 and by light microscopic evidence for direct contacts between

GnRH containing axons and SP neurons in humans.130

4.5 | Afferent regulation

Various neurotransmitter systems contributing to the neuronal regula-

tion of human GnRH neurons have been reviewed recently.131 Neuro-

peptides detected previously with light- or confocal microscopy in

afferent contacts to GnRH perikarya and dendrites include

neuropeptide Y, SP, galanin, corticotropin releasing hormone, KP

(Figure 3B), NKB, endorphins, enkephalins, Dyn, RF-amide related

peptides, GnRH, orexins and melanin concentrating hormone.131–133

The incidence of such contacts is region-dependent and, as a general

tendency, higher to GnRH neurons in the infundibular versus the

POA.132 Similarly, GnRH neurons in the ARC of monkeys receive

higher numbers of synapses than those in the POA.134 The number of

appositions is also sex- and age dependent. GnRH neurons receive

more KP-immunoreactive and NKB-immunoreactive appositions in

aged versus young men135 and in postmenopausal women versus

age-matched middle aged/aged men.136 It would be difficult to deter-

mine if these differences reflect the anatomical plasticity of afferent

connections or simply a better detectability of higher antigen levels in

aged individuals due to lower sex steroid and negative feedback

levels.

The cell bodies and proximal dendrites of GnRH neurons in differ-

ent species receive relatively few classical synapses, as also demon-

strated with electron microscopy in monkeys.134 The number of

synapses decreases following ovariectomy and can be restored by ste-

roid replacement.134 These observations somewhat contrast with the

opposite changes in the number of KP and NKB contacts detected on

human GnRH neurons with light microscopy136 and also imply that

synaptic specializations may often be absent from peptidergic afferent

contacts.

In addition to various neuropeptides, fibres innervating human

GnRH neurons contain the classic neurotransmitters histamine, cate-

cholamines, γ-aminobutyric acid and glutamate.131,132,137,138

A substantial proportion of neuronal inputs may target the dendritic

compartment of primate GnRH neurons, as it was proposed in mice.

While the putative existence of “dendrons” in primates needs to be

established, GnRH neurons possess lengthy dendrites which are likely

to receive and integrate a substantial number of synaptic signals. The

primary importance of dendritic inputs is supported by the observation

that 75%–80% of the orexin- and melanin concentrating hormone-

containing afferents target the dendritic rather than the somatic com-

partment of human GnRH cells.133 Similarly, each 100 μm dendritic seg-

ment receives similar numbers of light microscopic GABAergic and

glutamatergic appositions as does the human GnRH perikaryon.139

4.6 | Paracrine regulation of GnRH fibres

Many thin GnRH-immunoreactive processes in the primate hypothala-

mus show the typical appearance of varicose axons and this fibre phe-

notype becomes dominant around the human portal capillaries of the

median eminence and in the neurohypophysis.126 Nonsynaptic com-

munication between KP and GnRH fibres within the median eminence
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was proposed to represent the primary mechanism whereby endoge-

nous KP regulates GnRH neurons in monkeys140 and similar

axoaxonal contacts were detected later in the human median emi-

nence and hypophysial stalk.126

4.7 | GnRH neuron cotransmitters in primates

Although little is currently known about the classical and peptide

neurotransmitters of primate GnRH neurons, existing species dif-

ferences deserve some discussion. Galanin, which is cosynthesized

in a sexually dimorphic and oestrogen-dependent manner in GnRH

neurons of rats,141–143 seems to be absent from human GnRH neu-

rons.144 Similarly, while GnRH neurons of rats exhibit immunoreac-

tivity to γ-aminobutyric acid prenatally145 and the glutamatergic

marker type-2 vesicular glutamate transporter (VGLUT2) in

adulthood,146 earlier studies using confocal microscopy failed to

reveal amino acid neurotransmitters or the more readily detectable

vesicular amino acid transporter markers139 in human GnRH

neurons.

Somewhat unexpectedly, a large subset (�35%) of hypothalamic

GnRH neurons in the adult human brain was found to be immunore-

active to the cholinergic phenotype marker choline acetyltransferase.

The cholinergic phenotype, which has not been reported in other spe-

cies yet, develops prenatally after human GnRH neurons enter the

brain and is typical both in hypothalamic and extrahypothalamic

GnRH neurons.113

4.8 | Ovarian oestrogen signalling to primate
GnRH neurons

Oestrogen feedback in primates appears to involve a stronger pitu-

itary component than in laboratory rodents. For example, a study

using graded oestrogen infusion to postmenopausal volunteers,

followed by 18FDG positron emission tomography, came to the

conclusion that positive estrogen feedback takes place dominantly

in the pituitary, whereas negative feedback on LH is primary hypo-

thalamic.147 Another study using diffusion MRI and MR spectros-

copy techniques identified transient microstructural and metabolic

changes in the human female hypothalamus (but not in the thala-

mus) following the withdrawal of a combined low-dose oestrogen-

progesterone treatment. This treatment paradigm is thought to

serve as a model for hypothalamic plasticity during negative feed-

back in the early follicular phase of the menstrual cycle.148

Reduced oestrogen levels in postmenopausal women cause robust

neuronal hypertrophy of estrogen-sensitive neurons in the human

infundibular region; hypertrophied neurons are devoid of GnRH

mRNA.149 Although a subpopulation of human GnRH neurons are

immunoreactive to the beta oestrogen receptor isoform,150

oestrogen feedback to GnRH neurons is likely to be primarily indi-

rect, in accordance with the conclusion drawn from results in

other species.

The hypothalamic ARC (also called infundibular nucleus in the

human) has long been known as the primary site of sex steroid feed-

back in primates. The loss of estrogens in postmenopausal women

causes the hypertrophy of neurons expressing ER-α,149 SP,151

NKB,151 KP152 and proDyn153 in this area. The homologous “KNDy”
neurons (expressing KP, NKB and Dyn) are thought to be important

players of negative oestrogen feedback and GnRH/LH pulsatility in

other species, but some primate-specific characteristics deserve to be

mentioned. First, human KP neurons exhibit a unique pattern of neu-

ropeptide colocalization. Differences from their rodent KNDy neuron

counterparts include presence of SP and cocaine- and amphetamine

regulated transcript and absence of Dyn and galanin in human KP

neurons.154 Second, the human KP system exhibits an unusually

robust sexual dimorphism and aging-dependent plasticity, as reviewed

recently.155 Third, while the somatodendritic compartment of GnRH

neurons in mice receives only sparse innervation from KNDy neurons

of the MBH,156 at least �10%–30% of the KP input to human GnRH

neurons originates from this site.135,157

Positive oestrogen feedback to GnRH neurons in rodents if

thought to be accounted by KP neurons located in the rostral per-

iventricular area of the third ventricle mediate These neurons contain

estrogen receptors, innervate GnRH neurons, express FOS during the

LH surge and are substantially more numerous in females than in

males.158 Surgical isolation of the MBH in rhesus monkeys did not

prevent spontaneous ovulation and the oestrogen-induced LH surge,

giving support to the prevailing view that this region accounts for pos-

itive oestrogen feedback in primates.159,160 The POA/rostral hypo-

thalamus of humans and monkeys contains KP cell groups which

anatomically resemble the homologous rodent neurons.155,161,162

These cell groups may also contribute to positive feedback because

they exhibit increased FOS immunoreactivity163 and KISS1 mRNA

expression164 in response to a surge-inducing oestradiol regimen in

monkeys. Further, KISS1 also seems to be regulated positively by

oestrogens in the human rostral hypothalamus, which was concluded

from the reduced number of KP-immunoreactive neurons after

menopause.161

4.9 | Functional networking of GnRH neurons

The rhythmic LH secretory bursts from the anterior pituitary requires

a coordinated secretory activity of GnRH neurons. Although the

mechanisms underlying this coordination are still not entirely under-

stood, regulation of neurosecretory GnRH preterminals/terminals by

volume transmission may play an essential role in this process also in

primates.

Classical synapses interconnecting GnRH neurons in nonhuman

primates129 may also contribute to the synchronized secretion of a

larger GnRH neuron population. Frequent axosomatic and

axodendritic contacts were also reported between human GnRH neu-

rons.119 Witkin et al. described an unusual syncytium-like connection

of neighbouring GnRH neurons in which GnRH-GnRH contact sites

appeared to exhibit cytoplasmic confluence at the ultrastructural
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level.32 Equivalent to this could be the end-to-end dendritic continuity

observed between close pairs of GnRH neurons at the light micro-

scopic level.119 Somewhat against the idea of cytoplasmic continuity

is the lack of evidence for dye coupling between murine GnRH neu-

rons during their studies with slice electrophysiology. We note that

the resolution of light- or confocal microscopy in most anatomical

studies on the primate GnRH system was unable to visualize inter-

twined dendrites and dendritic bundles similar to those described in

mice.165

4.10 | The extrahypothalamic GnRH neuron
population of primates

While GnRH neurons in adult laboratory rodents are located nearly

exclusively in septal, anterior hypothalamic and preoptic areas and

subserve functions related to reproduction, a handful of anatomical

studies on primates identified large numbers of additional GNRH1

mRNA expressing and/or GnRH immunoreactive neurons at

extrahypothalamic sites not related closely to reproductive regulation.

These sites included several basal ganglia, the basal forebrain and the

amygdala.112,118,122,166,167 Initial interest toward these cells some-

what decreased because extrahypothalamic GnRH neurons in the

developing monkey brain could not be immunostained with all GnRH

antibodies and they also showed immunoreactivity to meta-

lloendopeptidase which can cleave GnRH at the Tyr5-Gly6 posi-

tion.166 These observations raised the possibility that

extrahypothalamic GnRH neurons of primates contain the GnRH deg-

radation product GnRH1-5, instead of the bona fide GnRH

decapeptide.

Recently the Hrabovszky laboratory has provided a more compre-

hensive characterization of extrahypothalamic GnRH neurons located

in the human basal ganglia and basal forebrain113 which correspond

to the large and round “type 3” neurons expressing intermediate

levels of GNRH1 mRNA between the heavily labelled “type 1” neu-

rons of the hypothalamus and the lightly labelled small, oval “type 2”
neurons reported previously in the septum, dorsal POA, bed nucleus

of the stria terminalis and amygdala.122 Immunohistochemical studies

combined with stereology revealed that these regions contain

150,000–200,000 GnRH-immunoreactive neurons. 82% of labelled

cells were observed in the putamen, 5.5% in the accumbens nucleus,

4.9% in the caudate nucleus, 3.5% in the basal nucleus of Meynert,

1.8% in the globus pallidus, 1.3% in the ventral pallidum and 0.8% in

the bed nucleus of the stria terminalis.113 The neurons were detect-

able with a series of different GnRH and GnRH-associated peptide

antibodies and high performance liquid chromatography/tandem mass

spectrometry (HPLC-MS/MS) analysis of putamen extracts revealed

presence of the GnRH decapeptide and its dominance over its degra-

dation product GnRH1-5. These studies established that

extrahypothalamic GnRH neurons express the cholinergic marker cho-

line acetyltransferase and correspond to subsets of previously known

cholinergic interneuron populations in the putamen and cholinergic

projection neurons in the basal nucleus of Meynert113 (Figure 3C).

The functional significance of GnRH cosynthesis in cholinergic

systems is difficult to study in the absence of appropriate rodent

models. Deep transcriptome profiling of cholinergic interneurons and

spiny projection neurons, which represent main target cells of the for-

mer, established that the GNRHR1 transcript is only expressed in cho-

linergic interneurons. Therefore, at least in the human putamen,

GnRH appears to act on GnRHR1 autoreceptors to regulate higher

order nonreproductive functions.113

5 | UNRESOLVED QUESTIONS AND
FUTURE RESEARCH OPPORTUNITIES

Comparative and complementary neuroanatomical approaches across

mammalian species have led to a greater understanding of how GnRH

neurons orchestrate reproductive function. While rodent models pro-

vide a wealth of readily available transgenic neuroscience tools that

can be harnessed, sheep models have the advantage of being able to

couple neuroanatomical findings with GnRH secretion dynamics and

seasonal reproductive function, and primates may be our best models

of the human condition. Ongoing neuroanatomical research across all

of these species is required if we are to fully understand GnRH neu-

ron biology.

Over the past two decades, we have seen technical advances in

transgenics, viral mediated transduction tools, tissue clearing and

expanding methods and image analysis tools that have revolutionised

our ability to assess information about GnRH neuron anatomy and

network connectivity. Transgenic expression of GFP,34,76–78,168 or

Cre recombinase38,67,169 in rodent GnRH neurons has been instru-

mental in visualising regions of the GnRH neuron that are difficult to

detect with antibodies detecting GnRH peptide alone and for driving

the expression of circuit tracing and functional measurement tools in

a cell-specific way. In addition to enabling visualisation, GnRH neurons

expressing fluorescent markers have provided the opportunity to sort

and isolate the hypothalamic GnRH neuron populations in the postnatal

brains of both mice170 and rats.96 The expression of calcium indicators

has enabled researchers to visualise the activity of GnRH neuron ele-

ments in real time and in situ.67,171–174 Tissue clearing and advanced

microscopy methods in rodents, sheep and primates have made it possi-

ble to visualise whole GnRH neurons in detail and whole GnRH neuron

populations in situ throughout the brain.60,111,175 While we have learned

a great deal through these advances over the past several decades,

many important questions remain to be answered that will probably

require additional technological advances. Below are just some of the

remaining questions that will be interesting to target going forward.

1. Is the dendron described in rodents a universal feature of mamma-

lian GnRH neurons? The ability to visualise and functionally assess

the rodent dendron is currently dependent upon transgenic

approaches that enable visualising or targeting individual GnRH

neurons. Will transgenic approaches or other methodologies

become available that will allow us to visualise the full extent of

individuals GnRH neurons in other species?

12 of 18 CAMPBELL ET AL.



2. What is the role of extrahypothalamic GnRH signalling? While it is

known that GnRH neurons across species possess subpopulations

of nonhypophysiotropic cells and that GnRH neurons project to

several brain regions outside of the median eminence, the role of

central GnRH signalling is largely unknown. Can functional neuro-

science tools such as opto- or chemogenetics help us to identify

the roles of these extrahypothalamic pathways?

3. Do GNRH2 neurons play an essential role in the regulation of fer-

tility in primates? To date, hypothalamic GNRH2 neurons were

only studied with in situ hybridization in Rhesus monkeys. The

estrogenic regulation of their GNRH2 mRNA expression raises

the intriguing possibility that these cells contribute to the regula-

tion of mammalian fertility in humans and some other primates.

4. How does transcriptome plasticity of GnRH neurons regulate

reproductive physiology and pathology? Newly available single-cell

RNA-seq technologies open the way for deep transcriptome profil-

ing of GnRH neurons from laboratory animals and even from post

mortem human brains.

5. Can in vivo monitoring of cellular activity be engineered across

species? The advances in nanotechnology and genetic modification

enable following neurons, dendrites, and spines in living organisms.

Extension of these approaches to GnRH systems in multiple spe-

cies could fill the gaps in our knowledge of species-specific differ-

ences in GnRH regulation.
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