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Abstract

Pseudouridine is one of the most abundant RNA modifications, occurring when uridines are 

catalyzed by Pseudouridine synthase proteins. It plays an important role in many biological 

processes and has been reported to have application in drug development. Recently, the single-

molecule sequencing techniques such as the direct RNA sequencing platform offered by Oxford 

Nanopore technologies have enabled direct detection of RNA modifications on the molecule 

being sequenced. In this study, we introduce a tool called Penguin that integrates several machine 

learning (ML) models to identify RNA Pseudouridine sites on Nanopore direct RNA sequencing 
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reads. Pseudouridine sites were identified on single molecule sequencing data collected from 

direct RNA sequencing resulting in 723K reads in Hek293 and 500K reads in Hela cell lines. 

Penguin extracts a set of features from the raw signal measured by the Oxford Nanopore and 

the corresponding basecalled k-mer. Those features are used to train the predictors included 

in Penguin, which in turn, can predict whether the signal is modified by the presence of 

Pseudouridine sites in the testing phase. We have included various predictors in Penguin, including 

Support vector machines (SVM), Random Forest (RF), and Neural network (NN). The results 

on the two benchmark data sets for Hek293 and Hela cell lines show outstanding performance 

of Penguin either in random split testing or in independent validation testing. In random split 

testing, Penguin has been able to identify Pseudouridine sites with a high accuracy of 93.38% 

by applying SVM to Hek293 benchmark dataset. In independent validation testing, Penguin 

achieves an accuracy of 92.61% by training SVM with Hek293 benchmark dataset and testing 

it for identifying Pseudouridine sites on Hela benchmark dataset. Thus, Penguin outperforms 

the existing Pseudouridine predictors in the literature by 16 % higher accuracy than those 

predictors using independent validation testing. Employing penguin to predict Pseudouridine 

revealed a significant enrichment of “regulation of mRNA 3’-end processing” in Hek293 cell line 

and positive regulation of transcription from RNA polymerase II promoter involved in cellular 

response to chemical stimulus in Hela cell line. Penguin software and models are available on 

GitHub at https://github.com/Janga-Lab/Penguin and can be readily employed for predicting Ψ 
sites from Nanopore direct RNA-sequencing datasets.
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1. Introduction

Pseudouridine (abbreviated by the Greek letter Ψ) is one of the most abundant RNA 

modifications, occurring when uridines (part of RNA chains) are catalyzed by Ψ synthase 

proteins. Ψ is an isomer of the nucleoside uridine in which the uracil/ pseudouracil is 

attached via a carbon-carbon instead of a nitrogen-carbon glycosidic bond [1]. In other 

words, Ψ is considered as the C5-glycoside isomer of uridine that contains a C-C bond 

between C1 of the ribose sugar and C5 of uracil/pseudouracil, rather than usual C1-N1 bond 

found in uridine. The C-C bond makes the Ψ isomer flexible to interconverts through free 

rotations about formally single bond [2]. Moreover, Ψ has an extra hydrogen bond donor at 

the N1 position [3].

Ψ plays an important role in many biological processes such as stabilizing RNA through 

enhancing the function of transfer RNA and ribosomal RNA [4]. The modification of 

uridine to Ψ has been observed in nearly all kinds of RNA, including but not limited to 

tRNA (transfer RNA), and mRNA (messenger RNA). Ψ has also important roles in drug 

development and response to various stresses [5].

Despite improvements in experimental technologies, chemical methods developed to detect 

Ψ sites remain both time-consuming and expensive. For example Ψ can be mapped 

Hassan et al. Page 2

Methods. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Janga-Lab/Penguin


by chemical conversion with N-cyclohexyl-N-(2-morpholinoethyl) carbodiimide metho-p-

toluenesulphonate (CMC), which then blocks reverse transcription (Ψ-seq or pseudo-seq 

[4,6]). Ψ-seq detected 89 and 353 modified mRNA transcripts in different human cell lines. 

However, the number of sites identified with Ψ-seq is low compared with the spread of 

Ψ reported by mass spectrometry (MS) methods, and the overlap between the different 

studies is very modest. Another method employing a chemical pulldown enrichment step 

for Ψ (N3-CMC-enriched Pseudouridine sequencing, CeU-seq) recognized 1929 modified 

mRNAs, but whether most of these sites were missed by Ψ-seq or are false positives has not 

been yet determined [7]. Therefore, there is increasing evidence supports the need to address 

this problem using novel unbiased experimental approaches or via computational biology 

methodes.

In contrast to experimental methods, computational biology methods were introduced in 

the literature to predict Ψ sites utilizing RNA short read sequencing data. Those methods 

rely on developing Machine Learning (ML) or Deep Learning (DL) algorithms to identify 

RNA Ψ sites [8–14]. However, the existing computational biology methods in the litrature 

rely on genomic information for predcting RNA Ψ sites and they can’t be used to predict 

Ψ sites on single molecule of RNA. Moreover, they are unable to predict Ψ sites on 

RNA long read sequencing data. In addition, the performance results of the later group of 

computational methods are quite low. For example, ML models (PPUS and iRNA-PseU) 

have used support vector machine (SVM) as the ML classifier for predicting RNA Ψ 
sites in multiple species. PPUS used the nucleotides around Ψ as features for training 

the SVM, while iRNA-PseU model used the chemical properties of nucleotides and their 

occurrence frequency density distributions as features for training the SVM classifier. 

However, it was found that the performances of PPUS and iRNA-PseU can be improved 

by introducing another a computational biology method called PseUI for predicting Ψ sites 

based in RNA short reads sequence of multiple species [10]. This was done by generating 

five different kinds of features based on RNA segments including nucleotide composition, 

dinucleotide composition, pseudo dinucleotide composition, position-specific nucleotide 

propensity, and position-specific dinucleotide propensity. Then, a sequential forward feature 

selection strategy was used to gain the most effective subset of features. This subset of 

features was used to train the SVM classifier that can identify Ψ sites in the testing phase. 

Another research attempt introduced a deep learning model called iPseU-CNN (identifying 

pseudouridine by convolutional neural networks) [11] that identified Ψ sites from RNA 

samples by producing a real value equal to each input single RNA sequence, where the 

input is represented by a one-hot vector with four channels A, C, G, and U. However, there 

were XGBoost-based ML model, called XG-PseU that was developed in [12] to identify Ψ 
sites and outperformed iPseU-CNN. This model used the optimal features obtained using the 

forward feature selection together with increment feature selection method for training the 

XGBoost model. Another ML model called iPseU-NCP was introduced in [13] to predict Ψ 
sites on RNA sequences and outperform the performance of deep learning model presented 

by iPseU-CNN. It used the Random Forest (RF) algorithm combined with the nucleotide 

chemical properties (NCP) generated from RNA sequences. The optimal hyper-parameters 

of this model were determined through an exhaustive search over a specified grid of 

parameter values for the RF classifier using 5-fold cross-validation. Moreover, the RF model 
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was used again in a model called RF-PseU [14] that performed also better than previous 

models for predicting RNA Ψ sites in multiple species. It used light gradient boosting 

machine algorithm and incremental feature selection strategy for selecting the optimum 

feature space vector for training the RF model.

Recently, the third-generation sequencing technologies such as the platform provided by 

Oxford Nanopore Technology (ONT) have been proposed as a new means to detect RNA 

modifications using long read RNA sequence data. However there were few research 

attemptes that used this technology to identify Ψ sites in RNA sequence data [15,16]. For 

example in [15], the authors developed a tool called nanoRMS that used the characteristic 

base-calling “error” signatures in the Nanopore data as features for training a supervised 

or unsupervised learning models to make them able to identify the stoichiometry of Ψ site 

using a threshold for base mismatch frequency in different types of RNAs in yeast. However, 

nanoRMS was not applied to predict Ψ sites in the RNA sequence of human cell lines 

which are more complex and larger than yeast. Also, the single read features used to train 

the predictors of nanoRMS were averaged before Ψ prediction making it not feasible to 

obtain the contribution of each feature in predicting Ψ sites. As an extension to the same 

research direction, authors in [16] developed a tool called NanoPsu to address the limitations 

of nanoRMS by applying their tool to predict Ψ sites in direct RNA sequence that consists 

of a mixture of rRNAs from human, yeast, Caenorhabditis elegans, Drosophila, and from 

human fecal bacteria. However, the RNA samples used in NanoPsu were not all sequenced 

using Nanopore technology as half of them were sequenced using the Illumina sequencing. 

To this end, our work aims to extend the research direction in [15,16] by introducing a 

tool called Penguin that integrates several developed ML models (predictors) to identify Ψ 
sites in Nanopore direct RNA sequencing data of human cell lines based on some features 

extracted from the Nanopore signals.

Penguin extracts a set of features from the raw signal of Oxford Nanopore RNA Sequencing 

reads and the corresponding basecalled k-mers. Those features are used to train the 

predictors included in Penguin, which in turn, can predict whether the signal is modified 

by the presence of Ψ sites. The features extracted by Penguin include: the signal length, 

some signal statistical features including the mean and standard deviation of the signal, and 

one-hot encoding of reference k-mers produced from aligning Nanopore events/signals to 

a reference genome using the eventalign module in Nanopolish, a software for Nanopore 

signal analysis [17].

2. Materials and Methods

2.1 The pipeline of Penguin

The complete pipeline of Penguin is composed of various components/blocks (Figure 1). 

Penguin takes the fastq reads file that is generated from basecalling the fast5 files using any 

basecalling software (e.g., guppy, albacore, scrappy), and a reference genome as inputs. The 

fast5 files produced by ONT device are used to store the output of Nanopore sequencers 

and contains the raw electrical signal levels that come off the sequencers. Using both inputs 

to Penguin, the SAM file is created from the alignment stage, where the fastq reads file 

is aligned to reference genome to create this file. Next, using the produced SAM file and 
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a provided BED file [18] - a file that highlights the target modified locations from the 

whole genome, the tool can create a coordinate file with ids of fast5 files that have the 

target modification. Next, the tool launches the Nanopolish software that performs signal 

extraction in two steps in order to produce a dataset of Nanopore signal samples. The first 

step takes the fast5 files folder as an input and index all files in that folder. The second step 

takes the fastq reads file of the indexed fasts5 files, the sorted bam file (a sorted compressed 

version of the SAM file that is created using samtools software [19]), and the reference 

genome as inputs and run Nanopolish eventalign module on these inputs to generate a 

dataset of Nanopore signals.

Next the signal samples that are related to Ψ modification are filtered from the samples 

generated from signal extraction. Using the information in the coordinate file some of the 

filtered samples will be labeled as modified and the remaining will be labeled as unmodified, 

as will be described later. Next some features will be extracted from those modified and 

unmodified samples which are fed to one of Penguin’s machine learning classifiers in the 

training phase. Using those features the classifier will be able to predict the modification 

sites in the testing phase. The details of each Penguin component will be described in the 

next subsections.

2.2 Cell Culture

Culturing the cells is where we extract cells from an animal and let it grow in an artificial 

environment [20]. Cell culture Hek293 and Hela cell line were purchased from ATCC cell 

line collection, cultured in DMEM media supplemented with 10% FBS and 0.5% penicillin/

streptomycin and grown at 37°C for 24–48hrs.

2.3 RNA library preparation and Nanopore RNA sequencing

The libraries that we used were prepared following Nanopore Direct RNA sequencing 

kit documented protocol (SQK-RNA002). Briefly, total RNA was isolated using Qiagen 

RNeasy Mini Kit (Cat No. /ID: 74104), followed by PolyA enrichment using Thermo Fisher 

Dynabeads™ mRNA DIRECT™ Micro Purification Kit (61021). 500 ng of poly (A) RNA 

was ligated to a poly (T) adaptor using T4 DNA ligase. Following adaptor ligation, the 

products were purified using Mag-Bind® TotalPure NGS Beads (M1378–00), following 

NGS bead purification protocol. Sequencing adaptors preloaded with motor protein were 

then ligated onto the overhang of the previous adaptor using T4 DNA ligase followed by 

NGS bead purification protocol. The RNA library was eluted from the beads in 21 μl 

of elution buffer and quantified using a Qubit fluorometer using the manufacturer’s RNA 

assay. The final RNA libraries were loaded to FLO-MIN106 flow cells andrun on MinION. 

Sequencing runs and base calling were performed using MinKNOW software (Oxford 

Nanopore Technologies Ltd.), a software that controls the MinION Nanopore sequencing 

device. Therefore, once we extract the RNA from the cells during library preparation, we 

put it through the MinION device and start generating signal data. Nanopore is a small pore 

in MinION device that is used to create signal on biological molecules that pass through it. 

The MinION is one of the Nanopore sequencing devices and it can read both DNA and RNA 

signals. When a strand of DNA or RNA goes through the pore it disrupts a membrane and 

Hassan et al. Page 5

Methods. Author manuscript; available in PMC 2023 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



creates a current that is measured by the device [21]. The output of the device is a fast5 file 

or files. These files contain the raw signals of the DNA or RNA reads.

The data output from MinKNOW for Hela cell line was 800k sequence reads using one 

flow cell. MinKnow generates data as pass and fail folders. FAST5 files from pass folder 

were again base called using Albacore 2.1.0 (Oxford Nanopore Technologies Ltd.) resulting 

in 723K single molecule reads for Hek293 and 500K single molecule reads for Hela cell 

line which corresponded to full length transcripts ranging from 50b to 8kb. The directRNA-

sequencing data generated for Hek293 and Hela cell lines in this study is publicly available 

on SRA, under the project accession PRJNA685783 and PRJNA604314 respectively.

2.5 Basecalling, alignment and mapping

There are several basecallers such as scrappy, albacore, guppy and many more [22]. The 

basecaller uses algorithms to determine what base is being passed through the Nanopore. 

Some fast5 files may or may not contain sequence information, so the basecallers can 

provide this information for us. The median length of RNA reads of Hek293 obtained by 

basecalling is 574 base pairs and the Inter Quartile Range (IQR) range is 371 to 886 base 

pairs. Similarly, the median length of RNA reads of Hela obtained by basecalling is 548 

base pairs and the IQR range is 404 to 854 base pairs. Also, the Phred quality scores of the 

reads of Hek293 and Hela cell lines were 8.7 and 8, respectively. Once we have the sequence 

information, we align the sequence to a reference genome using Minimap2 [23]. Aligning a 

sequence is just mapping the sequence to a certain location in the genome. It could be in any 

of the chromosomes and this information is saved to the SAM file. The alignment rates of 

the RNA reads of Hek293 and Hela cell lines were 87.31% and 95.33%, respectively.

2.6 Identifying Pseudouridine modified /unmodified coordinates

For a gold standard set of modified locations we use a BED file containing Ψ RNA 

modification locations that have been mentioned and verified in literature, for two cell 

lines: Hela and Hek239. These Ψ RNA modification locations have been obtained from 

publicly available databases such as Darned [24], RMBase [25], and from two primary 

literature sources [4,26]. These modifications are also available in an internal database site 

for RNA modifications called Epitomy [27] that is used to search for RNA modification 

locations. Penguin uses these Ψ RNA modified locations imported from Eoitomy to verify 

its prediction accuracy of Ψ sites. The imported Ψ BED file used by Penguin has 27839 

Ψ genomic locations for Hek293 (Supplementary File 1_Hek293.bed) and 320 Ψ genomic 

location for Hela (Supplementary File 2_Hela.bed).

2.7 Raw signal extraction

The Nanopore direct RNA sequencing holds a great advantage in identifying RNA 

modifications at single base resolution by the interpretation of ONT raw signals ( i.e., 

events or “squiggles”) plotted over time that are corresponding to modified and unmodified 

base sequence contexts. To this end, the basic functionality of Penguin aims to exploit the 

difference in the raw signal between modified and unmodified bases in order to predict 

Ψ sites in RNA sequence. Thus, the signal extraction phase plays an important role in 

achieving Penguin functionality. For this phase, we use Nanopolish [28], the ONT analysis 
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software. In particular, the eventalign module [29] of Nanopolish is used to extract the raw 

Nanopore signals and get some of its corresponding features such as the mean, standard 

deviation and length of the signal. In order to achieve this, eventalign first aligns events to 

a reference genome, so the low-level signal information can be obtained. Such information 

can be used to discover the differences in the current that might lead to base modifications. 

We refer to Nanopolish manual for more information about the Nanopolish pipeline for 

signal analysis [39].

2.8 Benchmark datasets generation

Two different benchmark datasets were generated for Hek293 and Hela cell lines, 

respectively (Supplementary Tables 1_training_hek.xlsx and 2_training_hela.xlsx). In order 

to generate these datasets, we considered the output of eventalign module from Nanopolish 

(where eventalign was run on the basecalled sequence reads of each cell line) to build 

associations between sequence and signal instances. In order to label the data, we filtered all 

samples that have a U base in the middle of the model k-mer (one column in eventalign 

output that refers to basecalled k-mers resulting from inferring RNA sequence reads 

from Nanopore signals formulated by eventalign), which is the target base for identifying 

Ψ modification. Next, we found the intersection between their position column on the 

reference genome and the position in the coordinate file (generated from Ψ BED file and 

SAM file for each cell line). This intersection represented the positive samples, while 

the remaining samples were considered as negative samples. In the end, we obtained 

a total of 13072 k-mer samples that have a U/ Ψ base in the middle: 6536 positive 

and 6536 negative samples (after sub-sampling the negative samples which were very 

huge in comparison with postive ones) for Hek293. Similarly, we obtained 1354 samples: 

677 positive and 677 negative samples for Hela cell line. We observed that there is a 

total of 255 different model kmer combinations out of the possible 256 combinations, 

captured in the modified and unmodified signals in Hek293 training data (Supplementary 

Tables 3_training_model_kmer_freq_hek.xlsx) and a total of 216 different model kmer 

combinations captured in the modified and unmodified signal dataset in Hela training data 

(Supplementary Tables 4_training_model_kmer_freq_hela.xlsx).

2.9 Feature extraction

Each generated benchmark dataset has 4 columns that represent four features that were 

used for training the machine learning models that we developed and integrated in the 

Penguin platform. Those features were extracted by picking 4 columns from the evenalign 

output (Supplementary File 3.txt) (namely: reference_kmer, mean, stdv, and length of event) 

and used for training the constructed ML classifiers of Penguin. Those columns refer to 

the k-mers generated from aligning events to a reference genome, the mean, the standard 

deviation, and the length of each extracted signal, respectively.

2.10 ML Models construction

We have developed several machine learning models and integrated them into Penguin’s 

platform including the SVM [31], RF [32] and NN [33]. Those algorithms have been used 

extensively to address several problems in bioinformatics research [34], [35], [36]. The 

radial basis function kernel (rbf) was used in SVM training. The gamma parameter was set 
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to ‘scale’ and the default value of C parameter was used. For RF, the seed number was set 

to 1234 and the number of trees was set to 30. As for NN, a two hidden layers NN was 

implemented. The number of neurons (nodes) was 12 in the first and 8 in the second. The 

‘Adam’ optimizer with a learning rate of 0.001 was used, the number of epochs were set to 

150, and the batch size was set to the length of training set.

We have used the scikit-learn toolkit [37], the free machine learning python library to 

implement the SVM and RF models, while Keras [38], a neural network python library with 

tensorflow [39,40] back end was used to implement the NN model.

2.11 Feature importance

As for deep analysis of the features that contribute mostly to the performance of machine 

learning model that does Ψ site identification, we have reported about the importance of 

each feature thorugh training and testing each developed ML model of Penguin with each of 

the four extracted features that were described in sec 2.9. This is acheived by buliding five 

versions of the ML model applied to each benchmark dataset. In the first four versions, each 

developed ML model was trained with one of the four extracted features, while in the fifith 

version each model was trained with the combination of all four features.

2.12 Random test splitting

In this approach, we randomly divided the benchmark datasets into two folds: one for 

training and the other for testing. The test_size was set to 0.2 meaning that 80% of the 

benchmark dataset was used for training the model and 20% of the dataset was kept for 

testing the model.

2.13 Test with independent cell line

In this approach, the two benchmark datasets were separated by cell line, one was used for 

training and other was used for testing.

2.14 Evaluation metric

We have used the accuracy (Acc), precision, recall, and the area under the curve (AUC) 

[41] as metrics to evaluate the performance of penguin predictor. Below we introduce the 

mathematical equation for the first three metrics:

ACC = TP + TN
TP + FP + FN + TN (1)

precision = TP
TP + FP (2)

recall = TP
TP + FN (3)

where:
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• TP stands for true positive and refers to the number of correctly classifed 

Pseudouridine sites.

• FP stands for false positive and refers to to the number of non Pseudouridine 

sites that were misclassified as Pseudouridine sites.

• FN stands for false negative and refers to the number of Pseudouridine sites that 

were misclassified as non Pseudouridine sites

• TN stands for true negative and refers to the number of correctly classifed non 

Pseudouridine sites.

3. Results

We have used the two validation methods: the random-test splitting and the test with 

independent cell line introduced in Section 2 for evaluating the performance of each 

predictor in Penguin platform using the metrics that we just mentioned in the previous 

section. In the following we present the performance results that we have got using each 

method.

3.1 Performance evaluation with random-test splitting

Table. 1 shows the performance of Penguin ML models that are available on its GitHub page 

using the extracted 4 features introduced in Section 2 from the benchmark dataset of Hek293 

cell line. Clearly, SVM achieves the best performance in terms of accuracy ( 93.38%), while 

RF achieve best precision ( 0.98), while SVM and NN achieve the best recall (0.95).

The learning curve of SVM, RF, and NN (see Figure 2, panels A,B, and C respectively) 

show the performance of SVM and NN in terms of accuracy score outperforms that of RF. 

Also we used receiver operating characteristic (ROC) which plots the true positive rate on 

the vertical coordinate versus the false positive rate on the horizontal coordinate. The ROC 

curve of SVM, RF and NN (see Figure 3 A,B and C) show that the percentage of true 

postive rate to the fasle positive rate in case of SVM and NN is more that of RF.

3.1.1 Performance results using single type of feature—Table 2 shows the 

performance of ML models with random test-splitting on Hek293 benchmark dataset in 

terms of accuracy with single type of feature among the four extracted features introduced in 

Section 2.

Clearly, the one-hot encoding of reference_kmer contributes more to the classifier’s 

accuracy than other features for all classifiers. It is by followed by mean, standard deviation, 

and the length for SVM and RF. In case of NN, the standard deviation and length swap 

places. Based on the results in Table 2, one would wonder why we do not use the one-hot 

encoding feature alone for prediction and avoid using features extracted from the signal as 

the former leads to a classification accuracy equal to that when using the combination of 

four features in case of SVM and outperforms the classification accuracy of combination 

in case of RF and NN. However, using onehot encoding feature alone is not useful when 

predicting new location of Ψ sites that have not seen before. Also the extracted signals 

are still needed even if their features are not contributing to the performance as one-hot 
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encoding feature. This is because without signals extraction we can’t get the model_kmer 

that is needed to filter the samples in eventalign output that address the target modification.

3.2 Performance against independent cell line

Table 3 shows the performance of ML models against an independent cell line. (i.e., with 

independent test dataset), where Hek293 cell line benchmark dataset is used for training 

penguin’s predictors and Hela cell line benchmark dataset is used for testing them, using all 

the extracted features. We currently only include SVM and NN models on Penguin GitHub 

and execlude the RF model as it acheives very low performance against independent cell line 

(below 50% accuracy). Clearly as shown in Table3, NN outperforms SVM. However, SVM 

is more stable as it achieves reproducable results, while NN performance results changes 

from run to run though all NN results are still high (above 93% accuracy). See the learning 

curves of SVM and NN (Supplementary Figure 1 and Figure 2 respectively) and ROC 

curves of SVM and NN (Supplementary Figure 3 and Figure 4, respectively).

3.2.1 Performance results using single type of feature—Table 4 shows the 

performance of ML models against independent cell line in terms of accuracy with single 

type of feature. As in the cross-validation model, the one-hot encoding of reference_kmer 

contributes more to the classifier accuracy than other features. It is followed by length, 

standard deviation, and mean.

4. Abundance of Ψ sites

In order to identify the abundance of Ψ sites in the single molecule transcriptomes of 

either Hek293 or Hela cell lines, we first ran Penguin’s best performing machine learning 

model (i.e., SVM as it achieves very high performance and reproducible results over all 

runs) on the complete RNA sequence reads of Hek293 and Hela cell lines. Then, we 

identified all U-mer samples predicted as Ψ sites in those reads. Next, we identified the 

number of Ψ unique genomic locations, as well as their frequencies (number of reads 

that support Ψ modification) in both the cell lines. We found that there are 6137606 

U-mer samples predicted as Ψ U-mers from a total of 67491289 U-mers in the complete 

direct RNA-sequencing dataset of Hek293 cell line, with 556813 unique genomic locations 

corresponding to Ψ modifications (Supplementary Table 5_ps_unique_genomic_locations 

_hek.xlsx)1. Similarly, we found that there are 1193191 U-mers predicted as Ψ 
U-mers from a total of 229637931 U-mers in the complete dataset of Hela cell 

line, with 39384 unique genomic locations corresponding to Ψ sites (Supplementary 

Table 6_ps_unique_genomic_locations _Hela.xlsx). The model kmers corresponding to 

Ψ predictions in Hek293 and Hela cell lines can be identified as strong kmers in 

comparison with the model kmers corresponding to the unmodified/control U-mers, which 

can be considered as weak contributors to the Ψ prediction. Supplementary Tables 

7_ps_model_kmer_freq_hek.xlsx and 8_ps_model_kmer_freq_Hela.xlsx). summarize the 

frequency of various model kmers corresponding to Ψ predictions in Hek293 and Hela 

cell lines, providing an overview of their abundance. Comparison of the unique genomic 

1U-mers samples are rows (with U in the middle of their reference kmers column) in the eventalign output that corresponds to the 
result of aligning the events (signals or squiggles) of RNA sequence of a specific cell line to a reference genome.
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locations of Ψ in both cell lines for overlapping sites/genomic loci, resulted in 6482 unique 

genomic locations of Ψ that are common between both cell lines (Figures 4.A). We also 

found 7148 modified Ψ site containing genes that are common/overlapped between both cell 

lines. We observed 15.8% overlap between the top 1% frequently modified Ψ genes between 

the Hela and Hek293 cell lines (Figures 4.B).

We noticed that the extent of Ψ modification (the number of U-mers samples predicted as 

Ψ samples to the total number of U-mer samples in the complete RNA sequence of the cell 

line) in RNA sequences of Hek293 cell line is much greater than its counterpart for Hela 

cell line (9% for Hek293 versus 0. 5 % for Hela cell line). This is due to the existence of 

more modified Ψ genes with extensive Ψ locations in the complete RNA sequence reads 

of the Hek293 cell line compared to the number of modified Ψ genes with fewer unique Ψ 
locations found in the complete RNA sequence reads of the Hela cell line. Therefore, the ψ 
distribution across normalized gene length for Hek293 cell line is larger than its equivalent 

in Hela cell line (Figures 4.C).

5. Functional enrichment analysis

To investigate the potential functional role of Ψ modification in RNA, we performed 

functional enrichment analysis for the most frequently modified Ψ genes (top 1%) across 

Hek293 and Hela cell lines. A total of 159 genes from Hek293 and 90 genes from Hela cell 

lines were identified to have the most abundance of Ψ RNA modification. The short-listed 

genes from both cell lines were plugged into Cytsoscape ClueGo [42] application to obtain 

enriched ontologies and pathways at high confidence (p<0.05). Enrichment observations 

from this analysis are visualized in Figure 5.

From the functional enrichment analysis of the gene set form Hek293 cell line, we observed 

a wide range of functional processes like (as seen in Figure 5A): “protection from natural 

killer cell mediated cytotoxicity”, “T cell mediated cytotoxicity”, “glucokinase activity”, 

“histone H3 acetylation”, “type I interferon signaling pathway”, and “regulation of mRNA 

3’-end processing” being significantly enriched (adjusted p-val < 0.0013). Essentially 

highlighting the diverse regulatory role of Ψ modification, from its involvement in cell 

immune signaling to mRNA 3’-end processing.

In Hela cell line, we observed several high confidence (adjusted p-val < 0.0014) enriched 

ontologies that were more representative of Ψ modification role in cellular development and 

homeostasis via post-transcriptional regulation (as seen in Figure 5B): “regulation of cardiac 

muscle tissue development”, “cellular transition metal ion homeostasis”, “positive regulation 

of transcription from RNA polymerase II promoter involved in cellular response to 

chemical stimulus”, “SNARE complex”, “Zinc ion transport”, and “endoplasmic reticulum 

organization”.

6. Usage of Penguin

Penguin tool is implemented in python 3.x and the tool has to be run on Linux environment 

by running the following command from Penguin main directory on the user’s local machine 

after cloning the code from Penguin GitHub repository:
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python main.py -r ref.fa -f reads.fastq

Where the penguin tool needs the following two inputs files when running it:

• The absolute path to the reference Genome file (ref.fa)

• The absolute path to fastq reads file (reads.fastq)

Once the user runs the penguin tool main file, then the tool pipeline (Figure 1) that accepts 

the aforementioned inputs will start execution and the user will be asked to enter the bed file 

name with the absolute path and extension that is needed to generate the coordinate file that 

is needed for labeling the U-mers Nanopore signals samples as modified and unmodified 

ones. Next, the tool will extract the raw Nanopore signals from the input fast5 file(s) as well 

as extracting some of its corresponding features that are used later to train the three different 

machine learning models (SVM, RF, and NN) integrated in Penguin platform for predicting 

Ψ sites in direct Nanopore RNA sequence. More extensive usage guide with all the required 

software that should be installed before running penguin is available on Penguin GitHub 

README file.

7. Discussions and Conclusion

In this study, we have proposed a new tool called Penguin that represents a complete 

pipeline for predicting Ψ sites from direct Nanopore RNA sequencing datasets. We note 

that our proposed tool outperforms the existing non-Nanopore tools for Ψ sites prediction 

in the literature [8–14] in terms of accuracy. However, we found the comparison between 

penguin and those tools does not make sense in terms of implementation, but it makes 

sense in terms of accuracy. This is because those tools were only applied to predict Ψ sites 

in short reads of RNA sequences, while ours can predict Ψ sites on long reads of RNA 

sequencs. As for comparison of the performance of Penguin with Nanopore based tools for 

Ψ sites prediction such as nanoRMS [15] and NanoPsu tools [16] that are developed for 

predicting Ψ sites from direct RNA sequencing data, we found that nanoRMS was only 

tested on predicting Ψ in direct RNA sequences of yeast and it was not tested on predicting 

the Ψ sites on direct RNA sequencing data of human cell lines which are more complex 

than lower eukaryotes like yeast. In addition, the single read features used to train the 

predictors of nanoRMS were averaged before Ψ prediction, making it not feasible to obtain 

the contribution of each feature in predicting Ψ sites. Hence, it is not possible to directly 

compare the accuracy of the tool on human cell line data. Since only the accuracy values 

of predicting the stoichiometry of Ψ for each read and no other performance statistics such 

as precision and recall are reported in nanoRMS study, we can only compare the average 

of the accuracy values using KNN (the best supervised classifier employed in nanoRMS) to 

the accuracy of predictors distributed in Penguin. Based on this comparison, we conclude 

that the accuracies of different ML models employed in Penguin significantly outperform 

the average accuracy of KNN (66.8%), the best supervised predictor employed in nanoRMS. 

As for NanoPsu predictor, it was reported about its performance in identifying Ψ sites in 

terms of AUC (Area Under The Curve) and ROC curve, but the accuracy of prediction, 

precision and recall were not explicilty mentioned in the study. So currently it is not possible 
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to directly compare the performance of the Nanopore based Ψ prediction tools against a 

controlled and common dataset of eukaryotic transcriptomes.

It was also observed that generating direct RNA sequence data for Hela and Hek293 cell 

lines in our study allows us for generating two Ψ benchmark datasets for the respective 

cell lines. This in turn allowed Penguin to predict Ψ sites on RNAsequence of independent 

cell line which is superior to the standard single dataset benchmarking in which training, 

and testing occurs on the same benchmark dataset. This also helped in obtaining biological 

results from performing functional enrichment analysis for the most frequently modified 

Ψ genes (top 1%) across both cell lines. These biological results can be observed for 

a wide range of functional processes in Hek293 and Hela cell lines. In Hek293, it 

essentially highlights the diverse regulatory role of Ψ modification, from its involvement 

in cell immune signaling to mRNA 3’-end processing, while in Hela it was observed 

that Ψ modified genes were enriched for several high confident (adjusted p-val < 0.0014) 

ontologies associated with cellular development and homeostasis.

We expect that Penguin will become a useful tool for accurate identification of Ψ sites in 

direct RNA sequencing datasets of human genome and other species. Penguin platform can 

be also adopted for predicting other types of RNA modifications.

With the improvement of Nanopore sequencing protocols and Nanopore basecalling 

algorithms, we anticipate improved accuracies in read mapping and Nanopore signal 

association in the upcoming years. Such an improvement in addition to the parallel 

development of deep learning models for Nanopore basecalling could contribute to refine 

the basecalling models which would result in more precise accuracies of RNA modification 

prediction tools such as Penguin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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HIGHLIGHTS

• Penguin integrates several Machine learning models (i.e., predictors) to 

identify RNA Ψ sites in Nanopore direct RNA sequencing reads.

• The pipeline of penguin automates the data preprocessing including Nanopore 

direct RNA read alignment using Minimap2, and Nanopore signal extraction 

using Nanopolish, feature extraction from raw Nanopore signal for training 

ML predictors integrated in its platform, and the prediction of RNA Ψ sites 

with those predictors.

• Penguin outperforms the state-of-the-art Ψ prediction methods in accuracy.

• Penguin framework can be adopted to be used for predicting other types of 

RNA modifications.

• Only a small fraction of 0.01% (6482 unique genomic locations) of Ψ sites 

were detected to be common (overlapped) between both Hek293 and Hela 

cell lines.

• The extent of Ψ modifications (the number of U-mers predicted as Ψ sites to 

the total number of U-mers in the complete set of RNA sequences of the cell 

line) in Hek293 cell line is much higher than its counterpart for Hela cell line 

(9% for Hek293 versus 0.5 % for Hela cell line).
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Figure 1. 
The complete pipeline of Penguin showing various steps including: RNA sequencing 

of a HEk293 cell line, basecalling, alignment and mapping, identifying Ψ sites and 

corresponding coordinates from training data, the raw signal extraction by Nanopolish 

eventalign module, the feature extraction from signals that address Ψ modification, machine 

learning model development and validation, and single molecule Ψ prediction.
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Figure 2. 
The learning curve for each of Penguin’s predictors and a bar chart of the performance 

evaluation using Hek293 cell line benchmark dataset with random test splitting showing the 

(a) learning curve of SVM (b) learning curve of RF (c) learning curve of NN (d) bar chart of 

the precision, recall, and AUC of Penguin’s developed ML classifiers.
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Figure 3. 
The ROC curve for each of Penguin’s machine learning models using Hek293 cell line 

benchmark dataset with random test splitting showing (a) The ROC curve of SVM (b) The 

ROC curve of RF (C) The ROC curve of NN.
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Figure 4. 
Plots showing (a) Venn diagram summarizing the overlap between unique Ψ locations 

predicted in complete Hek293 and Hela cell lines (b) Venn diagram showing the overlap 

between top frequent 1 % modified Ψ genes in Hek293 and Hela cell lines (c) Density plots 

representing ψ distribution across normalized gene lengths for Hek293 and Hela cell lines.
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Figure 5. 
Functional enrichment analysis of most frequenlty Ψ modified genes across (a) Hek293 cell 

line and (b) Hela cell line, visualizing high confident (p-val<0.05) set of ontologies and 

pathways potentially associated with Ψ RNA modification. Cliques clustered by functional 

grouping of the GO-terms based on GO hierarchy using Cytoscape ClueGO application. 

Size of the nodes are representative of the significance of the association with respect to 

genes per GO-term.
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Table 1:

The performance of Penguin’s predictors on Hek293 benchmark dataset with random-test splitting using all 

four extracted features.

Classifier accuracy (%) precision recall AUC

SVM 93.38 0.92 0.95 0.933

RF 84.59 0.98 0.72 0.852

NN 93.35 0.92 0.95 0.932
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Table 2:

The performance of Penguin’s predictors on Hek293 benchmark dataaset in terms of accuracy with random 

test-splitting using single type of feature.

Classifier Mean Stdv Length One-hot Encoding Combination

SVM 69.33 61.87 51.81 93.38 93.38

RF 69.17 61.49 50.86 87.92 84.59

NN 67.34 46.46 47.53 93.42 93.35
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Table 3:

The performance of Penguin’s predictors against independent cell line using all extracted features.

Classifier accuracy (%) precision recall AUC

SVM 92.61 0.91 0.94 0.926

NN 95.35 0.92 1.00 0.953
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Table 4:

The performance of Penguin’s predictors against independent cell line using single type of extracted features.

Classifier Mean Stdv Length One-hot Encoding Combination

SVM 39.22 40.99 51.62 95.35 92.61

NN 32.94 37.59 51.18 95.35 95.42
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