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Abstract

Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from 

preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized 

the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause 

of preterm labor and birth. While the intra-amniotic inflammatory responses driven by microbes 

(infection) or alarmins (sterile) have some overlap in the participating cellular and molecular 

processes, the distinct natures of these two conditions necessitate the implementation of specific 

approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be 

treated using the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially 

be treated using a combination of anti-inflammatory drugs (e.g., betamethasone, inflammasome 

inhibitors, etc.). Recent evidence also supports a role for fetal T-cell activation as a newly 

described trigger for preterm labor and birth in a subset of cases. Moreover, here we also 

provide evidence of two potential immune mechanisms responsible for a subset of preterm 

births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to 

preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector 

T-cell responses. Second, homeostatic macrophages were shown to be essential for maintaining 

pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-

polarized macrophages shows great promise for preventing inflammation-induced preterm birth. 

Collectively, in this review, we discuss established and novel immune mechanisms responsible 

for preterm birth and highlight potential targets for novel strategies aimed at preventing the 

multi-etiological syndrome of preterm labor.

In brief:

The syndrome of preterm labor comprises multiple established and novel etiologies. This review 

summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights 

potential strategies for its prevention.

Introduction

Preterm birth affects over 15 million pregnancies annually and remains a leading cause of 

neonatal morbidity and mortality (Liu et al., 2015, Chawanpaiboon et al., 2019). In addition 

to its drastic short-term consequences, preterm birth can have lasting effects on development 

that can persist into adulthood (Abitbol and Rodriguez, 2012, Carmody and Charlton, 2013, 

O’Reilly et al., 2013, Blencowe et al., 2013, Ream and Lehwald, 2018). Preterm deliveries 

are largely spontaneous, with the remainder being iatrogenic (i.e., medically indicated) 

(Goldenberg et al., 2008, Romero et al., 2014a). Spontaneous preterm birth results from 

preterm labor, a syndrome that includes multiple causal and associated etiologies (Romero 

et al., 2014a). Among these, inflammation of the amniotic cavity (i.e., intra-amniotic 

inflammation) is the most well-established cause (Romero et al., 2006b, Romero et al., 

2007, Goldenberg et al., 2008, Romero et al., 2014a). Intra-amniotic inflammation can 
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occur in two different contexts: the first results from the invasion of the amniotic cavity by 

microbes, termed intra-amniotic infection, whereas the second takes place in the absence 

of microbes and is associated with an increase in endogenous danger signals or alarmins, 

termed sterile intra-amniotic inflammation (Romero et al., 2006b, Romero et al., 2007, 

Goldenberg et al., 2008, Romero et al., 2014a, Romero et al., 2014b, Romero et al., 2014c, 

Romero et al., 2015b, Romero et al., 2015c). Importantly, a growing body of evidence has 

indicated that, although these two inflammatory states have similar clinical outcomes, they 

are intrinsically distinct from one another (Romero et al., 2014c, Romero et al., 2015a, 

Bhatti et al., 2020, Motomura et al., 2021a). Therefore, understanding the differences 

between the pathogenesis of intra-amniotic infection and sterile intra-amniotic inflammation 

is essential for determining the correct patient management.

A large proportion of spontaneous preterm births, however, are not associated with 

inflammation of the amniotic cavity and fetus (whether microbial or sterile), and have 

thus been grouped into the broad category of idiopathic preterm birth (Goldenberg et 

al., 2008, Barros et al., 2015). Among the proposed causes of idiopathic preterm birth, 

a breakdown of maternal-fetal tolerance has been put forward as a potential trigger for 

maternal inflammatory responses leading to the onset of preterm labor (Romero et al., 

2014a). Pregnancy represents a tightly controlled maternal immune response that requires 

a delicate balance between effective host defense against potential infection (Bizargity 

et al., 2009, Arenas-Hernandez et al., 2016, van Egmond et al., 2016, van der Zwan 

et al., 2018) and maintaining tolerance of the foreign conceptus (Aluvihare et al., 2004, 

Taglauer et al., 2010, Munoz-Suano et al., 2011, Mold and McCune, 2012, Arck and Hecher, 

2013, Erlebacher, 2013). Moreover, recent evidence has suggested that the fetus itself can 

exhibit immune responses and must therefore also tolerate the mother (Mold et al., 2008, 

Ivarsson et al., 2013, McGovern et al., 2017, Frascoli et al., 2018), given that fetal T-cell 

activation is associated with preterm labor and birth (Frascoli et al., 2018, Gomez-Lopez et 

al., 2019g). Such bidirectional tolerance is therefore the result of complex immunological 

adaptations that occur both systemically and locally (i.e., at the maternal-fetal interface), 

of which the latter involves both innate and adaptive cellular immune components (Croy 

et al., 1985, Aluvihare et al., 2004, Sasaki et al., 2004, Houser et al., 2011, Svensson et 

al., 2011, Bartmann et al., 2014, Vacca et al., 2015, Doisne et al., 2015, St Louis et al., 

2016, Xu et al., 2016, Gomez-Lopez et al., 2017a, Xu et al., 2018b, Miller et al., 2018, 

Jiang et al., 2018, Vazquez et al., 2019, Arenas-Hernandez et al., 2019, Leng et al., 2019, 

Salvany-Celades et al., 2019, Gomez-Lopez et al., 2020, Gomez-Lopez et al., 2021a). In 

particular, regulatory T cells (Tregs) are considered important antigen-specific mediators 

of maternal-fetal tolerance through their suppression of potentially harmful effector T-cell 

responses (Zenclussen et al., 2005, Darrasse-Jèze et al., 2006, Kahn and Baltimore, 2010, 

Shima et al., 2010, Rowe et al., 2011, Samstein et al., 2012, Rowe et al., 2012, Chen et 

al., 2013, Diao et al., 2021), and thus the dysfunction of these cells has been implicated in 

preterm birth (Schober et al., 2012, Gomez-Lopez et al., 2020). Indeed, we recently provided 

mechanistic evidence supporting a critical role for Tregs in late pregnancy by demonstrating 

that the loss of these cells leads to preterm birth in mice (Gomez-Lopez et al., 2020). 

However, Treg dysfunction/deficiency only seems to be responsible for a small subset of 

preterm births (Gomez-Lopez et al., 2020); thus, we reasoned that other immune cells are 
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contributing to maternal-fetal tolerance and may therefore be implicated in a breakdown 

of this process leading to preterm birth. Macrophages are considered to be important for 

preserving immune homeostasis at the maternal-fetal interface (Hunt et al., 1984, Gustafsson 

et al., 2008, Svensson et al., 2011, Svensson-Arvelund et al., 2015, Svensson-Arvelund and 

Ernerudh, 2015, Chambers et al., 2020, Abassi et al., 2020, Gomez-Lopez et al., 2021a); 

however, the importance of these cells in late pregnancy had not yet been demonstrated. 

Using an animal model of macrophage depletion, we showed that the loss of these cells 

in late gestation resulted in preterm birth as well as neonatal mortality (Gomez-Lopez et 

al., 2021a). Importantly, we also showed that the restoration of homeostatic macrophages 

could prevent inflammation-associated preterm birth and adverse neonatal outcomes in mice, 

further demonstrating the importance of these cells for pregnancy maintenance (Gomez-

Lopez et al., 2021a). Therefore, deciphering the contributions of these immune cell subsets 

to successful pregnancy may allow for the identification of novel approaches that can be 

used to prevent preterm labor and birth.

In this review, we first discuss the discovery, clinical definitions, and immune mechanisms 

implicated in intra-amniotic infection and sterile intra-amniotic inflammation. Moreover, we 

discuss the current and potential approaches that can be used to treat these two distinct 

clinical conditions. Next, we discuss the activation of the fetal immune system as a novel 

mechanism leading to preterm birth. We then focus on the mechanisms whereby maternal 

effector T cells, Tregs, and macrophages participate in successful pregnancy. In addition, we 

review the evidence implicating each subset in the pathophysiology of preterm labor and 

birth, and potential therapeutic approaches that can be used to target these cells. We aim to 

provide an overview of key immunological processes implicated in preterm labor and birth, 

which can provide deeper understanding, highlight gaps in knowledge, and provide potential 

targets for future therapies that can be used to treat this devastating obstetrical syndrome.

Intra-amniotic infection: the most well-known etiology of preterm labor and 

birth

The amniotic cavity has been classically thought to be a sterile compartment (Perez-Munoz 

et al., 2017), and therefore the detection of viable microorganisms in the amniotic fluid is 

considered to be abnormal. Microbial invasion of the amniotic cavity (MIAC) can elicit a 

local inflammatory response (i.e., microbial-associated intra-amniotic inflammation) (Naeye 

and Ross, 1982, Romero et al., 1991b, Romero et al., 1993c, Martinez-Varea et al., 2017, 

Gomez-Lopez et al., 2018c, Gomez-Lopez et al., 2019b, Galaz et al., 2020c, Galaz et 

al., 2020a). Microbial-associated intra-amniotic inflammation, referred to hereafter as intra-

amniotic infection, is defined as the presence of microbes together with intra-amniotic 

inflammation [i.e., increased concentrations of IL-6 or MMP-8 (Park et al., 2001, Yoon et 

al., 2001)] (Goldenberg et al., 2008, Romero et al., 2014a, Romero et al., 2014b, Romero 

et al., 2014c, Romero et al., 2015b, Romero et al., 2015c), and is strongly associated with 

preterm labor and delivery (Romero et al., 2001, Goncalves et al., 2002, Goldenberg et 

al., 2008, Bastek et al., 2011, Romero et al., 2014a). Although a small subset of patients 

with intra-amniotic infection may progress to a systemic maternal infection (i.e., clinical 

chorioamnionitis (Gibbs et al., 1982, Gibbs and Duff, 1991)), the majority of women with 
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intra-amniotic infection/inflammation are asymptomatic, supporting the subclinical nature 

of this condition (Gravett et al., 1986, Gibbs et al., 1992, Romero et al., 2006a, Romero et 

al., 2007, Goldenberg et al., 2008). Notably, microbiological analyses of the amniotic fluid 

suggest that approximately 25% of all spontaneous preterm births are related to infection 

(Gibbs et al., 1992, Romero et al., 2001, Goncalves et al., 2002, Goldenberg et al., 2008, 

Romero et al., 2014a). The proportion of patients with intra-amniotic infection is variable 

among the different clinical obstetric scenarios. On average, the rate of positive amniotic 

fluid culture among numerous studies analyzing women with preterm labor and intact 

membranes is approximately 10% (Goncalves et al., 2002), and this rate is increased to 

over 20% among those who ultimately deliver preterm (Romero et al., 1989c). Among the 

studies of women with preterm prelabor rupture of membranes (PPROM), the mean rate of 

a positive amniotic fluid culture is about 30% at time of admission (Romero et al., 1988b, 

Goncalves et al., 2002, Romero et al., 2015b) and can reach up to 75% if the sample 

is collected at labor onset (Romero et al., 1988b). Furthermore, it has been shown using 

molecular microbiological techniques that a significant proportion of patients with PPROM 

who presented a negative amniotic fluid culture with intra-amniotic inflammation yielded 

a positive bacterial signal (DiGiulio et al., 2010, Romero et al., 2015b, Theis et al., 2020), 

suggesting the presence of non-cultivable microorganisms. Intra-amniotic infection is also 

present in up to 50% of women with cervical insufficiency (Romero et al., 1992a, Lee et 

al., 2008, Bujold et al., 2008, Oh et al., 2010, Lisonkova et al., 2014), as well as in one out 

of ten women with a sonographic short cervix (Hassan et al., 2006, Romero et al., 2015c). 

Although it is well known that a short cervix is considered a powerful predictor of preterm 

birth (Andersen et al., 1990, Iams et al., 1996, Heath et al., 1998, Berghella et al., 1999, 

Hassan et al., 2000, Romero, 2007, Rosenbloom et al., 2020, Gudicha et al., 2021), the 

presence of intra-amniotic infection among these patients confers an increased risk of early 

preterm delivery (i.e., before 34 weeks) compared to those without infection (Hassan et al., 

2006, Romero et al., 2015c). Importantly, intra-amniotic infection is also associated with 

adverse neonatal outcomes, including increased morbidity and mortality (Yoon et al., 1996a, 

Yoon et al., 1999, Yoon et al., 2000b, Berger et al., 2004, Kirchner et al., 2007). Taken 

together, a large body of clinical evidence has implicated intra-amniotic infection as being 

strongly linked to spontaneous preterm labor and birth, thereby increasing the already high 

basal risk in a subset of women, including those with a short cervix.

To establish a causal link between intra-amniotic infection and preterm birth, multiple 

experimental approaches using animal models have been widely utilized (Dombroski et al., 

1990, Gravett et al., 1994, Fidel et al., 2003, Novy et al., 2009, Boldenow et al., 2016, 

Gomez-Lopez et al., 2018a, Garcia-Flores et al., 2018, Faro et al., 2019, Motomura et 

al., 2020b). The intra-amniotic administration of microorganisms or their products (e.g., 

lipopolysaccharide or LPS) has been shown to induce preterm labor and birth in different 

animal models (Dombroski et al., 1990, Gravett et al., 1994, Fidel et al., 2003, Elovitz 

and Mrinalini, 2004, Novy et al., 2009, Boldenow et al., 2016, Gomez-Lopez et al., 

2018a, Garcia-Flores et al., 2018, Faro et al., 2019, Motomura et al., 2020b, Stranik et 

al., 2020, Cappelletti et al., 2021). By comparing different routes of LPS administration 

(intra-amniotic, intra-uterine, and intra-peritoneal), we showed that only the intra-amniotic 

injection of this bacterial product resembles the subclinical nature of intra-amniotic 
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inflammation/infection (Gomez-Lopez et al., 2018a), in which the activation of the common 

pathway of labor typically occurs in the absence of systemic symptoms such as fever 

(Gravett et al., 1986, Romero et al., 1988b, Romero et al., 1989c, Gibbs et al., 1992, Romero 

et al., 2006a, Romero et al., 2007, Goldenberg et al., 2008). Therefore, a causal link between 

the presence of microorganisms or their products in the amniotic cavity and the onset of 

preterm labor was established.

How do microorganisms invade the amniotic cavity? Multiple routes have been proposed 

whereby microorganisms can reach the intra-amniotic space: 1) ascension from the 

lower genital tract; 2) hematogenous dissemination through the placenta (transplacental 

infection); 3) retrograde seeding from the peritoneal cavity through the fallopian tubes; 

and 4) accidental inoculation (i.e., iatrogenic) at the time of invasive procedures such 

as amniocentesis, cordocentesis, or chorionic villous sampling. A large number of 

investigations support the ascending route as the most common pathway of intrauterine 

infection (Romero et al., 1989c, Romero et al., 1990b, Romero et al., 2019, Oh et al., 

2019a). Indeed, we recently investigated the bacterial profiles of amniotic fluids and 

vaginal swabs taken at the time of amniocentesis in women with intra-amniotic infection 

using conventional culture, matrix-assisted laser desorption ionization-time of flight mass 

spectrometry (MALDI-TOF), and 16S ribosomal RNA (rRNA) gene sequencing (Romero 

et al., 2019). We found that the bacterial profiles of amniotic fluid are largely consistent 

with those of the vagina, thus generating solid evidence supporting the ascending route 

of microbial invasion of the amniotic cavity (Romero et al., 2019). Moreover, animal 

models have demonstrated the biological plausibility of ascending intra-amniotic infection 

(Vornhagen et al., 2016, Suff et al., 2018, Pavlidis et al., 2020, Gilbert et al., 2021, Spencer 

et al., 2021). The most common microorganisms cultured from the amniotic fluid of women 

with intra-amniotic infection include Ureaplasma spp., Mycoplasma hominis, Gardnerella 
vaginalis, and Streptococcus agalactiae, among others (Romero et al., 1989c, Yoon et al., 

1998, DiGiulio et al., 2010, Mendz et al., 2013, Romero et al., 2014c, Romero et al., 

2015d), all of which can be found in the vagina (Romero et al., 1989c, Romero et al., 

2019). Additional evidence in favor of an ascending model of intra-amniotic infection comes 

from the demonstration of greater signs of inflammation/infection in tissues near the cervix. 

For example, histological inflammation is more common and severe in the cervical zone 

of the chorioamniotic membranes (Malak and Bell, 1994, McLaren et al., 1999, El Khwad 

et al., 2005, Nhan-Chang et al., 2010, Gomez-Lopez et al., 2011, Elfayomy and Almasry, 

2014, Marcellin et al., 2017). Similarly, intra-amniotic inflammation is more prevalent in 

the first (i.e., closer to the cervix) rather than the second fetus in twin pregnancies affected 

by preterm labor with intact membranes (Romero et al., 1990b, Oh et al., 2019a). Thus, 

a four-stage ascending process of intrauterine infection from the lower genital tract has 

been classically proposed (Romero et al., 1988a, Goncalves et al., 2002). This process 

includes an initial alteration of the vaginal microbiome, characterized by a reduction in the 

proportion of commensal bacteria such as Lactobacillus spp. and the abnormal growth of 

pathological organisms (e.g., Neisseria gonorrhoeae, Chlamydia trachomatis, Ureaplasma 
parvum, Mycoplasma, and Gardnerella vaginalis, among others) (stage I). Then, these 

pathological microorganisms gain access to the intrauterine cavity (stage II), causing a 

localized inflammatory reaction in the decidua and chorion. Here, the microorganisms 
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invade the amniotic cavity through the chorionic vessels or by directly crossing the intact 

membranes (stage III). Lastly, microorganisms in the amniotic cavity gain access to the fetus 

through different routes of entry, including the fetal mucosal tissues or the invasion of the 

fetal villous circulation (stage IV). A systemic dissemination of microbes from these fetal 

sites can occur, leading to fetal inflammatory response syndrome (FIRS) (Gomez et al., 

1998, Romero et al., 1998, Pacora et al., 2002, Madsen-Bouterse et al., 2010, Jung et al., 

2020, Para et al., 2021). Such fetal compromise may explain the increased risk of short- and 

long-term complications as well as death in neonates born to women with intra-amniotic 

infection (Yoon et al., 1998, Hitti et al., 2001, Yoon et al., 2003, Berger et al., 2004, 

Kirchner et al., 2007, Arayici et al., 2014, Kostlin-Gille et al., 2021).

In addition to the classical ascending route of intra-amniotic infection, the invasion of the 

amniotic cavity can also be caused by trans-placental infection in a small fraction of patients 

(Romero et al., 1989c, Goldenberg et al., 2008). Furthermore, maternal infections such as 

urinary tract infections (Kass, 1962, Romero et al., 1989b, Wing et al., 2014) and malaria 

(Menendez et al., 2000, Desai et al., 2007), among others (Kourtis et al., 2014, Fouks 

et al., 2018), have been associated with preterm labor and birth. Interestingly, molecular 

tools for bacterial detection in amniotic fluid have been useful to show the presence 

of microorganisms normally found in the oral cavity (e.g. Fusobacterium nucleatum and 

Streptococcus spp.) in pregnant patients at term (Bearfield et al., 2002), further supporting 

the proposed relationship between periodontal disease and adverse pregnancy outcomes 

through hematogenous dissemination (Goepfert et al., 2004, Le et al., 2021, Uwambaye et 

al., 2021). Collectively, these findings suggest that maternal bacteremia and trans-placental 

passage could account for some cases of intra-amniotic infection. However, additional 

research is required to establish a direct link between extra-uterine infectious conditions 

and spontaneous preterm labor and birth.

Host immune defense mechanisms in intra-amniotic infection

Once microbes have entered the amniotic cavity, different local and systemic mechanisms of 

host immune defense are elicited in both the maternal and the fetal compartments (Romero 

et al., 1989c, Gibbs and Duff, 1991, Romero et al., 2006a, Lee et al., 2006, Romero et al., 

2007, Lee et al., 2007, Gotsch et al., 2007, Romero et al., 2014a). The local inflammatory 

response towards microbes invading the amniotic cavity is characterized by an infiltration 

of leukocytes, including both innate and adaptive immune cells (Romero et al., 1991b, 

Romero et al., 1993c, Gomez et al., 1994, Yoon et al., 1996b, Martinez-Varea et al., 2017, 

Gomez-Lopez et al., 2018c, Gomez-Lopez et al., 2019b, Galaz et al., 2020c, Galaz et al., 

2020a, Galaz et al., 2020b, Gomez-Lopez et al., 2021c), as well as increased amniotic fluid 

concentrations of cytokines, chemokines and prostaglandins (Romero et al., 1986, Saito et 

al., 1993, Romero et al., 1993b, Hsu et al., 1998a, Hsu et al., 1998b, Yoon et al., 2001, 

Figueroa et al., 2005, Cobo et al., 2014, Park et al., 2016, Tarca et al., 2017, Peiris et al., 

2020, Bhatti et al., 2020, McCartney et al., 2021, Peiris et al., 2021). Immunophenotyping 

of the cellular component of this immune response in patients with intra-amniotic infection 

has revealed that the most common cells involved in the local inflammatory response are 

neutrophils and monocytes/macrophages, as well as to a lesser extent T cells, B cells, and 

NK cells (Martinez-Varea et al., 2017, Gomez-Lopez et al., 2018c, Gomez-Lopez et al., 
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2019g, Galaz et al., 2020a, Galaz et al., 2020c). Using DNA fingerprinting and fluorescence 

in situ hybridization, we have shown that both fetal and maternal neutrophils can access the 

amniotic cavity and participate in host defense against intra-amniotic infection/inflammation 

(Gomez-Lopez et al., 2017f). Similarly, monocytes/macrophages present in the amniotic 

fluid of patients with demonstrated infection/inflammation can originate from both the 

mother and the fetus (Gomez-Lopez et al., 2019d). However, in cases of intra-amniotic 

infection leading to preterm labor and birth, the majority of neutrophils and monocytes/

macrophages in the amniotic fluid are derived from the fetus (Sampson et al., 1997, Gomez-

Lopez et al., 2017f, Gomez-Lopez et al., 2019d). By contrast, a predominant maternal origin 

has been shown for neutrophils (Gomez-Lopez et al., 2017f) and monocytes/macrophages 

(Gomez-Lopez et al., 2019d) detected in the amniotic fluid of women with intra-amniotic 

infection/inflammation who delivered at term. Therefore, both the mother and fetus can 

display a local immune response to microbes in the amniotic cavity.

The immune response towards microbes invading the amniotic cavity requires the 

orchestration of multiple leukocyte functions. As first responders to infection, neutrophils 

are characterized by a variety of host defense mechanisms, including phagocytic capacity, 

the release of antimicrobial products and immune mediators, and the formation of neutrophil 

extracellular traps (NETs) (Mantovani et al., 2011, Burn et al., 2021). NETs are web-like 

structures composed of DNA, histones, and antimicrobial products such as neutrophil 

elastase that can trap microbes (Brinkmann et al., 2004, Fuchs et al., 2007, Brinkmann 

and Zychlinsky, 2012). Notably, we and others have demonstrated that neutrophils in 

amniotic fluid are capable of performing the abovementioned host defense mechanisms 

including phagocytosis (Gomez-Lopez et al., 2017b), release of antimicrobial products 

and immune mediators such as lactoferrin, defensins, tumor necrosis factor (TNF)-α and 

macrophage inflammatory protein-1β (Heller et al., 1995, Otsuki et al., 1999, Pacora 

et al., 2000a, Maymon et al., 2001, Espinoza et al., 2003, Gravett et al., 2004, Soto 

et al., 2007, Martinez-Varea et al., 2017, Varrey et al., 2018, Para et al., 2020), and 

formation of NETs (Gomez-Lopez et al., 2017g, Galaz et al., 2020c). Similarly, neutrophils 

infiltrating the chorioamniotic membranes in response to intra-amniotic infection also have 

the capacity to form NETs (Boldenow et al., 2016, Gomez-Lopez et al., 2017c, Tong et 

al., 2019, Tong et al., 2021). On the other hand, one of the primary functions of monocytes/

macrophages is the production and secretion of pro-inflammatory cytokines (Serbina et 

al., 2008), which is consistent with reports of such cells expressing interleukin (IL)-1β 
and IL-1α in the amniotic cavity of patients with intra-amniotic infection (Martinez-Varea 

et al., 2017, Galaz et al., 2020c). Consistent with these distinct roles of neutrophils 

and monocytes/macrophages in intra-amniotic infection, high-throughput RNA sequencing 

analysis revealed differing transcriptomic profiles in these cell types (Gomez-Lopez et al., 

2021c), thus highlighting the complexity of the local cellular innate immune responses in 

women with intra-amniotic infection. In addition, the inflammatory mediators detected in 

the amniotic fluid are mainly related to innate immune cells (i.e., neutrophils and monocyte/

macrophages) (Gomez-Lopez et al., 2019b, Galaz et al., 2020a). Although the number 

of amniotic fluid T and B cells is also increased in patients with intra-amniotic infection/

inflammation (Gomez-Lopez et al., 2018c), their contribution to the integrated immune 

response remains less clear, given the overwhelming presence of innate immune cells. Yet, 
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we recently proposed a role for the T-cell cytokine IL-22 in the host response against 

microbes invading the amniotic cavity by demonstrating the participation of this cytokine 

in the intra-amniotic inflammatory milieu that occurs prior to Ureaplasma parvum-induced 

preterm birth in mice, which was prevented by IL-22 deficiency (Gershater et al., 2022, 

Accepted). Thus, the cellular immune response of women at risk for spontaneous preterm 

birth with demonstrated intra-amniotic infection is greater than in those without infection, 

and is primarily driven by neutrophils, monocytes/macrophages, and, to a lesser extent, T 

cells (Fig. 1A).

Treatment of intra-amniotic infection

Considering the above demonstrations showing a strong relationship between intra-amniotic 

infection and spontaneous preterm birth as well as its adverse consequences, numerous 

randomized clinical trials have attempted to manage such risks using antibiotic therapy. 

Multiple clinical trials in patients with PPROM indicated that antibiotic therapy is associated 

with a longer latency period (time between the onset of PPROM and delivery) as well as 

reduced rates of clinical chorioamnionitis and neonatal sepsis (Mercer and Arheart, 1995, 

Kenyon et al., 2001a, Kenyon et al., 2013). Thus, antibiotics are considered a standard of 

care for women with PPROM (Ehrenberg and Mercer, 2001, Yudin et al., 2009, Thomson 

et al., 2019, American College of Obstetricians and Gynecologists, 2020). However, most 

studies evaluating the potential usefulness of antibiotics to prolong gestational length and 

reduce neonatal morbidity in women with preterm labor and intact membranes have been 

unsuccessful (Newton et al., 1989, Romero et al., 1993a, Gordon et al., 1995, Kenyon et 

al., 2001b). Such disparity in the success of antibiotic treatment could be explained by the 

greater prevalence of intra-amniotic infection in women with PPROM compared to those 

with preterm labor and intact membranes (Goncalves et al., 2002), and thus the benefits of 

antibiotics lies in their inherent function of killing bacteria or inhibiting bacterial growth. 

Therefore, it is imperative to evaluate the microbial and inflammatory status of the amniotic 

fluid to select the subset of women with preterm labor and intact membranes who will 

benefit from antibiotic treatment. Indeed, recent investigations have demonstrated that the 

utilization of an appropriate antibiotic regimen can improve adverse perinatal outcomes in 

women with preterm labor and intact membranes (Yoon et al., 2019), PPROM (Lee et al., 

2016a, Lee et al., 2016b), or cervical insufficiency (Oh et al., 2019b, Yeo et al., 2021) 

who were diagnosed with intra-amniotic infection/inflammation. This antibiotic regimen 

includes clarithromycin, ceftriaxone and metronidazole, based on their pharmacokinetics 

(Kafetzis et al., 1983, Visser and Hundt, 1984, Amon, 1985, Matsuda et al., 1988, Witt 

et al., 2003, Park et al., 2012) and broad coverage for bacteria that are typically found in 

the amniotic fluid (Romero et al., 1989c, Yoon et al., 1998, DiGiulio et al., 2010, Mendz 

et al., 2013, Romero et al., 2014b, Romero et al., 2014c, Romero et al., 2015b, Romero 

et al., 2015d, Romero et al., 2015c). Specifically, the use of clarithromycin is strongly 

supported by its coverage of genital mycoplasmas as well as more efficient trans-placental 

passage than other macrolides (Witt et al., 2003, Park et al., 2012). Such protective effects 

of clarithromycin were recently demonstrated by the reduced rates of preterm birth and 

neonatal mortality observed in mice treated with this antibiotic after the intra-amniotic 

injection of Ureaplasma parvum (Motomura et al., 2020b). Furthermore, ceftriaxone and 

metronidazole offer excellent antimicrobial coverage for aerobic and anaerobic bacteria, 
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respectively (Klein and Cunha, 1995, Freeman et al., 1997, Lamb et al., 2002, Brook et al., 

2013), and can also cross the placenta efficiently (Kafetzis et al., 1983, Visser and Hundt, 

1984, Amon, 1985, Matsuda et al., 1988). Therefore, this recent evidence supports the use 

of amniocentesis to evaluate the infectious status of the amniotic fluid and the treatment of 

intra-amniotic infection with the optimal antibiotic therapy.

Sterile intra-amniotic inflammation: the new kid on the block among the 

etiologies of preterm labor and birth

Discovery of sterile intra-amniotic inflammation

As mentioned above, the presence of intra-amniotic inflammation has been traditionally 

attributed to the host defense processes triggered by microbes invading the amniotic 

cavity (Romero et al., 1987, Romero et al., 1988c, Romero et al., 1989c, Gibbs et al., 

1992). However, several clinical investigations have reported that a subset of women 

diagnosed with intra-amniotic inflammation (as indicated by elevated amniotic fluid IL-6 

concentrations (Yoon et al., 2001)) had negative amniotic fluid cultures (Hitti et al., 1997, 

Yoon et al., 2000a, Yoon et al., 2001, Gardella et al., 2004, DiGiulio et al., 2008, DiGiulio 

et al., 2010, Combs et al., 2014). Two potential explanations for this phenomenon can 

be proposed: 1) this subset of women had intra-amniotic inflammation that was initiated 

by non-cultivable or fastidious microorganisms, or 2) such inflammation was driven by non-

infectious processes, as observed in gout, rheumatoid arthritis, or other sterile inflammatory 

diseases (Busso and So, 2010, Goh and Midwood, 2012, So and Martinon, 2017). Over the 

past two decades, the advancement of molecular microbiological techniques has allowed 

for the detection and identification of non-cultivable microbes in the amniotic fluid (Jalava 

et al., 1996, Oyarzun et al., 1998, Kim et al., 2003, Gardella et al., 2004, DiGiulio et 

al., 2008, Romero et al., 2014b, Combs et al., 2014, Burnham et al., 2020, Theis et 

al., 2020, Stinson et al., 2020). Accordingly, our group has utilized a combination of 

conventional culture and molecular microbiological techniques [PCR-electrospray ionization 

mass spectrometry (PCR-ESI/MS)](Romero et al., 2014b) as well as microbial cell-free 

DNA (cfDNA) (Burnham et al., 2020) to demonstrate the absence of bacterial or viral 

nucleic acids in a subset of women with intra-amniotic inflammation, a condition that 

has been consequently termed “sterile intra-amniotic inflammation” (Romero et al., 2014c, 

Romero et al., 2015b, Romero et al., 2015c, Romero et al., 2015a, Burnham et al., 2020) 

(Fig. 1B). Upon the establishment of this new clinical entity, a new line of investigation 

has been undertaken by our group and others to evaluate the prevalence and underlying 

mechanisms of sterile intra-amniotic inflammation. Importantly, sterile intra-amniotic 

inflammation is more common than intra-amniotic infection in women with preterm labor 

with intact membranes (Romero et al., 2014c) as well as in women with an asymptomatic 

sonographic short cervix (Romero et al., 2015c) or cervical insufficiency (Chalupska et 

al., 2021). Moreover, women with sterile intra-amniotic inflammation have pregnancy 

and neonatal outcomes similar to women with intra-amniotic infection (Romero et al., 

2014c, Combs et al., 2014). The clinical outcomes of sterile intra-amniotic inflammation 

correlate with the presence of acute inflammatory lesions in the placenta (i.e., acute 

histologic chorioamnionitis and funisitis), again resembling the outcomes of microbial-

associated intra-amniotic inflammation (Romero et al., 2014c). Thus, sterile intra-amniotic 
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inflammation has emerged as a new entity with pregnancy and neonatal consequences as 

devastating as those associated with infection, and therefore warrants deeper investigation.

Progress in the understanding of sterile intra-amniotic inflammation

As an initial effort to distinguish the inflammatory processes taking place in sterile intra-

amniotic inflammation from those observed in intra-amniotic infection, our group performed 

a network analysis of the cytokines and other known inflammatory mediators in the amniotic 

fluid of women who underwent preterm labor with intact membranes and were diagnosed 

with either sterile intra-amniotic inflammation or intra-amniotic infection (Romero et al., 

2015a). This network analysis revealed the enrichment of IL-1α and high mobility group 

box 1 (HMGB1) in the amniotic fluid of women with sterile intra-amniotic inflammation 

(Romero et al., 2015a). Multiple studies have demonstrated the importance of IL-1α in 

the physiologic and pathologic processes of parturition (Romero et al., 1989a, Romero et 

al., 1990a, Nadeau-Vallee et al., 2016a, Nadeau-Vallee et al., 2016b, Nadeau-Vallee et al., 

2017b, Equils et al., 2020), as evidenced by its increased concentrations in the amniotic fluid 

of women with intra-amniotic inflammation (Romero et al., 1992b) as well as mechanistic 

demonstrations that the systemic administration of IL-1 induced preterm parturition in 

mice (Romero et al., 1991a), which could be prevented by pre-treatment with the IL-1 

receptor antagonist (IL-1RA) (Romero and Tartakovsky, 1992). Clinical investigations have 

also shown that women with sterile intra-amniotic inflammation who had higher amniotic 

fluid concentrations of HMGB1 delivered sooner than women with lower concentrations, 

implicating this mediator in the pathological process of preterm labor and birth (Romero 

et al., 2014c). Notably, both IL-1α and HMGB1 are known damage-associated molecular 

patterns (DAMPs) or alarmins (Oppenheim and Yang, 2005, Lotze et al., 2007, Bianchi, 

2007, Rider et al., 2017), and thus our network analysis hinted at a key role for alarmins in 

the pathophysiology of sterile intra-amniotic inflammation.

Alarmins are considered part of a broad class of molecules, termed danger signals, that 

alert the innate and adaptive immune system and thus trigger host defense mechanisms 

(Oppenheim and Yang, 2005, Lotze et al., 2007, Bianchi, 2007, Rider et al., 2017). Danger 

signals that are derived from exogenous sources, such as microbes, are called pathogen-

associated molecular patterns (PAMPs) (Oppenheim and Yang, 2005, Lotze et al., 2007, 

Bianchi, 2007, Rider et al., 2017). Yet, it is now well known that immune activation can 

also be induced by endogenous DAMPs or alarmins (Oppenheim and Yang, 2005, Lotze 

et al., 2007, Bianchi, 2007, Rider et al., 2017). Multiple defining characteristics have been 

described for alarmins: 1) they are rapidly released upon non-programmed cell death (i.e., 

necrosis) but not apoptosis; 2) viable cells can also release alarmins via specialized secretion 

systems or by the endoplasmic reticulum-Golgi secretion pathway; 3) as danger signals, 

alarmins can participate in the recruitment and activation of innate immune cells via pattern 

recognition receptors (PRR); and 4) alarmins contribute to the restoration of homeostasis 

by promoting healing of tissues damaged by inflammation (Oppenheim and Yang, 2005, 

Lotze et al., 2007, Bianchi, 2007, Rider et al., 2017). In addition, studies have shown 

that alarmins can be released upon cellular senescence (Huang et al., 2015), a state of 

cellular aging in which cell division has been halted (Campisi and d’Adda di Fagagna, 2007, 

Munoz-Espin and Serrano, 2014, Di Micco et al., 2021). Classical alarmins include HMGB1 
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(Wang et al., 1999, Harris and Raucci, 2006), S100 proteins (Foell et al., 2007), IL-1α 
(Werman et al., 2004, Tracy et al., 2012, Di Paolo and Shayakhmetov, 2016), and heat-shock 

protein 70 (HSP70) (Asea et al., 2000), among others (Bianchi, 2007). Importantly, each 

of the abovementioned alarmins has been demonstrated to be increased in amniotic fluid of 

women with intra-amniotic inflammation who underwent preterm labor and birth (Romero 

et al., 1992b, Friel et al., 2007, Romero et al., 2011, Romero et al., 2012, Romero et al., 

2014c, Baumbusch et al., 2016, Son et al., 2019, Chaiworapongsa et al., 2008). Based on 

these observations, we have undertaken a series of translational investigations to establish 

a causal link between elevated amniotic fluid concentrations of alarmins and preterm birth. 

The ultrasound-guided intra-amniotic administration of HMGB1 or S100B, at pathological 

concentrations found in women with sterile intra-amniotic inflammation, induced preterm 

birth in mice (Gomez-Lopez et al., 2016c, Gomez-Lopez et al., 2019c, Galaz et al., 2021). 

Similarly, the intra-amniotic injection of the alarmins IL-1α, HSP70, or S100A12 also 

reduced gestational length, thereby increasing the rate of preterm birth (Motomura et al., 

2020a, Schwenkel et al., 2021, Motomura et al., 2021b). Importantly, the intra-amniotic 

injection of alarmins also induced adverse fetal and neonatal outcomes, as evidenced by 

a fetal inflammatory response (Kallapur et al., 2011) and increased mortality at birth 

(Gomez-Lopez et al., 2019c, Motomura et al., 2020a, Motomura et al., 2021b, Schwenkel 

et al., 2021) as well as postnatal changes such as alterations in respiratory parameters 

(Emerson et al., 1997, Willet et al., 2002), systemic cortisol levels, and concentration of 

lung surfactant proteins (Emerson et al., 1997) in neonates. Hence, we have provided solid 

evidence demonstrating a causal link between the elevated amniotic fluid concentrations of 

alarmins and preterm birth and adverse neonatal outcomes.

In search of the putative mechanisms whereby alarmins in the amniotic cavity can induce 

preterm labor and birth, we first turned to the human chorioamniotic membranes. The 

chorioamniotic membranes are the tissues surrounding the amniotic cavity containing the 

fetus (Bourne, 1962), and their activation is a component of the common pathway of 

labor (Norwitz et al., 1999, Romero et al., 2006b, Smith, 2007, Romero et al., 2014c). 

Given that the chorioamniotic membranes are in direct contact with the amniotic fluid, in 
vitro studies were undertaken to evaluate the pathways that were affected upon exposure 

of these tissues to HMGB1 (Bredeson et al., 2014, Plazyo et al., 2016, Menon et al., 

2016). We showed that HMGB1 induced a pro-inflammatory response in the chorioamniotic 

membranes by increasing the secretion of IL-6 and mature IL-1β as well as by upregulating 

the expression of pro-inflammatory transcripts such as NFKB1, ILIB, IL6, TNF, IL1A, 

and IFNG and the HMGB1 receptors RAGE and TLR2 (Plazyo et al., 2016). Notably, 

HMGB1 exposure also upregulated the mRNA and protein expression of the inflammasome 

components nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family 

pyrin domain-containing 3 protein (NLRP3), NOD 1 and 2, and absent in melanoma 

2 (AIM2) in the chorioamniotic membranes (Plazyo et al., 2016). Similarly, we have 

demonstrated the release of IL-6 and IL-8, the upregulated mRNA expression of NFKB1, 

ILIB, IL6, RAGE, TLR2, NOD, and the increased protein expression of NLRP3 in the 

chorioamniotic membranes exposed to S100A12 (Motomura et al., 2021b). Taken together, 

our results demonstrate that alarmins act by inducing inflammatory responses in the human 

chorioamniotic membranes, a process that involves the NLRP3 inflammasome.
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Inflammasomes are cytoplasmic high-molecular-weight protein complexes that coordinate 

inflammatory responses (Martinon et al., 2002, Mariathasan and Monack, 2007, van de 

Veerdonk et al., 2011, Gross et al., 2011, Henao-Mejia et al., 2012, Franchi and Nunez, 

2012, Swanson et al., 2019). The basic structure of an NLR inflammasome consists of 

an inflammasome sensor molecule, the adaptor protein ASC (an apoptosis-associated speck-

like protein), and pro-caspase-1 (Martinon et al., 2002, Mariathasan and Monack, 2007, 

van de Veerdonk et al., 2011, Gross et al., 2011, Henao-Mejia et al., 2012, Franchi and 

Nunez, 2012, Swanson et al., 2019). Upon activation, the inflammasome complex induces 

the autocatalytic cleavage of pro-caspase-1 into its active form, which can cleave pro-IL-1β 
and pro-IL-18 into their mature and released forms (Black et al., 1989, Kostura et al., 1989, 

Cerretti et al., 1992, Thornberry et al., 1992, Gu et al., 1997, Ghayur et al., 1997). These 

cytokines, which play a key role in term and preterm parturition (Romero et al., 1989a, 

Romero et al., 1990a, Romero et al., 1991a, Romero et al., 1992b, Romero and Tartakovsky, 

1992, Pacora et al., 2000b, Girard et al., 2014), and other components of the NLRP3 

inflammasome are increased in amniotic fluid of women who underwent spontaneous term 

or preterm labor, and such an increase is more pronounced in the presence of intra-amniotic 

inflammation (Romero et al., 1992b, Pacora et al., 2000b, Gotsch et al., 2008). Furthermore, 

NLRP3 inflammasome components are also expressed by the chorioamniotic membranes 

of women with spontaneous term or preterm parturition (Gotsch et al., 2008, Lappas, 

2014, Gomez-Lopez et al., 2017e, Gomez-Lopez et al., 2017i, Gomez-Lopez et al., 2017h, 

Bryant et al., 2017, Romero et al., 2018, Gomez-Lopez et al., 2018b, Gomez-Lopez et al., 

2019a, Motomura et al., 2021a), indicating a role for the NLRP3 inflammasome in the 

inflammatory physiologic or pathologic process of labor. In line with these findings, human 

and animal studies have shown the increased expression of caspase-1 and mature IL-1β in 

the chorioamniotic membranes exposed to HMGB1 (Plazyo et al., 2016), IL-1α (Motomura 

et al., 2020a), S100B (Gomez-Lopez et al., 2019c), and S100A12 (Motomura et al., 2021b). 

It is also worth mentioning that there is evidence of a causal relationship between the 

intra-amniotic (Baggia et al., 1996, Sadowsky et al., 2000, Sadowsky et al., 2006, Presicce et 

al., 2015) or intra-uterine (Yoshimura and Hirsch, 2005) administration of IL-1β and preterm 

labor in animals.

Once the inflammasome is activated, the ASC adaptor protein assembles into a large 

intracellular complex known as a “speck” (Fernandes-Alnemri et al., 2007, Vajjhala et al., 

2012). Such ASC specks can function as alarmins upon their release into the extracellular 

space (Balci-Peynircioglu et al., 2008, Baroja-Mazo et al., 2014, Franklin et al., 2014), 

and thus their detection can serve as an indicator of in vivo inflammasome activation 

(Stutz et al., 2013). Notably, ASC concentrations were increased in amniotic fluid of 

women with labor at term (Panaitescu et al., 2019), and were higher in women with 

clinical chorioamnionitis at term and either sterile or microbial-associated intra-amniotic 

inflammation (Gomez-Lopez et al., 2019e). Importantly, amniotic fluid ASC concentrations 

were also increased in patients undergoing preterm labor with either sterile intra-amniotic 

inflammation or intra-amniotic infection (Gomez-Lopez et al., 2018b), providing additional 

confirmation that both alarmins and microbes can induce inflammasome activation in the 

amniotic cavity.
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The final step of inflammasome activation is pyroptosis, a type of programmed cell death 

characterized by the release of cytosolic contents through pores formed in the cell membrane 

by gasdermin D (GSDMD) (Gaidt and Hornung, 2016, Sborgi et al., 2016, Aglietti and 

Dueber, 2017, Shi et al., 2017), a protein that is cleaved by active caspase-1 and caspase-11 

(Kayagaki et al., 2015, Shi et al., 2015). Amniotic fluid concentrations of GSDMD 

have been utilized as a readout of in vivo pyroptosis in the amniotic cavity of women 

who underwent spontaneous term labor and those with spontaneous preterm labor with 

intact membranes (Gomez-Lopez et al., 2019f, Gomez-Lopez et al., 2021b). Specifically, 

GSDMD was detectable in the amniotic fluid and chorioamniotic membranes of women 

with preterm labor and sterile intra-amniotic inflammation or intra-amniotic infection; 

moreover, the presence of GSDMD was associated with elevated protein expression of 

caspase-1 and IL-1β in the chorioamniotic membranes (Gomez-Lopez et al., 2019f). These 

results provide evidence that women with sterile intra-amniotic inflammation undergo 

inflammasome-mediated pyroptosis in the intra-amniotic space.

A central question that arose from the abovementioned studies is: what is the origin of 

the alarmins in the amniotic cavity? Alarmins can be released during cellular senescence 

(Huang et al., 2015) and as a result of tissue injury or non-programmed cellular death 

(Oppenheim and Yang, 2005, Lotze et al., 2007, Bianchi, 2007, Rider et al., 2017). Notably, 

cellular senescence of the chorioamniotic membranes has been considered a physiological 

mechanism of parturition at term (Behnia et al., 2015, Polettini et al., 2015, Bonney et al., 

2016, Velarde and Menon, 2016), and in particular, decidual senescence has been proposed 

as an independent mechanism involved in non-infection-related spontaneous preterm labor 

(Hirota et al., 2010, Hirota et al., 2011, Romero et al., 2014a, Deng et al., 2016, Cha 

and Aronoff, 2017). Hence, we evaluated whether the chorioamniotic membranes from 

women undergoing preterm labor without acute histologic chorioamnionitis exhibit cellular 

senescence (Gomez-Lopez et al., 2017d). Such tissues presented signs of cellular senescence 

(Gomez-Lopez et al., 2017d), and thus represent a potential source of alarmins in the 

amniotic cavity of women with sterile intra-amniotic inflammation who underwent preterm 

labor and birth.

The studies described herein provide evidence for a role of alarmins and the NLRP3 

inflammasome in the chorioamniotic membranes in sterile intra-amniotic inflammation. 

However, whether the intra-amniotic inflammatory response driven by alarmins is distinct 

from that initiated by invading microbes is a subject of ongoing investigation. We sought to 

characterize the transcriptomic differences between the chorioamniotic membranes from 

women who underwent spontaneous preterm labor with intact membranes and sterile 

intra-amniotic inflammation and those with intra-amniotic infection by utilizing RNA 

sequencing (Motomura et al., 2021a). Significant transcriptomic differences were found 

in the chorioamniotic membranes from women with sterile intra-amniotic inflammation 

compared to the other study groups, and the immune response in this tissue was milder 

than that induced by microbes. Importantly, such a response included the upregulation 

of transcripts for the alarmin S100A8 as well as the inflammasome-related molecules 

PYCARD, AIM2, and NLRC4 (Motomura et al., 2021a). Furthermore, the chorioamniotic 

membrane transcriptomes from women with intra-amniotic infection clustered separately 

from those of women with sterile intra-amniotic inflammation or without inflammation, thus 
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further confirming the distinct nature of the immune response taking place during sterile 

intra-amniotic inflammation (Motomura et al., 2021a).

Collectively, the abovementioned investigations implicate sterile intra-amniotic 

inflammation as a new clinical entity that can lead to adverse perinatal outcomes. Such 

a distinct inflammatory response is triggered by alarmins and involves the activation of the 

NLRP3 inflammasome in the amniotic cavity.

Can we treat sterile intra-amniotic inflammation to prevent preterm birth?

In general, the treatment of sterile inflammatory processes includes the use of anti-

inflammatory medications such as non-steroidal anti-inflammatory (Fullerton, 2013) or 

corticosteroid (Dougherty and Schneebeli, 1955, Coutinho and Chapman, 2011, Busillo 

and Cidlowski, 2013) drugs. Other treatments that specifically decrease the concentration 

of alarmins driving sterile inflammation have also been utilized to treat gout (Terkeltaub, 

2003, Pacher et al., 2006, Khanna et al., 2012). However, the majority of these drugs utilized 

to treat sterile inflammation-related pathologies are not approved for use during pregnancy. 

Therefore, to date there is no approved treatment for sterile intra-amniotic inflammation. 

Given the abovementioned role of the NLRP3 inflammasome in sterile intra-amniotic 

inflammation, we have proposed that the inhibition of NLRP3 inflammasome activation 

could be used to improve perinatal outcomes. MCC950 is a specific inhibitor of the NLRP3 

inflammasome that has been utilized in multiple animal models of diseases such as colitis 

(Perera et al., 2018), traumatic brain injury (Ismael et al., 2018a, Xu et al., 2018a), and 

stroke (Ismael et al., 2018b), among others (van der Heijden et al., 2017, Zhai et al., 2018). 

Therefore, we induced sterile intra-amniotic inflammation in mice via the ultrasound-guided 

intra-amniotic injection of S100B and showed that treatment with MCC950 drastically 

reduced preterm birth and neonatal mortality (Gomez-Lopez et al., 2019c). As further 

proof of this mechanism, we induced sterile intra-amniotic inflammation in Nlrp3−/− mice 

using IL-1α or S100B and showed that preterm birth and neonatal mortality were similarly 

reduced ((Motomura et al., 2020a) and Gomez-Lopez et al., unpublished data). However, 

MCC950 is not approved for use during pregnancy and requires additional research to 

assess its safety in this regard. Given that IL-1β is a product of inflammasome activation, 

animal models of intra-amniotic or intra-uterine injection of IL-1β have been utilized to test 

treatments for intra-amniotic inflammation-associated preterm birth (Sadowsky et al., 2000, 

Sadowsky et al., 2003, Yoshimura and Hirsch, 2005). Pre-treatment with indomethacin, a 

tocolytic agent that can be used to delay preterm labor, reduced uterine contractions in 

catheterized macaques intra-amniotically injected with IL-1β (Sadowsky et al., 2000). Yet, 

in humans, indomethacin is only recommended for use until 32 weeks of gestation, given 

the increased risk of closure of the ductus arteriosus in fetuses exposed to it, which limits 

its potential utility for preventing preterm birth (Vermillion et al., 1997, Macones et al., 

2001, American College of Obstetricians and Gynecologists, 2016). Similarly, pre-treatment 

with either dexamethasone or IL-10 reduced the uterine contractility and the intra-amniotic 

inflammation induced by the intra-amniotic administration of IL-1β in macaques (Sadowsky 

et al., 2003). Moreover, pre-treatment with a non-competitive IL-1 receptor ligand, Rytvela, 

prevented intra-uterine IL-1β-induced preterm birth in mice (Nadeau-Vallee et al., 2017a). 

Yet, further studies are required to address the safety and usefulness of this promising tool 
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during human pregnancy. Furthermore, to date there are no predictive tools for determining 

women at risk of sterile intra-amniotic inflammation, and thus pre-treatments are difficult to 

translate into a clinical setting. Therefore, we explored approaches currently approved for 

use during pregnancy that could be used to treat sterile intra-amniotic inflammation.

The drug development process can take several years from the discovery to their approval 

(Kaitin, 2010, Hughes et al., 2011). This process is even more complex during pregnancy 

due to the physiological changes of pregnant women and the imminent risk of fetal 

damage (Sheffield et al., 2014, Chappell and David, 2016, Ren et al., 2021). Therefore, 

the repurposing of drugs that are already approved to be utilized during pregnancy is 

an optimal approach. Under this premise, and given the urgency to find a treatment for 

sterile intra-amniotic inflammation, we have investigated two medications that are widely 

utilized during pregnancy: betamethasone (Galaz et al., 2021) and clarithromycin (Galaz 

et al., submitted). Betamethasone is a corticosteroid that has become the standard of care 

for women at risk of delivering preterm, as it has been shown to accelerate fetal organ 

maturation (American College of Obstetricians and Gynecologists, 2017, McGoldrick et al., 

2020). As a corticosteroid, betamethasone has been demonstrated to reduce inflammatory 

processes in multiple clinical settings (Corbett et al., 1993, Corbel et al., 1999, Matsuo et 

al., 2009, Ly and Amici, 2018, Zhao et al., 2021). Thus, we recently utilized our model 

of HMGB1-induced sterile intra-amniotic inflammation to demonstrate that treatment with 

betamethasone prevented preterm birth; yet, it did not reduce neonatal mortality (Galaz 

et al., 2021). Ongoing research is investigating the mechanisms whereby betamethasone 

can extend gestational length. On the other hand, clarithromycin is a macrolide that, 

together with other antibiotics, has emerged as an effective treatment to be used in the 

context of intra-amniotic infection/inflammation in women with preterm labor with intact 

membranes (Yoon et al., 2019), PPROM (Lee et al., 2016a, Lee et al., 2016b), and 

cervical insufficiency (Oh et al., 2019b, Yeo et al., 2021). Clarithromycin exhibits potent 

anti-inflammatory properties by acting through the NF-κB and AP-1 pathways (Kikuchi 

et al., 2002, Yamamoto et al., 2017). Moreover, clarithromycin is the macrolide that most 

efficiently crosses the placenta (Witt et al., 2003). Importantly, a recent study showed that 

clarithromycin reduced the amniotic fluid concentrations of IL-6 in women with PPROM 

and sterile intra-amniotic inflammation (Kacerovsky et al., 2020). Therefore, we undertook 

a series of animal experiments to investigate whether clarithromycin can be utilized to 

prevent preterm birth and adverse neonatal outcomes in a model of alarmin-induced sterile 

intra-amniotic inflammation as well as the underlying mechanisms of action (Galaz et al., 

submitted). We demonstrated that treatment with clarithromycin prevented HMGB1-induced 

preterm birth by interfering with the common pathway of parturition as evidenced by 

dysregulated expression of contractility-associated proteins and inflammatory mediators in 

the intra-uterine tissues. Notably, clarithromycin improved neonatal mortality by dampening 

inflammation in the placenta as well as in the fetal lung, intestine, liver, and spleen (Galaz 

et al., submitted). However, HMGB1-induced neonatal mortality was not fully rescued by 

clarithromycin treatment. It is worth mentioning that women at risk of preterm birth due 

to intra-amniotic inflammation/infection are treated with both corticosteroids and antibiotics 

simultaneously (Lee et al., 2016b, Oh et al., 2019b, Yoon et al., 2019, American College 

of Obstetricians and Gynecologists, 2020). Hence, further research is required to address 
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whether the combination of betamethasone and clarithromycin, or different drugs that could 

have synergistic effects, can be used to treat the adverse pregnancy and neonatal outcomes 

caused by sterile intra-amniotic inflammation.

A unique type of intra-amniotic inflammation driven by fetal T-cell 

activation: a novel mechanism for preterm labor and birth

The clinical definition of intra-amniotic inflammation considers only the elevated amniotic 

concentrations of established biomarkers such as IL-6 or MMP-8 (Park et al., 2001, Yoon 

et al., 2001). Yet, inflammation as a general concept comprises systemic or tissue-wide 

reaction involving a diverse array of cellular and soluble immune mediators at sites of 

infection or injury (Abbas et al., 2016). In line with this concept, it has been demonstrated 

that the intra-amniotic inflammatory response involves the active participation of both 

maternal and fetal immune cells. Indeed, a pioneer study showed that fetal innate immune 

cells in the human umbilical cord blood are activated in cases of preterm labor leading to 

preterm birth compared to term deliveries (Berry et al., 1995). Notably, in this study the 

cord blood was obtained prior to birth (via cordocentesis), and only a fraction of the preterm 

neonates were exposed to microbes, thereby suggesting that the fetus itself is able to respond 

or cause the process of labor (Berry et al., 1995). More recently, we showed that the cord 

blood of preterm neonates has a population of central memory Th1 cells that is absent 

in term neonates (Frascoli et al., 2018). Such T cells specifically responded to maternal 

alloantigens and induced myometrial contractility in vitro (Frascoli et al., 2018). Last, the 

adoptive transfer of activated T cells into the fetal mice induced pregnancy loss, providing in 
vivo evidence of a role for activated T cells in adverse pregnancy outcomes (Frascoli et al., 

2018). Hence, these studies provided insight into the functions of the fetal adaptive immune 

system and suggested that the fetus could trigger preterm labor. To confirm these findings, 

we utilized amniotic fluid samples, which allow the study of the in utero fetal immune 

response (Gomez-Lopez et al., 2018c). Specifically, we have previously demonstrated the 

presence of multiple immune cell populations in the amniotic fluid that vary throughout 

gestation in the absence of intra-amniotic inflammation (Gomez-Lopez et al., 2018c). A 

prior study also noted that fetal innate lymphoid cells (ILCs) are present in amniotic fluid of 

women in the absence of intra-amniotic inflammation/infection and that such cells expressed 

a phenotype indicative of intra-epithelial localization (Marquardt et al., 2016), suggesting 

that they are derived from fetal tissues and can respond to intra-amniotic inflammation. In 

light of the above evidence, we evaluated amniotic fluid samples and showed that T cells 

represent a major subset of leukocytes in preterm pregnancies and that such cells were of 

fetal origin, as indicated by DNA fingerprinting (Gomez-Lopez et al., 2019g). We also found 

that fetal CD4+ T cells, but none of the other evaluated leukocyte subsets, were increased 

in amniotic fluid of women with idiopathic preterm labor (i.e., without intra-amniotic 

inflammation/infection), which represents the largest subset of preterm labor cases (Gomez-

Lopez et al., 2019g). Consistent with the abovementioned findings in amniotic fluid ILCs 

(Marquardt et al., 2016), fetal T cells expressed markers indicative of mucosal residence, 

confirming that these cells did not originate from the fetal circulation (Gomez-Lopez et al., 

2019g). Furthermore, fetal CD4+ T cells from amniotic fluid samples express cytokines 

typical of T-cell activation (IL-2, IL-4, and IL-13), suggesting a mild and distinct immune 
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response in idiopathic preterm labor. Moreover, in vitro experiments showed that umbilical 

cord blood T cells from neonates born to mothers who underwent idiopathic preterm labor 

and birth displayed enhanced responsiveness compared to those from neonates delivered at 

term (Gomez-Lopez et al., 2019g), providing novel evidence that fetal T-cell activation is 

associated with idiopathic preterm labor and birth (Gomez-Lopez et al., 2019g). Last, the 

ultrasound-guided intra-amniotic injection of activated neonatal CD4+ T cells in pregnant 

mice resulted in preterm delivery, demonstrating that activated fetal T cells are capable 

of triggering preterm parturition and, therefore, represent a new mechanism of disease for 

idiopathic preterm birth (Gomez-Lopez et al., 2019g) (Fig. 1C). Yet, further studies are 

warranted to understand the mechanisms responsible for the premature activation of fetal T 

cells in the amniotic cavity.

Maternal immune contributions to the etiology of preterm labor and birth

Effector and regulatory T cells

The earliest hypotheses for the seemingly paradoxical nature of pregnancy were prompted 

by advances in the understanding of immunological tolerance, most notably those 

pioneered by Peter Medawar (Medawar, 1953, Billington, 2003), the father of reproductive 

immunology. In one of the most widely recognized works in the field of reproduction, 

Medawar postulated several reasons why the maternal immune system did not reject the 

fetus: 1) complete anatomic separation of the mother and fetus; 2) lack of antigenic potential 

by the fetus; or 3) inertness or unresponsiveness of the maternal immune system (Medawar, 

1953). While later investigations have disqualified the first two hypotheses, the third has 

since been shown to have merit. Rather than complete inertness, it is now clear that 

pregnancy represents a state of immunological tolerance during which the mother must 

tolerate the semi-allograft fetus (Chaouat et al., 1979, Bonney and Onyekwuluje, 2003, 

Zenclussen et al., 2005, Robertson et al., 2009, Kahn and Baltimore, 2010, Shima et al., 

2010, Zenclussen et al., 2010, Dimova et al., 2011, Rowe et al., 2012, Samstein et al., 2012, 

Ramhorst et al., 2012, Shima et al., 2015), with a growing body of evidence suggesting 

that the fetus also tolerates the mother (Mold et al., 2008, Ivarsson et al., 2013, McGovern 

et al., 2017, Frascoli et al., 2018). The maternal immune system is constantly exposed 

to foreign paternal/fetal antigens (Herzenberg et al., 1979, Bianchi et al., 1996, Knight et 

al., 1998, Germain et al., 2007, Holland et al., 2012, Stenqvist et al., 2013, Gohner et 

al., 2017, Tong et al., 2018, Arenas-Hernandez et al., 2021), resulting in a series of local 

(Erlebacher et al., 2007, Bizargity et al., 2009, Samstein et al., 2012, Shima et al., 2015) 

and systemic (Chaouat et al., 1979, Bonney and Onyekwuluje, 2003, Aluvihare et al., 2004, 

Zenclussen et al., 2005, Bizargity et al., 2009, Shima et al., 2010, Kahn and Baltimore, 2010, 

Rowe et al., 2012, Samstein et al., 2012) immunological adaptations that are collectively 

termed “maternal-fetal tolerance.” Among the mediators that foster and sustain maternal-

fetal tolerance, adaptive immune cells such as effector T cells (Vargas et al., 1993, Tilburgs 

et al., 2006, Taglauer et al., 2008, Wang et al., 2015, Powell et al., 2017, Terzieva et al., 

2019, Arenas-Hernandez et al., 2019) and regulatory T cells (Tregs) (Aluvihare et al., 2004, 

Sasaki et al., 2004, Heikkinen et al., 2004, Sindram-Trujillo et al., 2004, Wang et al., 2015, 

Tsuda et al., 2018, Salvany-Celades et al., 2019, Gomez-Lopez et al., 2020) perform critical 

functions. Both cell types participate in mediating the complex immunological scenario of 
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pregnancy in which maternal-fetal tolerance must occur (Bonney and Onyekwuluje, 2003, 

Aluvihare et al., 2004, Zenclussen et al., 2005, Kahn and Baltimore, 2010, Shima et al., 

2010, Samstein et al., 2012, Rowe et al., 2012, Svensson-Arvelund et al., 2015, Shima et 

al., 2015) but also remain vigilant against external threats (e.g., infection) (Bizargity et al., 

2009, Arenas-Hernandez et al., 2016, van Egmond et al., 2016, van der Zwan et al., 2018). 

Therefore, disruptions or alterations in the activity of these different immune cell subsets is 

often associated with adverse pregnancy outcomes (Sasaki et al., 2004, Zenclussen et al., 

2005, Shima et al., 2010, Jianjun et al., 2010, Yamada et al., 2012, Care et al., 2018, Tsuda 

et al., 2018, Arenas-Hernandez et al., 2019, Tsuda et al., 2021).

Effector T cells—After encountering their specific antigen, circulating naïve T cells 

proliferate and differentiate to perform effector functions and eliminate threats (Bachmann 

et al., 1999). Such T cells are subsequently termed “memory” T cells and can be subdivided 

into central, effector, and terminally differentiated effector memory T cells based on their 

functional state and localization to secondary lymphoid organs or the circulation (Sallusto et 

al., 1999, Geginat et al., 2003, D’Asaro et al., 2006). Moreover, CD4+ and CD8+ T cells can 

differentiate into one of several effector subsets including T helper type 1 (Th1)/T cytotoxic 

type 1 (Tc1), Th2/Tc2, Th9/Tc9, and Th17/Tc17 cells according to stimuli provided by 

the surrounding microenvironment (Brummelman et al., 2018, Saravia et al., 2019). Due to 

the tightly controlled immunological balance at the maternal-fetal interface, effector T cells 

were conventionally thought to be absent from this compartment. Indeed, the combination of 

tissue-specific anti-T-cell mechanisms (Daya et al., 1987, Nancy et al., 2012) together with 

the presence of Tregs (Aluvihare et al., 2004, Heikkinen et al., 2004, Sasaki et al., 2004, 

Svensson-Arvelund et al., 2015, Tsuda et al., 2018, Salvany-Celades et al., 2019, Gomez-

Lopez et al., 2020) and other homeostatic immune cells such as macrophages (Hunt et al., 

1984, Gustafsson et al., 2008, Houser et al., 2011, Svensson et al., 2011, Svensson-Arvelund 

et al., 2015, Xu et al., 2016, Gomez-Lopez et al., 2021a) makes the decidua a largely 

unwelcoming site for effector T cells, and as a consequence some of the T cells residing 

in this compartment display exhausted or senescent phenotypes (Wang et al., 2015, van der 

Zwan et al., 2018, Slutsky et al., 2019). However, as the end of pregnancy approaches, both 

human (Gomez-Lopez et al., 2009, Gomez-Lopez et al., 2011, Gomez-Lopez et al., 2013) 

and animal (Heyborne et al., 1992, Furcron et al., 2015, Arenas-Hernandez et al., 2016, 

St Louis et al., 2016, Gomez-Lopez et al., 2017a, Arenas-Hernandez et al., 2019, Gomez-

Lopez et al., 2020, Stas et al., 2020) studies have demonstrated that T cells migrate to the 

maternal-fetal interface, where they acquire distinct activated phenotypes (Sindram-Trujillo 

et al., 2003, Tilburgs et al., 2009a, Tilburgs et al., 2009b, Tilburgs et al., 2010, Arenas-

Hernandez et al., 2019). Indeed, decidual T cells show increased expression of activation 

markers such as CD25, CD38, or CD69 (Abadia-Molina et al., 1996, Sindram-Trujillo et al., 

2004, Arenas-Hernandez et al., 2019) as well as labor-associated inflammatory mediators 

(Joachim et al., 2001, Gomez-Lopez et al., 2013).

Given their participation in normal parturition at term, effector T cells have also been 

implicated in the premature onset of labor. The invasion of cytotoxic T cells into the 

decidual tissues, termed chronic histological chorioamnionitis, is frequently observed in 

pregnancies with complications such as spontaneous preterm birth (Kim et al., 2015). More 
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recently, we showed that effector and activated T cells expressing perforin and granzyme 

B are enriched at the maternal-fetal interface of women who underwent spontaneous 

preterm labor and birth (Arenas-Hernandez et al., 2019) (Fig. 2A). Consistent with such 

human findings, the administration of an anti-CD3 antibody to pregnant mice induced 

the systemic activation of T cells, resulting in preterm birth (Gomez-Lopez et al., 2016b, 

Arenas-Hernandez et al., 2019) through inflammatory mechanisms that are distinct from 

those observed in other well-known preterm birth models (Fidel et al., 1994, Dudley et al., 

1996, Nadeem et al., 2016, Gomez-Lopez et al., 2018a, Arenas-Hernandez et al., 2019). 

Furthermore, we recently demonstrated that a subset of decidual T cells co-express IL-22 

and RORγt, and that such cells are enriched in women who underwent preterm labor and 

birth (Gershater et al., 2022, Accepted). The expression of these two molecules, together 

with the absence of IL-17A, allowed us to propose that such decidual T cells belong to the 

Th22 subset (Duhen et al., 2009, Liu et al., 2009, Nograles et al., 2009, Trifari et al., 2009). 

Our finding that Th22-like cells are present at the maternal-fetal interface of women with 

preterm labor is in line with a previous study showing that decidual IL-22-expressing T cells 

are implicated in pregnancy loss (Logiodice et al., 2019). Hence, T cells expressing IL-22 

are present at the maternal-fetal interface in early and late pregnancy, where they seem to 

participate in the mechanisms involved in obstetrical disease.

IL-17-producing T cells (Th17 cells) are a subset of conventionally pro-inflammatory 

effector T cells that participate in host defense at mucosal/barrier surfaces (Stockinger and 

Omenetti, 2017). Such cells have been reported as residing at the maternal-fetal interface 

in early pregnancy (Wu et al., 2014, Lombardelli et al., 2016), and a disruption of the 

balance between Th17 cells and Tregs is implicated in early pregnancy complications (i.e., 

spontaneous abortion) (Wang et al., 2010, Nakashima et al., 2010, Lee et al., 2011, Lee et 

al., 2012, Wu et al., 2016, Zhu et al., 2017). In late pregnancy, studies have suggested that 

Th17 cells also contribute to the pathophysiology of preeclampsia (Santner-Nanan et al., 

2009, Saito, 2010, Fu et al., 2014, Zhang et al., 2018). Notably, such cells are more prevalent 

in the chorioamniotic membranes from cases of preterm birth with acute chorioamnionitis 

than in cases without, suggesting that Th17 cells are associated with inflammatory processes 

at the maternal-fetal interface of women with preterm labor and birth (Ito et al., 2010, 

Fedorka et al., 2021). In addition to Th17 cells, we have proposed that, under specific 

conditions, IL-22 is expressed by maternal T cells in the uterine decidua of women with 

preterm labor and birth (Gershater et al., 2022, Accepted). Under pathological circumstances 

associated with maternal T-cell activation, IL-22 can cross the maternal-fetal interface and 

reach the amniotic cavity where it is sensed by the fetal and gestational tissues, causing fetal 

injury that can lead to neonatal death (Gershater et al., 2022, Accepted).

Regulatory T cells—Regulatory T cells play an important role in mediating immune 

tolerance in a variety of clinical contexts such as autoimmune disease and transplantation. 

Consequently, it is unsurprising that Tregs are critical drivers of maternal-fetal tolerance 

(Chaouat et al., 1979, Bonney and Onyekwuluje, 2003, Aluvihare et al., 2004, Sasaki et 

al., 2004, Heikkinen et al., 2004, Zenclussen et al., 2005, Robertson et al., 2009, Kahn and 

Baltimore, 2010, Shima et al., 2010, Samstein et al., 2012, Rowe et al., 2012, Jiang et al., 

2014, Svensson-Arvelund et al., 2015, Shima et al., 2015, Bonney, 2016, Tsuda et al., 2018, 
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Salvany-Celades et al., 2019, Gomez-Lopez et al., 2020, Zhang et al., 2021). Conventional 

Tregs are described as CD4+CD25+Foxp3+ cells that display potent immunosuppressive 

functions (Sakaguchi et al., 1985, Fontenot et al., 2003). The Treg subset includes thymic/

natural Tregs and peripheral/induced Tregs (Yuan and Malek, 2012, Abbas et al., 2013): 

whereas natural Tregs are considered important in the context of autoimmunity (Jordan et 

al., 2001, Apostolou et al., 2002, Kumar et al., 2019), peripheral Tregs contribute to mucosal 

immunity (Haribhai et al., 2011, Josefowicz et al., 2012), which includes maternal-fetal 

tolerance (Sasaki et al., 2004, Zenclussen et al., 2005, Robertson et al., 2009, Guerin et 

al., 2009, Zenclussen et al., 2010, Samstein et al., 2012, Rowe et al., 2012, Robertson et 

al., 2018, Schjenken et al., 2020). Tregs exhibit their immunosuppressive functions through 

several mechanisms, including secretion of TGF-β (Read et al., 2000, Nakamura et al., 

2001) and IL-10 (Asseman et al., 1999, Annacker et al., 2001) that exert paracrine actions 

on surrounding cells. While a number of studies have established the importance of Tregs 

during pregnancy establishment and maintenance (Zenclussen et al., 2005, Darrasse-Jèze et 

al., 2006, Kahn and Baltimore, 2010, Shima et al., 2010, Rowe et al., 2011, Samstein et al., 

2012, Rowe et al., 2012, Chen et al., 2013, Diao et al., 2021), recent investigations have also 

pointed to a role for these adaptive immune cells in late pregnancy (Gomez-Lopez et al., 

2020), when most obstetrical diseases manifest (Goldenberg et al., 2008). Tregs are present 

at the maternal-fetal interface throughout the third trimester prior to labor at term (Tilburgs 

et al., 2006, Tilburgs et al., 2008, Galazka et al., 2009, Salvany-Celades et al., 2019, Gomez-

Lopez et al., 2020), where their proportions were altered compared to women who delivered 

without labor (Sindram-Trujillo et al., 2004, Galazka et al., 2009). Such observations have 

been confirmed in mice, where a decidual Treg population was reported (Furcron et al., 

2015, Furcron et al., 2016, Gomez-Lopez et al., 2016a). Thus, Tregs represent a component 

of the immune repertoire at the maternal-fetal interface in late pregnancy.

Alterations in systemic or local Tregs (Sasaki et al., 2007, Prins et al., 2009, Quinn et 

al., 2011, Nguyen et al., 2017, Tsuda et al., 2018) as well as the Th17/Treg balance 

(Santner-Nanan et al., 2009, Ding et al., 2019) have been implicated in the pathogenesis 

of preeclampsia, emphasizing the importance of this adaptive immune subset throughout 

pregnancy. Yet, little was known of a direct contribution of these cells to spontaneous 

preterm labor and birth. Accordingly, we recently reported that a subset of women with 

idiopathic preterm labor and birth displayed a reduction in functional Tregs at the maternal-

fetal interface (Gomez-Lopez et al., 2020). This finding correlates with clinical reports 

showing that women who underwent preterm labor and birth have reduced numbers and 

function of Tregs in the maternal circulation (Xiong et al., 2010, Schober et al., 2012). 

Consequently, we utilized a murine model of maternal Treg depletion to demonstrate that 

the systemic deficiency of Tregs can lead to preterm birth in first and repeat pregnancies; 

moreover, the loss of such cells induces adverse neonatal outcomes (Gomez-Lopez et al., 

2020). The mechanisms whereby the loss of Tregs induces adverse perinatal outcomes 

involved alterations in the cellular and soluble immune responses in the mother and at the 

maternal-fetal interface as well as dysregulation of developmental and cellular processes 

in the placenta (Gomez-Lopez et al., 2020). As a secondary effect, the loss of Tregs also 

increased maternal susceptibility to preterm birth induced by the administration of LPS 

(Gomez-Lopez et al., 2020). Importantly, the observed adverse perinatal outcomes were 
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rescued by the adoptive transfer of polyclonal expanded Tregs (Gomez-Lopez et al., 2020). 

Therefore, we suggested that Tregs play a central role during late pregnancy by modulating 

systemic and local cellular responses, and that alterations in the proportions or functionality 

of such cells can promote a pro-inflammatory environment resulting in the development 

of obstetrical complications such as spontaneous preterm labor in addition to increased 

susceptibility to infection-induced preterm birth (Fig. 2A).

Potential interventions—The evidence presented above underscores the importance 

of the balance between Treg immunosuppressive functions throughout pregnancy and 

the controlled activity of effector T cells for successful maternal-fetal tolerance. Thus, 

pregnancy interventions that promote such a balance, whether directly or as a secondary 

effect, are of great interest. We have shown that two commonly utilized treatments, vaginal 

progesterone and human chorionic gonadotropin (hCG), both display immunomodulatory 

effects that include an increased proportion of Tregs in the decidual tissues in mice 

(Furcron et al., 2015, Furcron et al., 2016). Such an effect is likely mediated through 

the glucocorticoid receptor (GR) by which progesterone can induce conventional T-cell 

apoptosis, thereby resulting in an increased proportion of Tregs (Engler et al., 2017). 

We have also shown that progesterone exerts complementary reduction of inflammatory 

responses at the maternal-fetal interface in a model of systemic maternal T-cell activation-

induced preterm birth (Arenas-Hernandez et al., 2019), and thus such a treatment can 

address both components of effector T cell/Treg imbalance associated with preterm birth.

A number of different cellular and molecular approaches directed at conventional T cells 

or Tregs have been utilized to treat conditions such as autoimmune disease or graft-versus-

host disease (GVHD) (Esensten et al., 2018, Ferreira et al., 2019). While successful in 

some cases, the potential application of such treatments during pregnancy highlights some 

challenges. With regard to cellular approaches, multiple clinical trials have shown benefits of 

administering ex vivo expanded polyclonal Tregs to patients with various diseases (Esensten 

et al., 2018); yet, animal studies have indicated that infusion of antigen-specific Tregs may 

be more potent in conditions such as diabetes (Green et al., 2002, Tang et al., 2004, Esensten 

et al., 2018). In one of these studies, it was demonstrated that adoptively transferring Tregs 

derived from the pancreatic lymph nodes to recipient mice prevented diabetes development 

(Green et al., 2002); however, such a strategy would be largely non-applicable in humans, 

particularly during pregnancy, as obtaining Tregs from lymphoid organs adjacent to the 

target tissue is not feasible. Nonetheless, we have shown that the adoptive transfer of 

polyclonal Tregs in mice could successfully prevent the impending adverse pregnancy 

outcomes induced by a reduction of these cells (Gomez-Lopez et al., 2020). For the majority 

of diseases, the use of engineered T-cell receptors (TCRs) or chimeric antigen receptor 

(CAR) Tregs can be applied at least in theory, given that candidate antigens have typically 

been identified (Ferreira et al., 2019). On the other hand, while it is presumed that paternal/

fetal antigens are those driving maternal anti-fetal rejection, the identification of epitopes 

that could be used to engineer specific Tregs is difficult and remains a major limitation of 

immunological investigations during pregnancy.

Aside from cellular therapies, strategies to take advantage of the mediators required for 

and produced by effector and regulatory T cells have also been explored for treating 
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inflammatory diseases. Interleukin-2 is essential for the development and suppressive 

functions of Tregs, which constitutively express CD25 [a component of the high-affinity 

IL-2 receptor (Tang, 2015)]. Thus, it was reasoned that low-dose IL-2 treatment could 

preferentially boost Tregs without initiating systemic immune activation (Tang, 2015). Prior 

and ongoing clinical trials have shown some success in alleviating symptoms in patients 

with GVHD or systemic lupus erythematosus (SLE), among others (Ferreira et al., 2019), 

and it is possible that a combination of expanded Treg infusion together with low-dose 

IL-2 could ensure that transferred cells are maintained and even expanded. However, normal 

pregnancy is characterized by low-grade systemic inflammation and immune activation 

(Sacks et al., 1998, Naccasha et al., 2001, Kraus et al., 2012) that can be exacerbated 

in the context of disease, and thus substantial research is required to evaluate whether 

the administration of IL-2 during pregnancy would be detrimental. The corticosteroid 

prednisone is clinically used in a variety of immune-related diseases and can promote the 

function and expansion of Tregs (Fu et al., 2019). Indeed, in vitro prednisone treatment 

increased the proportion of Tregs among isolated first trimester decidual lymphocytes 

and inhibited Th17 cells (Fu et al., 2017). Moreover, a clinical trial provided evidence 

that prednisone increased peripheral Tregs and improved pregnancy success in repeated 

implantation failure (RIF) patients (Huang et al., 2021). Last, vitamin D exerts well-

documented anti-inflammatory effects that include induction of IL-10 and inhibition of Th9 

and Th17 cells (Palmer et al., 2011, Korf et al., 2012). Indeed, given its modulation of 

the Treg/Th17 ratio, insufficient vitamin D has been implicated in pregnancy complications 

such as preeclampsia (Muyayalo et al., 2019, Ribeiro et al., 2021), preterm labor (Zahran 

et al., 2018), and recurrent pregnancy loss (Ji et al., 2019), which could be improved by 

supplementation (Chen et al., 2020). Thus, a number of treatment options exist that could be 

utilized to boost Treg functions and numbers and potentially improve pregnancy outcomes.

An alternative approach to boosting Tregs could be the targeted inhibition of specific 

mediators released by effector T-cell subsets. An ongoing line of investigation in our 

laboratory has indicated that the cytokine IL-22, which is primarily produced by the Th22 

subset (in the absence of IL-17A) at the maternal-fetal interface, can cross from the maternal 

side to the amniotic cavity and be sensed by the binding protein expressed by fetal and 

gestational tissues, causing tissue damage and leading to adverse short- and long-term 

neonatal outcomes (Gershater et al., 2022, Accepted). Thus, in the context of specific 

pregnancy complications, therapeutic approaches directed at diminishing the concentrations 

or activity of specific T cell-associated mediators could also represent a viable approach.

Homeostatic and pro-inflammatory macrophages

The evidence provided above demonstrates that Tregs are an essential component of 

maternal-fetal tolerance. Yet, we have shown using animal models that the impaired 

presence of Tregs in late pregnancy only accounts for a small proportion of preterm births 

(Gomez-Lopez et al., 2020). Therefore, we considered that other immune cells besides 

Tregs must participate in maintaining maternal-fetal homeostasis. Macrophages constitute 

the second-largest population of leukocytes (20–30%) at the maternal-fetal interface (Lessin 

et al., 1988, Williams et al., 2009), and contribute to multiple processes required for 

pregnancy establishment including embryo implantation (Jaiswal et al., 2012, Care et al., 
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2013, Schumacher et al., 2018), trophoblast invasion (Tan et al., 2014, Ding et al., 2021), 

and spiral artery remodeling (Hazan et al., 2010, Lash et al., 2016). In addition, a large 

number of investigations have explored the phenotypes of decidual macrophages and noted 

that the majority of this subset display unique functions and phenotypes that most closely 

resemble anti-inflammatory or M2-like macrophages (Hunt et al., 1984, Gustafsson et al., 

2008, Nagamatsu and Schust, 2010, Svensson et al., 2011, Houser et al., 2011, Svensson-

Arvelund et al., 2015, Svensson-Arvelund and Ernerudh, 2015, Xu et al., 2016, Chambers 

et al., 2020). Therefore, we recently proposed that macrophages in the uterine decidua exert 

anti-inflammatory functions during late pregnancy that promote maternal-fetal homeostasis 

and thereby sustain gestation prior to term labor (Gomez-Lopez et al., 2021a) (Fig. 2B). 

We applied a model of pregnant Cd11bDTR/DTR mice wherein CD11b+ macrophages could 

be depleted upon administration of diphtheria toxin (Duffield et al., 2005, Cailhier et al., 

2005), which has been shown to impair fetal development (Yellon et al., 2019) and result 

in pregnancy loss in early gestation (Robertson et al., 2008, Care et al., 2013). Using this 

approach, we demonstrated that macrophage depletion in late pregnancy resulted in preterm 

birth in the majority of dams (75%) (Gomez-Lopez et al., 2021a). More importantly, the 

majority of pups born to macrophage-depleted dams did not survive past the first 24 hours 

of life, suggesting that the loss of maternal macrophages may have adverse effects beyond 

intra-uterine life (Gomez-Lopez et al., 2021a). A causal link between maternal macrophage 

depletion and adverse pregnancy outcomes was mechanistically demonstrated by adoptively 

transferring bone marrow-derived macrophages (BMDMs) into macrophage-depleted dams, 

which successfully reduced the preterm birth rate but did not improve neonatal survival 

(Gomez-Lopez et al., 2021a). We reasoned that, given the homeostatic phenotypes attributed 

to macrophages at the maternal-fetal interface (Hunt et al., 1984, Gustafsson et al., 2008, 

Nagamatsu and Schust, 2010, Svensson et al., 2011, Houser et al., 2011, Svensson-Arvelund 

et al., 2015, Svensson-Arvelund and Ernerudh, 2015, Xu et al., 2016, Chambers et al., 

2020), the in vitro polarization of BMDMs prior to their adoptive transfer may improve their 

effectiveness. We utilized our translationally-relevant model of intra-amniotic inflammation 

induced by the ultrasound-guided intra-amniotic injection of LPS to demonstrate that the 

administration of M2-polarized macrophages not only drastically reduced preterm births 

but decreased neonatal mortality, thereby demonstrating the importance of homeostatic 

macrophages for pregnancy maintenance as well as neonatal survival (Gomez-Lopez et 

al., 2021a). Molecular investigation revealed that the adoptive transfer of M2-polarized 

macrophages reduced inflammation in the maternal circulation and amniotic fluid as well 

as downregulated inflammatory gene expression in fetal tissues such as the brain and lung 

(Gomez-Lopez et al., 2021a), providing mechanistic insight into the protective effects of 

these homeostatic cells for the mother and fetus.

Although the majority of macrophages at the maternal-fetal interface display homeostatic or 

anti-inflammatory phenotypes, the presence of pro-inflammatory macrophages has also been 

documented in the context of physiological (Repnik et al., 2008, Xu et al., 2016, Chambers 

et al., 2020) or pathological (Hamilton et al., 2012, Xu et al., 2016) labor. During normal 

labor at term, an influx of myeloid cells such as macrophages occurs at the maternal-fetal 

interface (Young et al., 2002, Osman et al., 2003, Shynlova et al., 2013, Xu et al., 2016, 

Sharps et al., 2020) as well as in the uterine (Thomson et al., 1999, Mackler et al., 1999, 
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Young et al., 2002, Osman et al., 2003, Gomez-Lopez et al., 2010, Wahid et al., 2015) 

and cervical (Bokström et al., 1997, Sakamoto et al., 2005, Yellon et al., 2008, Timmons 

et al., 2009, Payne et al., 2012, Myers, 2012) tissues as part of the inflammatory response 

required for parturition to occur, although the requirement of macrophages for cervical 

ripening is still controversial (Word et al., 2005, Timmons and Mahendroo, 2006, Gonzalez 

et al., 2009, Gonzalez et al., 2011a). Indeed, we have documented that women who undergo 

labor at term have increased proportions of pro-inflammatory M1-like macrophages in the 

decidua compared to term deliveries without labor (Xu et al., 2016). Consistently, women 

who undergo preterm labor display greater numbers of decidual macrophages compared to 

women delivering at term without labor (Hamilton et al., 2012, Xu et al., 2016), driven by 

a rise in macrophages presenting an M1-like phenotype (Xu et al., 2016, Gomez-Lopez et 

al., 2021a). Moreover, macrophage numbers are increased in human uterine tissues during 

preterm labor (Xu et al., 2016, Gomez-Lopez et al., 2021a) as well as in the cervix of 

mice undergoing LPS-induced preterm birth (Timmons et al., 2009, Gonzalez et al., 2011b, 

Gomez-Lopez et al., 2020). Together, the above studies demonstrate that macrophages in the 

uterine decidua are polarized towards a pro-inflammatory phenotype as part of the processes 

of term and preterm labor (Fig. 2B).

Potential macrophage-related interventions for preterm labor—Currently, 

multiple anti-inflammatory therapies have been tested to prevent preterm labor caused by 

inflammation (Wakabayashi et al., 2013, Sykes et al., 2014, Xu et al., 2016, Chin et 

al., 2016, Kadam et al., 2017, Garcia-Flores et al., 2018, Gomez-Lopez et al., 2019c). 

Given the demonstrated importance of macrophage polarization for pregnancy outcomes, 

we showed that rosiglitazone can be used to treat LPS-induced preterm birth by activating 

the PPARγ pathway, thereby reducing decidual macrophage-mediated inflammation (Xu et 

al., 2016). However, we reasoned that the adoptive transfer of M2-polarized macrophages 

may represent a more direct approach. The in vitro generation of M2-polarized macrophages 

have been studied and applied as therapeutic treatments in cancer (Andreesen et al., 1998), 

diabetes (Parsa et al., 2012), neuropathic pain (Pannell et al., 2016), and other inflammatory 

diseases (Wang et al., 2007, Weber et al., 2007, Hunter et al., 2010), with minimal adverse 

effects being reported (Andreesen et al., 1998). Investigations in which the transferred M2 

macrophages were tracked suggested that these cells will preferentially target inflamed 

tissues, such as the pancreas in diabetic mice (Parsa et al., 2012). Moreover, the intrathecal 

administration of M2 macrophages yielded a significant neurological improvement in human 

patients undergoing treatment for stroke (Chernykh et al., 2016). Such clinical and animal 

studies, together with current knowledge of the important role for macrophages throughout 

gestation, hinted that this strategy could be useful during pregnancy. Accordingly, we 

recently demonstrated that adoptively transferring macrophages polarized to an M2-like 

phenotype in vitro prevented preterm birth and, more importantly, improved neonatal 

outcomes in a model of LPS-induced intra-amniotic inflammation (Gomez-Lopez et al., 

2021a). Such outcomes point to the potential viability of M2-polarized macrophages as a 

treatment option for women at risk for delivering preterm. It is worth mentioning that such 

a treatment would not be suitable for all cases of spontaneous preterm labor. Indeed, as 

described above, administering an antibiotic regimen is considered the optimal approach for 

treating spontaneous preterm labor associated with intra-amniotic infection (Yudin et al., 
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2009, Lee et al., 2016b, Yoon et al., 2019). Thus, the adoptive transfer of M2-polarized 

macrophages could represent a treatment option for sterile intra-amniotic inflammation; yet, 

further research is required to demonstrate the feasibility of such an approach.

Conclusion

In summary, here we have provided an overview of the immune mechanisms implicated in 

intra-amniotic inflammation, the best-characterized cause of preterm labor and birth. While 

the inflammatory processes driven by microbes (infection) or alarmins (sterile) have some 

overlap in their participating cellular and molecular processes, the distinct natures of these 

two conditions necessitate the implementation of specific approaches to prevent adverse 

pregnancy and neonatal outcomes (Fig. 1A&B). Intra-amniotic infection can be treated 

using the right antibiotics, whereas sterile intra-amniotic inflammation could be potentially 

treated using a combination of anti-inflammatory drugs (e.g., betamethasone, inflammasome 

inhibitors, etc.). Importantly, we have also described the current evidence supporting fetal 

T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases 

(Fig. 1C). These findings represent an exciting area of future research focused on further 

elucidating the fetal immune mechanisms implicated in such a response. Recently, we also 

provided evidence of two potential immune mechanisms responsible for a subset of preterm 

births formerly considered to be idiopathic. In the first, we have shown that the impairment 

of maternal Tregs leads to preterm birth, likely due to the loss of immunosuppressive activity 

resulting in unleashed effector T-cell responses (Fig. 2A). Second, we have demonstrated 

the importance of homeostatic macrophages for maintaining pregnancy and promoting 

fetal development as well as the effectiveness of the adoptive transfer of M2-polarized 

macrophages for preventing inflammation-induced preterm birth (Fig. 2B). Collectively, in 

this review, we have discussed established and novel immune mechanisms responsible for 

preterm birth and highlighted potential targets for novel strategies aimed at preventing the 

multi-etiological syndrome of preterm labor.
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KEY POINTS

• Intra-amniotic inflammation, driven by microbes ascending from the lower 

genital tract (intra-amniotic infection) or by alarmins (i.e. danger signals) 

released upon cellular stress or damage (sterile intra-amniotic inflammation), 

is the best-established causal link to preterm labor and birth. While intra-

amniotic infection can be treated using the correct antibiotic regimen, sterile 

intra-amniotic inflammation currently lacks approved treatment. Yet, ongoing 

investigations have identified several promising approaches that could be used 

to treat women with this clinical condition.

• Pregnancy involves unique mechanisms of maternal-fetal tolerance. Recent 

investigations have expanded this concept by showing that fetal T cells 

respond to maternal antigens and are implicated in premature onset of labor 

leading to preterm birth.

• Maternal-fetal tolerance includes several mechanisms that regulate maternal 

T cells, including the induction of an exhausted or senescent state, silencing 

of T-cell chemoattractant expression at the maternal-fetal interface, and the 

expansion of regulatory T cells (Tregs). A breakdown of such maternal-fetal 

tolerance, either through the aberrant activation of effector T cells or the 

impaired functionality of Tregs, can result in preterm labor and birth.

• Macrophages represent a critical cellular component of the maternal-fetal 

interface. Such cells exert anti-inflammatory functions to promote maternal-

fetal homeostasis until term, when they acquire a pro-inflammatory 

phenotype to promote labor. The importance of macrophages was further 

established by showing that the impairment of these cells during pregnancy 

results in preterm labor and birth. Importantly, homeostatic macrophages 

may represent a viable cellular approach to treat sterile intra-amniotic 

inflammation.
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Fig. 1. Distinct immune responses in the amniotic cavity of women with preterm labor.
Representative diagrams of the fetus and amniotic cavity showing the causative agents and 

responding immune cells associated with distinct immune responses leading to preterm 

labor. (A) Intra-amniotic infection is typically triggered by the ascending invasion of 

bacteria from lower genital tract and is characterized by a massive local immune response 

including elevated concentrations of inflammatory mediators such as interleukin (IL)-6 

and abundant neutrophils, monocytes/macrophages, and T cells. (B) Sterile intra-amniotic 

inflammation can be triggered by endogenous alarmins and involves elevated concentrations 

of inflammatory mediators such as IL-6 and a mild infiltration of immune cells such as 

neutrophils, monocytes/macrophages, and T cells. (C) A subset of cases of preterm labor 

and birth, formerly considered to be idiopathic, can be driven by the fetal immune system, 

as indicated by the activation and increased presence of fetal T cells and their mediators in 

the amniotic cavity. This immune response may also include the activation of amniotic fluid 

resident innate immune cells such as neutrophils and monocytes/macrophages.
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Fig. 2. Regulatory T cells and homeostatic macrophages: two potential mechanisms of 
‘idiopathic’ preterm labor.
(A) Regulatory T cells serve to suppress effector T cells, thereby preventing a maternal 

anti-fetal immune response. When the balance between regulatory and effector T cells is 

disrupted, the activation and infiltration of effector T cells at the maternal-fetal interface 

can occur, leading to preterm labor and birth. (B) Homeostatic macrophages are important 

sentinels of the maternal-fetal interface that act as non-antigen specific mediators of 

maternal-fetal homeostasis and promote fetal development. The inadequate function of these 

cells can permit the acquisition of a pro-inflammatory phenotype by decidual macrophages 

as a consequence of preterm labor, emphasizing the importance of homeostatic macrophages 

in late pregnancy. Importantly, homeostatic macrophages may represent a therapeutic 

approach to prevent preterm labor and birth.
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