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SUMMARY

Mutations are acquired frequently, such that each cell’s genome inscribes its history of cell 

divisions. Common genomic alterations involve loss of heterozygosity (LOH). LOH accumulates 

throughout the genome, offering large encoding capacity for inferring cell lineage. Using only 

single cell RNA sequencing (scRNA-seq) of mouse brain cells, we found that LOH events 

spanning multiple genes are revealed as tracts of monoallelically expressed, constitutionally 

heterozygous single nucleotide variants (SNVs). We simultaneously inferred cell lineage, marked 

developmental time points based on X-chromosome inactivation and the total number of LOH 

events, while identifying cell types from gene expression patterns. Our results are consistent with 

progenitor cells giving rise to multiple cortical cell types through stereotyped expansion and 

distinct waves of neurogenesis. This type of retrospective analysis could be incorporated into 
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scRNA-seq pipelines and, compared to experimental approaches for determining lineage in model 

organisms, is applicable where genetic engineering is prohibited, such as humans.

Graphical Abstract

eTOC blurb

Relying solely on scRNA-seq analysis, Anderson et al. retrospectively infer cell type based on 

gene expression, reconstruct lineage through detection of acquired LOH events, and temporally 

mark developmentally ordered cell clades from the timing of X-chromosome inactivation in 

females, at single cell resolution during mouse brain development.

INTRODUCTION

Developmental biology addresses how a single cell, through a repertoire limited to cell 

division, migration, differentiation, and death, matures into a multicellular organism. A 

milestone involved determination of the embryonic cell lineage of C. elegans (Sulston et 

al., 1983). However, mapping cell lineage in vertebrates remains daunting because there 

are more cells, more types of cells, longer lifespans, opaque tissues, and, unlike C. elegans 
lineage differs between individuals.

A cell’s descendants can be identified by labeling it with a dye or transgenic marker 

(Garcia-Marques et al., 2021). Still, the correspondence between clonally related cells and 
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their lineage is ambiguous. For example, >1042 different possible lineages can describe 

a clone of just 32 cells (Salipante and Horwitz, 2007). A massive capacity for uniquely 

labeling cells is therefore required to resolve lineage.

One approach to map lineage is to retrospectively infer the sequence of mutations acquired 

in single cells (Carlson et al., 2011; Frumkin et al., 2008; Ju et al., 2017; Lee-Six et al., 

2018; Lodato et al., 2015; Ludwig et al., 2019; Salipante and Horwitz, 2006; Spencer 

Chapman et al., 2021). In fact, brute force sequencing of single cell genomes enables lineage 

tracing (Behjati et al., 2014).

Recently, engineered recorder systems, such as GESTALT (McKenna et al., 2016), which 

induces mutations with CRISPR, provides for high throughput lineage reconstruction, while 

single cell RNA sequencing (scRNA-seq) has allowed elucidation of cell state trajectories 

based on gene expression patterns (Packer and Trapnell, 2018; Trapnell et al., 2014). Yet, 

the relationship between a cell’s developmental trajectory, as reflected in its transcriptome, 

and its lineage, as defined by cell division history, remains a critical question (Stadler et al., 

2021; Wagner and Klein, 2020).

Engineered recorder systems can extract both cell state and lineage at single cell resolution 

by incorporating barcodes into a transcript read out through scRNA-seq (Raj et al., 2018). 

Of course, genetic engineering is ill-suited for studying development in humans, where 

correlation of cell state with lineage based on somatic mutations has required parallel RNA 

and DNA sequencing, respectively (Bizzotto et al., 2021; Huang et al., 2020).

In principle, mutation detection in RNA, compared to DNA, offers advantages. In order to 

perform DNA sequencing on a single cell, whole genome amplification (Frumkin et al., 

2008), which is error-prone (Sabina and Leamon, 2015), or in vitro culture of clonally 

expanded cells (Behjati et al., 2014; Fasching et al., 2021; Salipante et al., 2008; Spencer 

Chapman et al., 2021), which is difficult to scale, is required. In contrast, thousands of 

copies of an RNA molecule may be present in a cell. However, the transcriptome comprises 

only a fraction of the genome. Accuracy limitations impose additional challenges: RNA 

polymerase has an error rate of ~10−5, which is ~5,000-fold higher than point mutation 

frequency (Gout et al., 2017); apparent mutations often reflect RNA edits (Ding et al., 

2019); reverse transcriptase used to generate cDNA sequencing libraries has a fidelity of 

~10−4 (Ji and Loeb, 1992); and next-generation sequencing misreads ~10−3 bases (Minoche 

et al., 2011).

Detection of loss of heterozygosity (LOH) offers a workaround. While point mutations are 

not uncommon, LOH, arising from recombination or other mechanisms, occurs frequently. 

Multiple regions of LOH of variable length are distributed throughout the genome, thereby 

uniquely marking cells. A vivid example involves somatic reversion of human germline 

keratin mutations in ichthyosis with confetti, in which innumerable revertant clones densely 

speckle skin (Choate et al., 2010). Measurements at marker genes indicate that LOH occurs 

~10−4 - 10−5/locus/cell division (LaFave and Sekelsky, 2009; Larson et al., 2006; Moynahan 

and Jasin, 2010). LOH can be assayed at sites known to be germline heterozygous and 
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are therefore predictable and more economical to survey than other mutations, arising 

unpredictably anywhere throughout the genome.

In the transcriptome, LOH should be recognizable as tracts of monoallelic expression 

stretched across adjacent genes. In fact, LOH is detectable in scRNA-seq datasets and has 

been used to reconstruct single cell lineages of tumors (Fan et al., 2018; Harmanci et al., 

2020).

Extending such an approach to examine normal development across heterogeneous cell 

types imposes additional challenges because not every gene is expressed in all tissues. 

Here we explore a strategy for systematically reconciling gene expression with LOH 

determination. We employ scRNA-seq in interstrain hybrid mice to identify cells from 

gene expression patterns and simultaneously extract cell lineage by detection of LOH. We 

additionally register developmental time points based on X-chromosome inactivation, which 

occurs near gastrulation (Galupa and Heard, 2018), and the total number of LOH events.

In an initial application, we have studied the development of major cellular classes during 

mouse cerebral corticogenesis.

RESULTS

Cortical cell identification

We analyzed single cells from the cerebral cortex of eight mice (Figure 1A). In order 

to distinguish parental alleles, we studied F1 offspring of a cross between two different 

inbred strains, C57Bl/6J (B6) and CAST/EiJ (CA), whose genomes have previously been 

sequenced. We focused our analysis on Emx1+ cortical projection neuron and glia lineage. 

We utilized B6 mice transgenic for Emx1-Cre;Z/EG, such that enhanced green fluorescent 

protein marked cells that, at least at some point during development, had expressed the 

neuronal transcription factor EMX1 (Gorski et al., 2002). To control for parental sex, four 

mice were products of matings of female B6 and male CA parents while four mice had 

the reverse parentage. From each group of four, we analyzed a female and male at two 

developmental time points, postnatal days 0 (P0) and 42 (P42). Emx1-marked cells were 

isolated by flow cytometry and underwent scRNA-seq to a high depth of coverage using 

Smart-seq2 (Picelli et al., 2013). Approximately 50 cells from each mouse cortex (404, in 

total) passed quality control filtering (median of 1,735,775 unique reads per cell).

Using recognized markers and graph-based clustering (Figure S1A and Table S1), scRNA-

seq allowed identification of eight cell types, depicted in dimensionally reduced (UMAP) 

space (Figure 1B).

Radial glial cells (RGC) are neural progenitors defined by expression of genes marking 

transition from neuroepithelial to mesenchymal states, including intermediate filaments 

Vimentin (Vim) and Nestin (Nes), extracellular matrix component Tenascin C (Tnc), 

neurogenic transcription factors Pax6 and Sox2, and glial markers GLAST (Slc1a3) and 

Blbp (Fabp7).
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Three classes of neurons are apparent. Expression of microtubule-binding Doublecortin 

(Dcx) and transcription factor Neurod1 arises in the immature neural cluster and decreases 

in the more mature neuron and glutamatergic neuron clusters. Transcription of the 

microtubule component Beta III Tubulin (Tubb3) increases in the immature cluster and 

peaks in the neuron cluster. The immature neuron cluster also shows markedly increased 

expression of semaphorin Sema3c and Sox11 transcription factor, suggesting that these 

cells are radially migrating (Hoshiba et al., 2016; Wiegreffe et al., 2015), while the 

neuronal cluster is post-migratory. The post-mitotic neuronal marker NeuN (Rbfox3) shows 

low expression in immature neuron and neuron clusters, with a marked increase in the 

glutamatergic neuron cluster. Neuronal cytoskeleton components Nefm and Nefh also 

demonstrate increased transcription in glutamatergic neurons. The glutamatergic cluster 

is marked by the vesicular glutamate transporter vGluT1 (Slc17a7), the NMDA receptor 

subunit of the glutamate receptor channel GluN1 (Grin1), and glutaminase (Gls). Together 

these results describe the general maturation of a neuron to a functional state and are 

consistent with studies showing that Emx1 expression marks excitatory pyramidal projection 

neurons in the mouse cortex (Gorski et al., 2002).

Astrocytes are distinguishable by the presence of GLAST (Slc1a3), the glutamate/aspartate 

transporter Glt-1 (Slc1a2), and glutamine synthetase (Glul). We also identified a separate 

cluster of astrocytes showing increased expression of calcium-binding S100b and brain-

specific aldolase C (Aldoc). S100b expression marks commencement of astrocyte terminal 

differentiation (Raponi et al., 2007).

We identified two oligodendrocyte populations. The first, oligodendrocytic intermediate 

progenitor cells (oIPC), is uniquely distinguished by platelet-derived growth factor receptor 

Pdgfra and proteoglycan Ng2 (Cspg4). Expression of the transcription factor Sox10 
increases in these cells while continuing at a lower level in oligodendrocytes. The second 

population, mature oligodendrocytes, exhibits increased expression of the tight junction 

component Claudin 11 (Cldn11) and Myelin Oligodendrocyte Glycoprotein (Mog).

In general, clusters were evenly mixed with regards to individual mouse (Figure S1B) and 

sex (Figure S1C). Cell types are consistent with cortical age (Figure S1D). Analysis of cell 

cycle related genes (Table S2) reveals that clusters identified as mature and predicted to be 

post-mitotic are predominantly classified as G1 phase cells (Figure S1E). Most P42 cells 

are classified as G1, while the oIPC of those mice exhibit populations in both S and G2/M 

phases. RGC, immature neurons, and neurons display more heterogeneous distributions 

within the cell cycle. This is expected for RGC, but not for neurons, which are post-mitotic. 

However, our findings are consistent with previous studies of neurons describing gradual 

progression to a post-mitotic state, in which cell cycle genes can be expressed without 

leading to productive cell division (Anda et al., 2016). We also observe a small population of 

neuroblasts marked by Dlx1 and Dlx2 expression (Figure S2A). These cells arise from late 

RGC or older equivalent pools in the subventricular zone and migrate to the olfactory bulb 

via the rostral migratory stream (Díaz-Guerra et al., 2013). Dlx1 and Dlx2 expressing cells 

appear in RGC, immature neuron, neuron, and glutamatergic neuron clusters, as expected. 

When compared to Figure S1D, Dlx1 and Dlx2 expressing immature neurons are similarly 

distributed for both P0 and P42 mice. This expected overlap of cell type in younger 
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and older mice, along with progression of maturing cells away from the RGC progenitor 

population (Figure 1B), suggests our clustering methods classify cells in a functional and 

maturation specific manner, rather than as an artifact of age or cell cycle.

Detection of X-inactivation and imprinting

A cross between different inbred mouse strains, each homozygous throughout their diploid 

genome, should predictably generate heterozygosity in F1 progeny wherever parental strains 

differ in DNA sequence. Using published genomes of the B6 and CA parental strains, we 

constructed a list of 20,667,142 single nucleotide variants (SNVs) across all autosomes and 

the X-chromosome, to serve as a guide for determining expressed allele status in each cell.

A measure of our variant calls and filtering methods can be provided by examining 

regions with predictable allele-specific expression patterns. In females, one of the two 

X-chromosomes is randomly inactivated during embryogenesis, leading to expression 

predominantly from one X-chromosome or the other (Galupa and Heard, 2018). This 

process is regulated by the X-chromosome controlling element (Xce), for which allelic 

variation confers different strengths of inactivation of the opposite X-chromosome, leading 

to skewed ratios of active X-chromosomes in F1 mice with different Xce alleles (Calaway 

et al., 2013). Certain regions on the inactive chromosome escape inactivation, and, in 

fact, some are responsible for maintaining the inactive state. Complicating matters is that 

escape from X-inactivation in hybrid mice appears dependent on parental strains and can be 

tissue specific (Andergassen et al., 2017; Berletch et al., 2015). These exceptions offer an 

important test of whether biallelic expression can be identified at loci that might otherwise 

be interpreted as monoallelic.

Plots of the X-chromosome from eight representative cells of a B6 (female) × CA (male) F1 

P0 female hybrid mouse are shown in Figure 1C. For each cell, informative SNVs (i.e., those 

that differ between parental strains) are plotted along the length of the chromosome. Their 

position and color on the vertical axis indicates which parental allele(s) are detected, with 

monoallelic CA (yellow) shown on top, monoallelic B6 (blue) on the bottom, and biparental 

expression (green) in-between. Note that SNV coverage aligns with cell type specific gene 

expression, as shown by transcripts mapped for relevant cell types in the Tabula Muris 

project (Tabula Muris Consortium et al., 2018). Four cells exhibit inactivation of the B6 

X-chromosome, while the other four cells reveal inactivation of the CA X-chromosome, 

as indicated by the predominant expression of the opposite parental allele. A reversal 

of this pattern occurs predictably at the Xist/Tsix locus. Xist and Tsix are exclusively 

expressed, respectively, from the inactive and active X-chromosomes and contribute to 

X-inactivation (Galupa and Heard, 2018). Some cells show regions with inconsistent escape 

from X-inactivation, including genes known to exhibit leaky expression (Table S3). In 

general, we observe a predictable pattern of skewing of X-active chromosomes. CA mice 

harbor the Xcec allele, which is more resistant to inactivation than the B6 Xceb allele 

(Figure 1D and Figure S2B). Seventy-eight percent of cells from female mice demonstrated 

CA active X-chromosomes. Parental origin of the Xce allele affected this ratio, as well, 

increasing the frequency of CA active X-chromosomes when Xcec is maternally inherited, in 

agreement with prior results (Calaway et al, 2013). Interestingly, female cells in which both 
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X-chromosomes are active are most commonly immature astrocytes, raising the possibility 

that this cell type escapes X-chromosome inactivation more frequently than other cell types, 

though we emphasize that further study is required. For the X-chromosome, our data capture 

the expected strain and parent of origin variation in allele-specific transcription, with most 

cells displaying a dominant parental variant in female mice.

A few autosomal regions exhibit imprinting, containing genes in which only one or the 

other parental allele is expressed, thereby offering another opportunity to assess accuracy 

for identifying loci with biallelic expression amidst segments of allele-specific expression. 

An imprinted locus is the Prader-Willi/Angelman syndrome (PWS/AS) region of mouse 

chromosome 7, which contains several genes and noncoding RNAs, expressing only paternal 

copies of Snrpn, Snurf, Ipw, and Npn, along with exclusively maternal expression of Ube3a 
(Bervini and Herzog, 2013). Developing neurons and glial cells, however, biallelically 

express Ube3a (Judson et al., 2014). scRNA-seq captures Ube3a cell type specific relaxation 

of imprinting (Figure 1E). As expected, expression at other loci (Snrpn, Snurf, and Npn) 

is predominantly paternal, though we also observe low levels of biallelic or maternal 

expression.

Another cluster of imprinted genes on mouse chromosome 17 includes insulin-like growth 

factor 2 receptor (Igf2r) and lncRNA Airn (Latos et al., 2012). Igf2r imprinting is relaxed, 

however, in mouse astrocytes and oligodendrocytes (Hu et al., 1998). We correspondingly 

detect cells expressing either maternal or paternal Igf2r alleles, along with exclusively 

paternal expression of Airn (Figure S2C).

These examples demonstrate that our scRNA-seq data is sufficient to produce positive and 

specific biallelic variant calls, even in well-studied regions of the genome where monoallelic 

expression otherwise predominates.

Inferring LOH in single cells

We sought to detect LOH events in single cells from four mice (one of each sex, for P0 

and P42 developmental stages), resulting from a cross between inbred female B6 and male 

CA parents. As noted, the genome of the zygote giving rise to each of these F1 mice is 

necessarily heterozygous for the millions of SNVs that distinguish the two parental strains. 

Based on scRNA-seq, SNVs homozygous for either parental variant suggest monoallelic 

expression, potentially consistent with LOH, while heterozygosity would indicate that both 

parental alleles are present, excluding the possibility of LOH. For each mouse, we observed 

a mean of 200,540 (SD 67,959) informative heterozygous SNVs distributed across mapped 

scRNA-seq reads from all cells. Recognizing that not all cells express the same genes, 

as well as incomplete capture of all transcripts, the median number of transcribed SNV 

coordinates that passed quality filters was 10,805/cell (LQ 7,232; UQ 14,160), yielding 

an average median autosomal coverage density of 4 SNVs/megabase (Mb) (LQ 3; UQ 6). 

These results show that scRNA-seq offers allele state information at a density comparable 

to commercial genomic SNP microarrays clinically employed for detecting LOH in bulk 

DNA samples in the ~20% larger human genome (e.g., Affymetrix High Density, 750K loci; 

Agilent Medium Density, 30K loci; Oxford Gene Low Density, 6,186 loci).
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We find that SNV detection by scRNA-seq correlates with the number of uniquely aligned 

reads for each cell (Figure S2D), in an exponential manner, as expected (Kishikawa et 

al., 2019). Note that beyond approximately 1 to 2 million unique reads per cell, there are 

diminishing returns in terms of the added read depth required to detect additional SNVs. 

This level of read depth (about 1 million) serves as a convenient benchmark because, as 

noted above, it yields a SNV detection frequency similar to to genomic SNV arrays (~7,000 

to 25,000 SNVs), which are relied on to clinically detect LOH and other copy number 

variants in humans

Comparison of Tabula Muris transcriptome data for neurons and associated glia with our list 

of predicted heterozygous loci in B6 × CA F1 mice shows that there are approximately 3.3 

million SNVs theoretically available for detection by scRNA-seq in transcripts from these 

cell types. In principle, the use of 3’-capture scRNA-seq methods, such as SCI-RNA-seq 

(Cao et al., 2017), Drop-seq (Macosko et al., 2015), or 10X Genomics Chromium (Wang 

et al., 2021), may suffice with lower total read requirements, as the main filtering metric 

is quality normalized by depth (QD), and these methods cover a smaller footprint of the 

transcriptome. However, there is a tradeoff between footprint and possible SNVs detected 

that will depend on the variation created from the particular inbred mouse cross or outbred 

sample and the heterogeneity of the cell types sampled, as their transcriptomic footprint will 

vary accordingly. As sequencing technology evolves, we anticipate that the power of our 

method will commensurately improve.

Compared to bulk RNA-seq, scRNA-seq may artifactually indicate monoallelic expression 

due to stochastic sampling biases, especially for genes with modest levels of expression, 

and transcriptional bursting, in which, at the time sequencing is performed, only one 

active allele is captured (Borel et al., 2015; Deng et al., 2014; Finn and Misteli, 2019; 

Larsson et al., 2021; Reinius and Sandberg, 2015; Reinius et al., 2016; Symmons et al., 

2019). The latter concern is at least partly mitigated by the fact that transcriptional bursts 

are typically shorter than the half-lives of RNA (Finn and Misteli, 2019). Nevertheless, 

these phenomena complicate interpretation of allele states. The chance that an apparently 

monoallelic SNV reflects sampling noise due to the nature of the scRNA-seq protocol, 

rather than an underlying LOH event, must be considered. To take advantage of the fact 

that contiguous tracts of monoallelic SNVs help validate interpretation of reads at adjacent 

positions, we employed a hidden Markov model (HMM) to infer the most likely genotype 

corresponding to observed patterns of allele specific expression.

Examples of chromosome 19 from two cells, one with evidence of LOH and one without, 

are shown in Figure 2A. For each cell, two plots are shown. The upper plot illustrates 

the observed allele state for any SNV based on scRNA-seq data, while the bottom plot 

shows the most likely HMM-inferred allele state. Cell 64461 demonstrates the tendency 

for scRNA-seq to capture SNVs within transcripts corresponding to only one allele. Most 

SNVs are observed as homozygous for either parental allele (colored yellow or blue by 

parent of origin). Nevertheless, biallelically expressed SNVs (green) and monoallelically 

expressed SNVs from either parent are interspersed throughout. Consequently, the inferred 

genotype for this chromosome is heterozygous, with no LOH events throughout its length. 

This interpretation is consistent with previous studies showing that in silico aggregation 
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of what may appear to be predominately monoallelic scRNA-seq data becomes biallelic, 

matching bulk RNA-seq data from another sample of the same cell line (Borel et al., 2015). 

The second cell (64474) shows a similar stochastic monoallelic expression pattern, but two 

LOH events are inferred. The first is an interstitial event proximal to the centromere while 

the second is a more telomeric interstitial event.

Applying this approach to all cells across all mice, we observe predominantly interstitial 

LOH events (Figure 2B). For all called LOH regions across all autosomes and cells, mean 

size (Mb), SD, and number of events are as follows: P0-1 - 5.30, 6.14, 795; P0-2 - 2.80, 

3.65, 3447; P42-2 - 3.69, 6.44, 2469; P42-3 - 3.44, 6.93, 2381.

Allelic ratio for SNVs distinguishing parental origin in scRNA-seq datasets is noted to 

correlate for distances of up to ~500 kb, due in most part to SNVs residing within the same 

gene and hence the same sequenced RNA molecule (Borel et al., 2015). Correlation between 

SNVs in separate yet coordinately transcribed genes could conceivably also be observed 

when genes reside within the same topologically associating domain, which are ~0.2 - 1 Mb 

in length (Finn and Misteli, 2019). To control for such phenomena, we excluded regions of 

monoallelic expression <1 Mb from our analysis.

Data from high density SNP microarrays show that the predominant LOH event in healthy 

human tissue is interstitial (Melcher et al., 2011; Mohamedali et al., 2007; O’Keefe et 

al., 2010). The size distribution of LOH events we detect in mice (Figure 2C) is similar 

compared to what is reported for humans. For example, for the P0-1 mouse, we find a 

median size of 4.6 Mb, (range 1.0 - 29 Mb), compared to median estimates in humans of 

1.2 Mb (range 0.3 - 6.7 Mb) (Mohamedali et al., 2007) and 8.7 Mb (range 0.3 - 65 Mb) 

(O’Keefe et al., 2010). In sum, our method of detecting LOH from scRNA-seq information 

appears to capture LOH events similar in size and chromosomal position to those observed 

using high density SNP microarrays based on human genomic DNA.

To determine if inferred LOH reflects noise or other sampling issues, we simulated 10,000 

cells in silico for each mouse from pooled scRNA-seq data. For all four mice, we determined 

that the mean LOH events/cell is ~15 for actual data, compared to ~0.02 for randomly 

sampled data (Figure 2D), suggesting detected events are unlikely to be artifactual.

SNVs are neither uniformly distributed across a chromosome nor are the transcripts in 

which they are located expressed in all cells, creating ambiguity in precisely defining the 

boundaries of regions of LOH. We consequently assigned beginning and ending points 

for each region to 2 Mb bins tiled across the length of each chromosome. Using these 

conditions, we created an autosomal map of LOH events for each cell. This map, shown 

in Figure 2E, represents a cellular barcode uniquely identifying each cell. The collection of 

LOH events represent mitotically stable mutations that, just like other somatic mutations or 

genetically engineered barcodes, can be used to infer cell lineage.

We characterized the distribution of LOH events shared between cells within each mouse 

(Figure S3). Note that for our HMM model, ~12 consecutive monoallelic SNVs will trigger 

determination of an LOH event (Figure S3A-B). Most LOH regions are unique to a single 

cell, but as many as nine cells from a particular mouse share common events (Figure S3C). 

Anderson et al. Page 9

Cell Syst. Author manuscript; available in PMC 2023 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



As expected, given the small proportion of sampled cells, most LOH events appear unique to 

a particular mouse (Figure S3D).

An LOH event should be more commonly shared by cells from the same mouse compared 

to cells from different mice. As a test, we devised an enrichment quotient. For each LOH 

event, the numerator represents the number of cells containing that allele (the particular 

LOH event) for one of the mice, and the denominator is the sum of all occurrences of that 

allele across all cells from that mouse and one other mouse. A value of one would indicate 

that the allele is unique to cells from a particular mouse, whereas a value of ~0.5 would 

indicate that the allele is just as likely to be found in cells from a different mouse. We report 

the mean quotient for all alleles for a particular mouse (Table S4). For each unidirectional 

pairwise comparison, the enrichment quotient ranges from 0.82 - 0.96. As expected, LOH 

events tend to recur within cells from the same mouse.

Detection of LOH by scRNA-seq in human cells

Toward the goal of using our method to map cell lineages in humans or other organisms in 

which genetic engineering is prohibitive, we measured our ability to detect known regions 

of LOH using scRNA-seq performed on human cells. We took advantage of the previously 

described human hepatoblastoma cell line, HepG2. HepG2 cells contain several regions of 

LOH that have been identified through use of haplotype-resolved whole genome sequencing 

and SNV microarrays (Zhou et al., 2019). scRNA-seq of HepG2 cell has been previously 

published (Hou et al., 2016), and we used this scRNA-seq data to examine three pairs of 

homologous chromosomes known to contain regions of LOH (chromosomes 6, 11, and 14). 

As an internal control, we compared our results to normally heterozygous diploid regions 

from each chromosome, as well as a few hyperdiploid segments derived from both parental 

homologs with 3N and 5N copy number. We called scRNA-seq based SNVs using the 

hg19 human reference genome, which we modified to incorporate HepG2 variant phase 

information. In general, we label the reference sequence as haplotype A and the alternate 

sequence as haplotype B.

Our approach detected the previously defined regions of LOH and did not identify LOH in 

chromosomal segments where it is not known to be present (Figure S4A). In heterozygous 

control regions we see similar ratios of monoallelic expression between haplotype A and 

B as well as lower levels of biallelic expression (Figure S4B). These ratios are similar to 

those seen in our mouse data for all cells over all autosomes (Figure S4C), where most 

monoallelic expression, especially when not occurring in contiguous tracts, appears to result 

from bursting and other sampling artifacts. When we compare the frequency of monoallelic 

or biallelic loci in reported LOH regions, we see a statistically significant (ANOVA with 

Tukey's Honest Significant Difference test, p <0.01) decrease in biallelic loci frequency 

(0.090 (0.031) to 0.006 (0.007), mean (SD)) as well as a shift in monoallelic frequency 

depending on haplotype. Haplotype A is reduced from 0.469 (0.050) to 0.085 (0.039), while 

haplotype B increases from 0.392 (0.062) to 0.909 (0.034) (Figure S4B). Our haplotype 

specific HMM model identifies LOH regions in four of the six total chromosomes examined, 

consistent with results reported for genomic DNA analysis (Zhou et al., 2019).
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However, the regions we identified do not cover the entire reported LOH region even though 

we do see a decrease in heterozygosity and a shift of monoallelic SNV frequency. We 

attribute the small discrepancy to the presence of a few monoallelic loci within independent 

phase blocks with conflicting haplotypes. The phased parental haplotype blocks for this cell 

line, which is derived from a person from a presumably outbred population, do not span 

the complete chromosome. When we examine the phase set identities for the monoallelic 

haplotype A loci, they predominantly occur either in their own unique block or a block 

that is different from the next observed biallelic or monoallelic B SNV (Table S5). In other 

words, a challenge in extending our approach to humans involves the imprecision of linking 

large parental haplotype blocks together and inferring relative phase.

LOH as a marker of lineage

To deduce cellular lineage, we employed a Bayesian model of Camin-Sokal parsimony 

(Camin and Sokal, 1965), in which the most likely phylogeny minimizes the number of 

ordered LOH events from the base of the dendrogram to its tips. In order to root the lineage 

tree, for each mouse we added a cell representing the zygote, corresponding to the ancestral 

condition, with no LOH events assigned.

The consensus phylogram for a P0 (P0-2) mouse is shown in Figure 3A. The zygote occurs 

as an outgroup when compared to the rest of the cells (with an exception for just one other 

cell). Most changes occur towards the tips of the tree, and intranodal distances are short. 

Pairwise comparison of differences between cells exhibits a unimodal distribution (Figure 

S5A). Such a pattern, along with short intranodal distances, is consistent with expanding 

populations, as expected during embryogenesis; in contrast, populations of constant size 

exhibit more evenly spaced intranodal distances and monotonically decreasing pairwise-

distance distributions (Rogers and Harpending, 1992). Given these results, we believe that 

our evolutionary model reflects the sequence of LOH events acquired during development 

(and is also supported by a benchmark analysis with mouse cells grown in vitro (Figure 

S5B) and a simulated C. elegans lineage (Figure S5C), as described further below.)

Posterior probability support for a specific topology is less robust. The consensus tree, 

depicted as a cladogram in Figure 3B, is based on 4,502 sample trees, and the 99% credible 

set contains 4,457 trees. This is unsurprising, given the large polytomy at the base of the 

tree. Node support is indicated along with a mirrored composite visualization of 1,500 

overlaid trees from the credible tree set. For nodes with a posterior probability ≥0.1, the 

maximum level of support was 0.60 (median 0.17; IQR 0.11 - 0.35). In general, resolved 

nodes correlate with the presence of at least one shared LOH event in daughter cells (●), 

and several clades share an allele in all but one cell (▲), shown along branches in Figure 

3B. For some clades, one allele appears sufficient to distinguish a clone, as shown by large 

dense wedges in the composite tree, but the topology of the monophyletic group cannot be 

resolved due to a lack of segregating alleles or confounding effects of coincidental identity 

by state (homoplasy). The informative chromosomal barcodes with segregating LOH alleles 

are shown for a representative clade in Figure 3C. Taken together, these results indicate 

that there is a lineage signal driven by LOH events that is detectable using parsimony, 
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but confounding variables such as homoplasy limit our ability to discern finer topological 

structure.

While we do not know the true relationship of the cells of any given mouse, pairwise 

analysis of any two mice can provide insight into the relationship between posterior 

probabilities and truly related cells, along with an estimate of homoplasy. Cells from a 

particular mouse should group together based on the principle of identity by descent, while 

grouping of cells from different mice reflects homoplasy. An analysis of pooled cells from 

pairwise comparisons of mice (Figure S6A) reveals that a posterior probability of 0.65 - 0.75 

is sufficient for confidently distinguishing related cells from those unlikely to descend from 

a common progenitor in our dataset.

Benchmarking lineage reconstructions

Recently, an open competition, the “Allen Institute Cell Lineage Reconstruction DREAM 

Challenge,” took place to evaluate the accuracy of various phylogenetic approaches for 

reconstructing cell lineage from single cell mutational data (Gong et al., 2021), providing 

an opportunity to test how well our approach compares against algorithms devised by 

others. The challenge incorporates two genetic-based lineage tracing systems. The first 

challenge is to reconstruct “ground truth” lineage trees of mouse embryonic stem cell 

colonies grown in vitro while being recorded with video microscopy and labeled with 

the intMEMOIR integrase-based lineage reporter system (Chow et al., 2021). The second 

consists of reconstructing the well known C. elegans lineage based on simulated mutations 

induced by the GESTALT CRISPR-Cas9 lineage reporter system (McKenna et al., 2016).

For tests based on both model systems, our Camin-Sokal Bayesian model performs 

favorably compared to other methods of lineage reconstruction, as measured by Robinson-

Foulds (RF) and triplet distance metrics of topological similarity. Using large colonies in 

the experimentally determined mouse cell dataset, on average, our derived phylogenies 

had RF and triplet distance similarity scores as good as, or better than, the top three 

scoring algorithms (Cassiopea, Liu Lab, and Guan Lab, respectively) (Figure S6B). For the 

simulated C. elegans lineage, our attempts at lineage reconstruction resulted in RF distances 

comparable to the winning DCLEAR method (Figure S6C). However, our algorithm 

yielded a poorer triplet distance score, indicating low resolution of early branching in the 

phylogenies, and suggesting that further optimization of “tree space” search parameters for 

larger datasets is needed to improve accuracy.

Although not a metric incorporated into the DREAM Challenge, the availability of 

benchmarked datasets independently created by other genetic-based barcoding systems 

provides an opportunity to explore the allele variation observed for the sort of expanding 

cell populations expected to take place in the embryo. We reassuringly observe similar 

pairwise-distance distribution patterns for both the experimentally derived in vitro mouse 

embryonic stem cell and simulated C. elegans datasets from the DREAM Challenge as we 

do for our mice (Figure S5B and C).
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Stereotyped expansion and differentiation in neocortical histogenesis

Mouse neocortical development consists of a progression of progenitor cells with decreasing 

proliferative potential (Taverna et al., 2014). Neuroepithelial stem cells divide symmetrically 

to produce the initial progenitor pool in the ventricular zone of the developing neocortex. 

This population transitions to an asymmetrical cell division stage consisting of RGCs to 

create unitary clusters of neurons either directly or through transient progenitors that expand 

the size of the cluster. A subset of RGC (about one-sixth) transitions to a gliogenesis 

state where they produce astrocytes and oligodendrocytes (Gao et al., 2014). Symmetrically 

dividing glial progenitors are produced as well (Ge et al., 2012). This stereotyped pattern 

of symmetrical cell division followed by unitary asymmetrical cell division, expansion, and 

differentiation should produce multiple monophyletic clades of mixed cell types. We see 

such a pattern in the inferred phylogenies. In P0 mice, the diversity of cell types is limited, 

but monophyletic groups appear, consisting of neurons and RGCs. P42 mice (Figure 4A), 

which have increased cellular diversity, show the same topological pattern. Heterogeneous 

clades are predicted to be composed of neurons, immature and mature astrocytes, plus 

oligodendrocytes and their intermediate progenitors, in agreement with a unitary expansion 

model of neurogenesis (Gao et al., 2014). Interestingly, the majority of glutamatergic 

neurons are part of a distinct clade in both P42 mice. In contrast, RGC and neurons in 

P0 mice are distributed throughout different clades. Correspondingly, we note that the large 

polytomies in each mouse consist of a similar number of monophyletic groups (15, 14, 14, 

and 11, for each of the four mice, respectively), though we cannot speak to whether or not 

this structure is meaningful, due to sampling only a limited number of cells.

Generation of LOH events correlates with cell division (Mehta and Haber, 2014) and 

therefore may reflect mitotic age. At P0, particularly for the P0-2 mouse, the distribution 

of the number of identified LOH events among RGC is tighter than for either group of 

neurons (Figure 4B). The observation of fewer LOH events in more differentiated cells 

is consistent with RGC serving as a stem-like population, with neurons spun off earlier 

during embryogenesis. Conversely, the appearance of neurons exhibiting more LOH events 

is consistent with their production from later RGC populations, along with subsequent 

additional cell divisions prior to terminal differentiation. At P42, the distribution of the 

number of LOH events in immature astrocytes is more tightly clustered than for mature 

astrocytes, and the median number of events is lower. Though we do not have concurrent 

RGC with which to compare, this pattern is consistent with immature astrocytes being 

produced from transitioning late-stage RGC, expanding, then differentiating into mature 

astrocytes. There appear to be at least two waves of oligodendrocyte production given that 

contemporary precursors are mitotically older than mature oligodendrocytes. Our findings 

are consistent with the concept of early vs. late populations of RGC producing neurons and 

glial cells, indicating that the differences we observe in P42 mice relate to sampling of both 

populations (Kriegstein and Alvarez-Buylla, 2009).

Timing of nodes in relation to X-chromosome inactivation

X-inactivation occurs around the time of gastrulation, depending upon tissue (Tan et al., 

1993), marks clonal populations deriving from common progenitors (Linder and Gartler, 

1965), and has been used to map cell fate during corticogenesis (Tan and Breen, 1993). 
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We superimposed our previously inferred X-activation status on cell lineages of two female 

mice (Figure 4C). Mixed clades containing cells in which one or the other of the two 

X-chromosomes is active point to a shared common progenitor existing prior to when 

X-inactivation takes place. In the P0-1 mouse, most of these pre-X-inactivation nodes occur 

after the large polytomy and closer to the terminal nodes. Mouse P42-2 shows an increase in 

predicted post-X-inactivation nodes, overall, as well as an increase after the large polytomy. 

This pattern is consistent with the ages of the mice, as more cell divisions would have 

occurred in P42 cells relative to X-inactivation, early in embryogenesis. X-activation status 

also supports our observation of glutamatergic neurons being part of a distinct clade of cells, 

as all cell types in the relevant P42-2 clade have the same active X-chromosome. However, 

due to the inherent CA skew of active X-chromosomes, we cannot rule out the possibility 

that these cells share their status due to chance.

To investigate this pattern further, we mapped these pre-X-inactivation nodes to their 

corresponding phylograms (Figure S7A and B), where branch length is proportional to 

the number of LOH events in the cell. Assuming cell division is symmetrical and LOH 

generation behaves in a clock-like fashion, most branching in these two samples occurs 

between establishment of the inner cell mass and gastrulation, as the mixed clade nodes 

occur further down the tree. Combined, these results suggest that the large polytomies 

in all four mice correspond to the initial expansion of the epiblast during embryogenesis 

and are consistent with stereotyped neuronal expansion of neuroepithelial stem cells. This 

observation does not rule out the possibility that the glutamatergic clade is clonal with 

regards to X-inactivation and marks an early wave of neurogenesis; rather, it more narrowly 

implies that the most recent common cell of the clade occured in this developmental period.

The known timing of X-inactivation can also be used to estimate how closely LOH 

“barcoding” tracks with actual cell divisions. X-inactivation takes place in the mouse at 

about 7.5 days gestation, when experimental determination of cell number reveals there 

to be a mean of 14,970 cells (Snow, 1977). Since the Log2 of 14,970 is approximately 

equal to 14, we estimate that about 14 cell divisions have taken place by this time. The 

lineage phylograms for P0-1 and P42-2 female mice reveal as many as 6 to 12 LOH events, 

respectively. We therefore estimate that there are between 6/14 (0.4) to 12/14 (0.9) LOH 

events per cell division in the early embryo and that the bifurcations in the phylogram come 

close to marking each cell division during epiblast expansion. The total number of LOH 

events should therefore serve as an approximate measure of the number of cell divisions 

during embryogenesis.

The sparse sampling of cells (approximately 50 for each mouse) restricts our ability to 

identify shared LOH events occurring at later developmental time points because shared 

events common to more than one cell are exponentially diluted with each successive cell 

division. This phenomenon likely explains why fewer bifurcations are recorded on the 

longer branches of the phylogram occurring after X-inactivation, as shown in Figure S7.
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DISCUSSION

The goal of our studies is to reconcile lineage with cell state. Corticogenesis in the mouse 

involves a linear transition of distinct progenitors contributing to production of neurons 

and macroglia at different stages of development (Figure 5A). Due to the asymmetrical 

nature of RGC division and potential symmetrical expansion of some daughter cells, one 

RGC can contribute to multiple cell types and can tie cells produced at later stages of 

life to cells produced embryonically. Depending on when LOH occurs, several possible cell-

type-specific phylogenetic topologies are possible. An event in neuroepithelial stem cells or 

early RGC would lead to mixed cell type clades, while asynchronous events occurring later 

during expansion of intermediate progenitor cells would mark more homogeneous clades. 

In P0 mice, we observe mixed clades consisting of RGC, immature neurons, and neurons, a 

pattern that is highlighted for large clades when member cells are plotted in dimensionally 

reduced space based on gene expression (Figure 5B). Similarly mixed clades are also seen in 

P42 mice, where cell types are more diverse, given their maturity.

Our method is based on the detection of LOH in scRNA-seq datasets. Reasons other than 

LOH for why transcripts corresponding to only one parental allele may be detected include 

inadequate depth of coverage for rare transcripts, capturing a moment in time when only one 

allele is actively transcribed (bursting), and imprinting or other forms of allelic exclusion, 

such as X-inactivation or involving antigen receptors in the immune system or olfactory 

receptors (Khamlichi and Feil, 2018).

We control for the first two issues, sampling and bursting, by relying on concordant 

uniparental expression across multiple adjacent SNVs spanning large chromosomal regions, 

show that regions of apparent LOH largely disappear following data permutation, and that 

regions interpreted as LOH are more likely to be shared between cells sampled from the 

same mouse compared to cells sampled from different individuals.

Regarding the latter issue, random mitotically stable monoallelic expression (Savova et al., 

2016) has been proposed as a regulatory mechanism. For example, monoallelic expression 

of Nanog has been posited to regulate pluripotency (Miyanari and Torres-Padilla, 2012), 

while other reports find that its expression is biallelic and no different from other genes 

playing similar developmental roles (Faddah et al., 2013; Filipczyk et al., 2013).

In one study (Reinius et al., 2016), the frequency of monoallelic expression observed 

by scRNA-seq of primary mouse cells was 13%, but when pooled following in vitro 
clonal expansion was reduced to ~0.5%. The higher frequency seen in primary cells 

was attributed to bursting. In contrast, we observed a mean of 5.1% (range 0 - 19.1%) 

of the autosomal genome exhibiting monoallelic expression. One reason the value we 

determined may be larger is that our analysis of heterogeneous cell types requires binning 

of the boundaries of regions of monoallelic expression to account for differences in gene 

expression between individual cells, necessarily leading to overestimation. Another is that 

genes from regions with cell- or clone-specific chromosomal aberrations, which might 

underlie clonal abnormalities we interpret as LOH, were excluded from the prior study 

(Reinius et al., 2016). Nevertheless, for any given locus exhibiting monoallelic expression, 
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we find the vast majority of cells exhibit a heterozygous genotype, which would not be true 

if random monoallelic expression were pervasive.

Several pathways can lead to LOH, whether it be copy neutral or result in loss of 

chromosomal material (Mehta and Haber, 2014). A mechanism of LOH consistent with 

our observations is gene conversion, resulting in copy neutral LOH, but we cannot exclude 

LOH due to deletion of the undetected allele. While the density of informative SNVs in our 

experiments is comparable to SNP microarrays clinically employed for detection of LOH 

and copy number variants in bulk human DNA samples, cell-to-cell differences in gene 

expression pose a challenge for interpreting copy number.

A distinct advantage to the approach described here, compared to recently introduced 

technologies for dynamically barcoding cells through genome editing, is that it can be 

performed retrospectively, permitting study of development in humans and other organisms 

where genetic engineering or other forms of embryonic manipulation are infeasible 

or where lifetimes are long. Unlike laboratory mouse strains, humans and individuals 

from other species with large populations are outbred, and heterozygous SNVs are 

abundant, making the method applicable without any special breeding strategy, provided 

that the underlying phased genome sequence is determinable using experimental and/or 

computational approaches (Choi et al., 2018; Harmanci et al., 2020).

We analyzed scRNA-seq for a human cell line, HepG2, where several regions of LOH 

had been previously identified using other means. While we were able to detect LOH, the 

boundaries did not precisely align with what was previously reported. Given that transcripts 

do not necessarily cover genomic breakpoints, approximation of the boundaries is not 

unexpected. An additional factor is the inherent imprecision of phasing the genome in 

an individual from an outbred population. An opportunity for refining the accuracy of 

genomic phasing includes sequencing parents, if available. Continuing advances in long-read 

genomic sequencing should also help improve methods for phasing the genome and, perhaps 

eventually, direct detection of LOH.

A limitation of our study is the lack of ground truth for true lineage, though X-inactivation 

analysis provides a spot check for clonality and permits determination of the developmental 

timing of early embryonic lineage branchpoints. We benchmarked our approach using Allen 

Institute Cell Lineage Reconstruction DREAM Challenge tests involving in vitro mouse 

cell colonies and the simulated C. elegans lineage. An insight gained from this exercise 

is that the computational resources required for our Bayesian approach to phylogenetic 

reconstruction may be difficult to scale for larger datasets. This becomes especially 

important considering the need to sample a large number of cells if one wishes to 

define later branches of the lineage tree. Otherwise, only mutations arising early during 

development and that are shared by a large proportion of sampled cells will be informative 

for lineage reconstruction.

A limitation common to all lineage tracing methods utilizing independently evolving loci 

is homoplasy, as indicated by overall modest performance current methods achieve with 

regards to measures of similarity to known lineage topologies. A promising future solution 
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to this problem would be analysis of a combination of barcoding sources, much like 

consolidating physical character state evolution and molecular data in modern phylogenetics. 

In such a scenario, allele production rates that are optimal for the developmental time frames 

of interest could be selectively analyzed.

Another limitation of our approach is that it requires a breadth and depth of scRNA-seq 

sufficient to infer the allelic origin of SNVs contained within a transcript, compared to 

more limited sampling necessary to simply identify a transcript. As throughput increases and 

sequencing costs decline, this may become less problematic.

We additionally cannot entirely exclude epigenetic silencing as an explanation for 

monoallelic expression. Even if epigenetic phenomena were contributing to our calls of 

LOH, the information may still prove useful for inferring lineage. In fact, an early approach 

for retrospectively inferring lineage from sequencing data employed detection of cytosine 

methylation, involved in developmentally regulated gene silencing (Shibata and Tavaré, 

2007).

In sum, we build upon earlier work analyzing LOH in tumors (Fan et al., 2018; Harmanci 

et al., 2020) and demonstrate the ability of scRNA-seq combined with allele-specific 

SNV analysis to capture the developmental trajectory of excitatory pyramidal projection 

neurons and glia, infer patterns of cellular expansion in mouse cortex, and correlate lineage 

relationships of progenitor cells with their descendants.

STAR★METHODS

RESOURCES AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Marshall Horwitz (horwitz@uw.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• This paper analyzes existing, publicly available data. The accession numbers for 

the datasets are listed in the key resources table. All derived datasets, including 

the original Seurat count matrix used for cell clustering, genotype calls for 

all mice and human HepG2 cells, VCF files for mouse and HepG2 variants, 

consensus phylogenies in NEXUS format, and Allen Institute Cell Lineage 

Reconstruction DREAM Challenge phylogenies in Newick format are provided 

in a Mendeley Data archive and are available as of the date of publication. The 

DOI is listed in the key resources table.

• All original code has been deposited in a Mendeley Data archive and is publicly 

available as of the date of publication. The DOI is listed in the key resources 

table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice—The dataset we used for our analysis was previously published; mouse strains, 

breeding strategy, cell isolation, and scRNA-sequencing approaches are as described 

(Laukoter et al., 2020). Briefly, B6 (Emx1-Cre;Z/EG) and CA mouse strains obtained from 

The Jackson Laboratory were bred and analyzed in accordance with protocols approved by 

Institutional Animal Care and Use Committees at IST Austria. Cells were dissociated from 

cerebral cortex, and Emx1+ single cells were sorted by FACS for library preparation.

METHOD DETAILS

scRNA-seq—RNAseq cDNA libraries were prepared from single cells using Smart-seq2 

(Picelli et al., 2013). Single-end 50 base pair (bp) reads were mapped to GRCm38.p5 

(mm10) and expression determined using Ensmbl [91, Dec 2017] with STAR 2.5.0c (Dobin 

et al., 2013), as previously described (Laukoter et al., 2020). A million or greater total reads 

and a range of 10,000 - 30,000 total mRNAs were used to filter high quality single cell 

samples. 1,735,775 unique reads were mapped to the median cell (Lower Quantile (LQ) 

990,582, Upper Quantile (UQ) 2,858,522). RNA sequencing data can be accessed using 

the GEO Series accession number GSE152716 (http://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE152716). HepG2 RNAseq cDNA libraries (GSM2039769 (HepG2_1) and 

GSM2039770 (HepG2_2)) were aligned to hg19 as above, resulting in 3.6 and 3.8 million 

uniquely mapped reads.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cell Identification—Cell identity was determined through the Seurat R package (Butler 

et al., 2018; Stuart et al., 2019). Gene level expression data from all 404 cells from 8 

mice were combined and filtered. Genes expressed in a minimum of three cells were 

analyzed. Cells with a minimum of 200 genes detected were kept for further inspection. 

All 404 cells passed the criteria above resulting in a 404 × 23,373 feature count matrix 

(Supplemental Data). The count matrix was normalized with the NormalizeData function, 

setting normalization.method to “LogNormalize” and scale.factor to 10,000. Each cell was 

assigned a cell cycle state using the CellCycleScoring function. The list of S and G2/M 

genes is provided in Table S2. For clustering of cells we reduced the dimensionality of the 

expression data via principal component analysis (PCA) of the top 2,000 variably expressed 

genes (selection.method = “vst”). This expression matrix was scaled (mean expression = 

0, variance = 1) so that highly-expressed genes do not dominate downstream analysis. We 

also removed variation due to mitochondrial contamination, library preparation (individual 

mouse), mouse age, and cell cycle stage (S or G2/M) using the vars.to.regress option in the 

ScaleData function (Figure S1C). Cells were clustered, based on the first 15 components, 

using Seurat’s graph-based clustering tools. A K-nearest neighbor graph, based on Euclidean 

distance in PCA space, was constructed for all cells using the FindNeighbors function. The 

Louvain algorithm (FindClusters(resolution = 0.8)) was then used to iteratively group cells 

together. Clustered cells were then annotated based on the initially normalized marker gene 

expression patterns (Table S1).
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scRNA-seq Variant Calling—Heterozygous sites were identified using the CA Mouse 

Genome Project sequencing data (CAST_EiJ.mgp.v5.dbSNP142.vcf) (Keane et al., 2011). 

Briefly, homozygous SNV loci for CA, when compared to mm10 (B6), passing GATK hard 

filtering metrics for SNV detection based on DNA sequencing were identified and used as a 

guide (ROD file) for loci to be analyzed in GATK. 20,667,142 SNV loci were identified. On 

average, this provides 8,392 loci per Mb coverage of autosomes and X chromosomes. RNA-

based SNV calls were made at predicted sites of heterozygosity in B6:CA F1 mice using the 

GATK (Auwera et al., 2013) variant calling tool (-T GenotypeGVCFs -stand_call_conf 20 

-stand_emit_conf 10) and hard filtered using recommended settings for scRNA-seq variants 

(-T VariantFiltration -window 35 -cluster 3 -filterName FS -filter “FS > 30.0” -filterName 

QD -filter “QD < 2.0”). SNV loci containing variants due to alignment errors near splice 

sites that passed these filters (1,144 total) were removed.

For HepG2 samples, variants were called as above using a phase specific version of hg19 

for chromosomes 6, 11, and 14 constructed from previously reported phased DNAseq data 

(ENCODE:ENCBS760ISV; ENCFF853HDD). Variants at heterozygous loci that were found 

in phase with the hg19 reference sequence (1∣0) were incorporated into a HepG2 version of 

hg19 using the GATK tool FastaAlternateReferenceMaker. A ROD file was then constructed 

using heterozygous SNV loci across the chromosomes as well as homozygous variant loci in 

the reported LOH regions.

Genotype Determination—Studies focused on a subset of four mice (P0-1, 56 cells; 

P0-2, 64 cells; P42-2, 56 cells; and P42-3, 47 cells). A cell's genotype at a particular 

locus was inferred by modeling the scRNA-seq variant data as a HMM process with the 

underlying genotype at a particular locus corresponding to the hidden state and the scRNA-

seq-based variant status as the emission or observation state.

We posit three hidden states relating to a cell’s genotype: heterozygous, homozygous B6, 

or homozygous CA. A transition from the heterozygous state to either homozygous state 

is 10,000-fold less likely than remaining in the heterozygous state, based on observed 

frequencies of interhomolog chromosomal exchanges generating LOH (Larson et al., 2006). 

Within a stretch of homozygosity created by recombination, transitioning back to the 

heterozygous state would require a second recombination event, which observations suggest 

is 10-fold less likely than a single event (i.e., overall 100,000-fold less likely than remaining 

in the particular state) (Larson et al., 2006). Transitions from one homozygous genotype to 

the other cannot be generated through recombination. The ultimate effect of these transition 

rates is that, given an observed homozygous run of either allele, there is a small bias for 

continuation of calling a homozygous state, instead of transitioning back and forth between 

heterozygous and homozygous states. The transition matrix between states is defined as:

Homozygous B6 Heterozygous Homozygous CA

Homozygous B6 0.99999 0.00001 0

Heterozygous 0.00010 0.99980 0.00010
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Homozygous B6 Heterozygous Homozygous CA

Homozygous CA 0 0.00001 0.99999

The probability of observing a particular SNV in the heterozygous state or either 

homozygous state is described by the emission state matrix. Due to both bursting and 

incomplete sampling, we estimated that biallelic SNVs will be observed correctly as 

heterozygous in the scRNA-seq data with a probability of 0.10 but will be more frequently 

incorrectly observed as monoallelic for the maternal allele with probability 0.45 or the 

paternal allele also with a probability of 0.45, based on comparisons of bulk to single cell 

sequencing (Borel et al., 2015) and our own results, where we observed for all 404 cells 

a mean (SD) proportion of SNVs as 0.438 (0.007) monoallelic B6, 0.105 (0.012) biallelic, 

and 0.456 (0.012) monoallelic CA. A truly homozygous locus should only be observed 

as monoallelic. An observation of either heterozygous SNVs or homozygosity for a SNV 

from the opposite allele would switch the hidden state back to heterozygosity. The observed 

scRNA-seq-based genotype (monoallelic B6, biallelic B6:CA, or monoallelic CA) is based 

on the emission state probability of the underlying hidden state given here:

Hidden\Emission state Monoallelic B6 Biallelic Monoallelic CA

Homozygous B6 1 0 0

Heterozygous 0.45 0.10 0.45

Homozygous CA 0 0 1

The Markov-chain's starting state probability is given as 0.05 for each of the homozygous 

states and as 0.90 for the heterozygous state. In our model, the heterozygous to homozygous 

transition probability only modestly influences determination of tracts of LOH. A ten-fold 

decrease in probability (i.e., from 10−4 to 10−5) results in a requirement for just three 

more continuously observed monoallelic SNVs necessary to assign a region of LOH 

(Figure S3A). We therefore selected an intermediate transition probability to account for 

genome-wide variance in observed frequencies of LOH (Larson et al. 2006). In fact, most 

LOH events would still be called using this model if the transition probability were set to 

10−8 (Figure S3B). For HepG2 samples the same model was applied. In this analysis we 

substituted the HepG2-specific version of hg19 (haplotype A) for B6 while the hg19 variant 

sequence (haplotype B) replaced CA.

For any given chromosome of any given cell the underlying genotypes of scRNA-seq 

detected loci were determined by the most probable order of hidden states (Viterbi 

path) based on the scRNA-seq variant data using the Viterbi algorithm contained in the 

HMM R package (https://cran.r-project.org/web/packages/HMM/index.html). The Viterbi 

path describes the amalgamation of both homologous chromosomes and is assumed to have 

a copy number of two. Hemizygosity will appear as LOH, and duplications will appear as 

heterozygous (Supplemental Data).
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Identification of LOH Events—A single transition from the hidden heterozygous 

state to either homozygous state could indicate recombination between two homologous 

chromosomes that extends to the telomere. A subsequent transition from the homozygous 

state back to the heterozygous state would describe an interstitial event such as a double 

crossover or non-crossover strand invasion. Partial or micro-chromosomal deletions would 

also trigger these transitions. Transcriptional bursting kinetics or epigenetic silencing on one 

allele could account for short runs of either B6 or CA alleles, as well, confounding our 

results. To control for such events we removed homozygous runs that spanned a region <1 

Mb.

Due to non-uniform gene expression and scRNA-seq coverage across cells we grouped 

LOH events in 2 Mb bins, starting at the beginning of each chromosome. Events were 

characterized by their beginning and ending bins along with their parental allele identity.

Permutation Analysis—For each mouse, a subset of 10,000 randomly sampled “cells” 

was created in silico based on the observed scRNA-seq variants. For each locus, an scRNA-

seq allele state (no coverage, biallelic, monoallelic B6, or monoallelic CA) was randomly 

sampled with replacement from the pool of allele states at that locus across all cells from 

the mouse in question. This process was repeated for all analyzed loci along the length of 

each autosome. These virtual cells were then genotyped as described above, and LOH events 

were identified for each generated cell (Supplemental Data).

Encoding LOH Events for Phylogenetic Analysis—Tracts of LOH ≥1 Mb are 

described by four elements: their chromosome location, the 2 Mb bin in which they start, 

the strain identity of the tract (B6 or CA), and their ending 2 Mb bin. For example, a 

homozygous run on chromosome 19, starting at position 5,000,000 and ending at position 

9,000,000, and consisting exclusively of CA variants would be described as chr19_3CA5. 

A chromosome with no LOH event is coded as HT, designating the chromosome as 

apparently heterozygous (e.g., for chromosome 19 the designation would be chr19_HT). 

A chromosome for any one cell can contain multiple LOH events.

Each chromosome is considered its own independently evolving region within a mouse, with 

the cell specific combination of LOH events defining its state. An LOH event occurring over 

a specific region of the chromosome does not preclude another event happening nor does it 

affect the probability of that event happening. Once a heterozygous stretch of chromosome 

is converted to a homozygous run it cannot revert back to the homozygous state. For 

any chromosome, each LOH event is treated as independent and irreversible. The multiple 

character states for any chromosome in any mouse can be factored into binary characters 

representing the presence (1) or absence (0) of any chromosome specific LOH event. For 

example, consider the state of chromosome 19 in three fictitious cells:

Cell01: chr19_HT

Cell02: chr19_2B65, chr19_20CA30

Cell03: chr19_2B65, chr19_15B626
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There are three unique LOH events with one cell lacking any event. These cells would be 

factored and encoded as:

Cell\State chr19_2B65 chr19_15B626 chr19_20CA30

Cell01 0 0 0

Cell02 1 0 1

Cell03 1 1 0

Allen Institute Cell Lineage Reconstruction DREAM Challenge benchmark data (Gong et 

al., 2021) were encoded as follows:

intMEMOIR alleles: Sub-challenge 1 alleles recorded from videomicroscopy of in vitro 
grown mouse embryonic stem cells based on the intMEMOIR recording cassette were 

flattened into a similar binary matrix with either allele (inversion or deletion) coded as 

present or absent (not edited) for each of the ten sites. Each site was treated as independently 

evolving, edits as irreversible, and the unedited state as ancestral.

GESTALT alleles: Sub-challenge 2 alleles synthesized in silico from the C. elegans lineage 

based on the GESTALT recording cassette were flattened into a similar binary matrix with 

all observed edited alleles (A-Z, a-e, and “-”) for 200 sites coded as present or absent. Each 

site was treated as independently evolving, edits as irreversible, and the unedited state as 

ancestral.

LOH Evolution Model—We implement a Camin-Sokal (Camin and Sokal, 1965) 

parsimony-inspired Bayesian model of LOH evolution to infer lineage relationships, using 

the restriction site model in the MrBayes software package (Ronquist et al., 2012) with 

default mcmc tool settings and ending analysis when the average standard deviation of split 

frequencies approached 0.01. LOH events for any one chromosome can be described as 

a discrete and irreversible event. We coded autosomal LOH events occurring on the same 

chromosome as a series of two-state characters, with heterozygosity being the ancestral 

character. It is assumed that the zygote for any F1 mouse is heterozygous across the assayed 

SNVs for any particular autosome (a state of 0 in the coding scheme described above), 

and that this represents the ancestral condition. An LOH event creates a new character 

state (1), and the transition from 0 to 1 is 100-fold more likely than the reverse (prset 

statefreqr=fixed(0.01,0.99)). The zygote branch length is expected to be close to zero and 

placed as the outgroup in the resultant dendrogram. We excluded the sex chromosomes. 

Though LOH events can occur between two X-chromosomes, sex chromosomes are not 

considered here because two mice are male, and X-inactivation in female mice changes 

assumptions of the HMM used to infer genotypes based on RNA. Visualization of the 

Bayesian posterior distribution of cladograms employs the DensiTree algorithm (Bouckaert, 

2010). For Allen Institute Cell Lineage Reconstruction DREAM Challenge data, the 

phylogenies were determined similarly with the following changes. No representative zygote 

was added to the analysis. The temperature setting for the GESTALT based lineages was set 

to 0.1 for the “Horwitz-1” phylogeny and 0.05 for the “Horwitz-2” phylogeny.
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Benchmark Analysis Utilizing Allen Institute Cell Lineage Reconstruction 
DREAM Challenge Data—Lineage recording data for in vitro cell colonies and 

simulated recording data for C. elegans development was obtained from the Allen Institute 

Cell Lineage Reconstruction DREAM Challenge repository (https://www.synapse.org/

Portal.html#!Synapse:syn20692755/wiki/597064). intMEMOIR in vitro lineage barcode 

data (sub-challenge 1) for the five largest test cell colonies (test_11, test_14, test_25, 

test_28, and test_29) were retrieved, along with simulated GESTALT lineage barcode 

data (sub-challenge 2), and analyzed using our Camin-Sokal Bayes model. Inferred rooted 

phylogenies were compared to provided ground-truth cladograms for topological similarity 

using both Robinson-Foulds and Triplet distances. Scoring was accomplished using both the 

treeMan R package along with the provided custom DREAM Challenge scoring method.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Temporally resolved single cell lineage reveals developmental patterning of 

mouse brain.

• Acquired LOH allows for inference of cell lineage and is identifiable through 

scRNA-seq.

• Determining the active X-chromosome in females registers timing of lineage 

branchpoints.
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Figure 1. Isolation and transcriptome sequencing of mouse neocortical cells
(A) B6 (blue) and CA (yellow) mice were crossed in both directions to create heterozygous 

F1 offspring (green). Single Emx1 expression-marked neocortical cells were isolated from 

two different ages and their transcriptomes sequenced.

(B) 404 cells, shown in dimensionally reduced (UMAP) space, were clustered based on gene 

expression and eight cell types identified. oIPC = oligodendrocytic intermediate progenitor 

cell.

(C) Representative allele plots of heterozygous X-chromosome SNVs in eight cells (rows) 

from a female P0 mouse, showing X-inactivation. Note the reciprocal allele state detected at 

the Xist/Tsix locus. Allele state: blue = B6, green = B6/CA, yellow = CA. N = neuron, A = 

astrocyte, O = oligodendrocyte.

(D) Active X-chromosome for female cells shown in dimensionally reduced space. NC = 

biparental/not called.
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(E) Imprinting associated with the Prader-Willi/Angelman syndrome locus. Relative density 

histogram ridgeline plots (1 bp bins) of cells expressing maternal, paternal, or biparental 

variants at particular SNV locations from one mouse (P0-2, 64 cells). Chromosome 

coordinates, discussed genes, and Tabula Muris scRNA-seq coverage track (as in C) are 

shown on the x-axis. Relative density for each allele category is indicated on the y-axis.

UMAP visualizations and scRNA-seq based alleles are derived from Seurat_CountMatrix 

and VCFs Supplemental Data sets.
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Figure 2. Inferring LOH from scRNA-seq
(A) HMM results showing two mouse cells with either no LOH event (cell 64461) or two 

events (cell 64474, marked with *) along chromosome 19. Detected loci are shown as in 

Figure 1C, with the vertical axis indicating expressed allele state (scRNA) or HMM-inferred 

genotype (HMM Genotype). Tabula Muris cell-type specific transcription tracks are shown 

at the bottom, N = neuron, A = astrocyte, O = oligodendrocyte.

(B) Length-normalized chromosome positions of all LOH events from all autosomes of one 

mouse.

(C) Distribution of LOH lengths (≥1 Mb) for all mice showing median (bar) and IQR (box).

(D) Violin plots of average LOH events per cell for each mouse (n = 56 (P0-1), 64 (P0-2), 

56 (P42-2), 47 (P42-3)) and 10,000 randomly sampled in silico cells from the respective 

mouse. Mean and standard deviation are indicated for each by a black circle and vertical 

lines. *p-value <10−5 (two sample Z-test, mouse vs. 10K sampled cells).
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(E) Autosomal barcode of 56 cells plus a virtual zygote (bottom bar) derived from one 

mouse (P0-2). Autosomes are shown at the top with the centromeres on the left. Black bars 

indicate autosomal boundaries. For all panels, blue = B6, green = B6/CA, yellow = CA.

Supplemental Data: HMM_Genotype_Tables
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Figure 3. Phylogenetic analysis using LOH events
(A) Lineage of 56 cortical cells plus a virtual zygote from a P0 mouse was inferred using a 

Camin-Sokal parsimony-inspired Bayes model. Consensus phylogram shows the relatedness 

and number of LOH events for each cell. Scale bar = 12.5 events. ■ RGC, ■ immature 

neuron, ■ neuron, ■ zygote.

(B) The same lineage in cladogram form with supporting nodal posterior probabilities 

≥0.1 indicated, with mirrored “densiTree” representation of 1,500 sampled cladograms. The 

complete densiTree representation is shown as an inset with magnified area indicated. ● 
LOH event shared among all daughter cells, ▲ LOH event shared in all but one daughter 

cell.

(C) Barcode of segregating alleles (*) from a monophyletic clade marked “Panel C” in panel 

above. Chromosomes are aligned with the centromere to the left. Blue and yellow regions 

indicate LOH events (B6 and CA, respectively). Green regions indicate heterozygosity. 

Node posterior probability shown on the cladogram.
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Figure 4. Stereotyped expansion in the mouse neocortex
(A) Consensus cladograms of two P42 mice. Nodes with posterior probability of >0.05 are 

resolved. Posterior probabilities of >0.10 are indicated. ● LOH event shared among all 

daughter cells, ▲ LOH event shared in all but one daughter cell.

(B) LOH events by mouse and cell type. Total autosomal LOH events are shown for each 

cell on the y-axis. Violin plots show event distribution for each cell type in each mouse.

(C) The active X-chromosome is overlaid onto cell lineages of two female mice. The active 

X-chromosome (square) and cell type (circle) is indicated by color. NC = biparental/not 

called. For clades composed of either active X-chromosome, the most recent common 

cell (internal nodes) are inferred to occur about or before the time of gastrulation (when 

X-inactivation takes place) and their respective preceding branches are colored red. Nodes 

predicted to occur after the approximate time of gastrulation are shown in black. RGC = 

radial glia cell, ImmN = immature neuron, Neur = neuron, GlutN = glutamatergic neuron, 
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ImmA = immature astrocyte, Astro = astrocyte, oIPC = oligodendrocyte intermediate 

progenitor cell, Oligo = oligodendrocyte.
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Figure 5. Lineage across cell types and developmental time
(A) Expansion and differentiation of Emx1+ neural stem cells (NSC) into neurons and 

glia, as adapted (Kriegstein and Alvarez-Buylla, 2009). Neuroendothelial (NE) cells expand 

(circular arrow) to form a pool of radial glial cells (RGC) that produce neurons and 

glia in the cortex via asymmetric cell division (red lines), expansion, and maturation 

(dashed lines). Time-dependent development proceeds horizontally. Observed cells in this 

study are indicated by vertical dotted lines along with their relative time points. oIPC = 

oligodendrocyte intermediate progenitor cell, SVZ = subventricular zone.

(B) Example of different clades encompassing multiple cell types. All 404 cells are shown 

in reduced dimensional (UMAP) space to illustrate all possible cell types, indicated by 

color-bound regions. Cells from four representative clades of a P0 and P42 mouse (inset 

cladograms) are indicated by their corresponding colors. UMAP visualizations are derived 

from the Seurat_CountMatrix Supplemental Data set.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

scRNA sequencing data - mouse Laukoter et al., 2020 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE152716

scRNA sequencing data - human HepG2 Hou et al., 2016 GSM2039769
GSM2039770

HepG2 cell line genome data (Zhou et al., 2019) ENCODE:ENCBS760ISV

GRCm38.p5 NCBI https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001635.25/

Ensembl EMBL-EBI https://www.ensembl.org/index.html?redirect=no

CA Mouse Genome Project sequencing data Keane et al., 2011 ftp://ftp-mouse.sanger.ac.uk/
current_snps/strain_specific_vcfs/
CAST_EiJ.mgp.v5.snps.dbSNP142.vcf.gz

Supplemental Data

• Seurat_CountMatrix

• VCFs

• HMM_Genotype_Tables

• Consensus_Trees

• Dream Challenge

This study Horwitz, Marshall (2022), “Anderson_LOH_v3”, Mendeley 
Data, V1, doi: 10.17632/23f7j32zmf.1

Experimental models: organisms/strains

Mouse: CAST/Ei The Jackson Laboratory RRID:IMSR_JAX:000928

Mouse: C57BL/6J The Jackson Laboratory RRID:IMSR_JAX:00066

Mouse:Emx1-Cre The Jackson Laboratory RRID:IMSR_JAX:005628

Software and algorithms

STAR 2.5.0c Dobin et al., 2013 https://github.com/alexdobin/STAR

Seurat R package Butler et al., 2018; Stuart et al., 
2019

https://satijalab.org/seurat/

GATK Keane et al., 2011 https://gatk.broadinstitute.org/hc/en-us

HMM R package Prof. Dr. Lin M. Himmelmann, 
University of Applied Sciences 
Rapperswil, Switzerland

https://cran.r-project.org/web/packages/HMM/index.html

MrBayes Ronquist et al., 2012 http://nbisweden.github.io/MrBayes/

DensiTree Bouckaert, 2010 https://www.cs.auckland.ac.nz/~remco/DensiTree/

Supplemental Code

• CSI-scRLA Functions.R

• GEM_SNPCallerGVCF.sh

• GEM_RGReOrSortSplit.sh

This study Horwitz, Marshall (2022), “Anderson_LOH_v3”, Mendeley 
Data, V1, doi: 10.17632/23f7j32zmf.1
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