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Abstract

Background: In the United States (US), urinary tract infections (UTI) lead to more than 10
million office visits each year. Temperature and season are potentially important risk factors for
UTI, particularly in the context of climate change.

Methods: We examined the relationship between ambient temperature and outpatient UTI
diagnoses among patients followed from 2015 to 2017 in two California healthcare systems:
Kaiser Permanente Southern California (KPSC) and Sutter Health in Northern California. We
identified UTI diagnoses in adult patients using diagnostic codes and laboratory records from
electronic health records. We abstracted patient age, sex, season of diagnosis, and linked
community-level Index of Concentration at the Extremes (ICE-I, a measure of wealth and poverty
concentration) based on residential address. Daily county-level average ambient temperature was
assembled from the Parameter-elevation Regressions on Independent Slopes Model (PRISM). We
implemented distributed lag nonlinear models (DLNM) to assess the association between UTI and
lagged daily temperatures. Main analyses were confined to women. In secondary analyses, we
stratified by season, healthcare system, and community-level ICE-I.

Results: We observed 787,186 UTI cases (89% among women). We observed a threshold
association between ambient temperature and UTI among women: an increase in daily temperature
from the 5th percentile (6.0 °C) to the mean (16.2 °C) was associated with a 3.2% (95% CI:

2.4, 3.9%) increase in same-day UTI diagnosis rate, whereas an increase from the mean to

95th percentile was associated with no change in UT]I risk (0.0%, 95% CI: -0.7, 0.6%). In
secondary analyses, we observed the clearest monotonic increase in the rate of UTI diagnosis with
higher temperatures in the fall. Associations did not differ meaningfully by healthcare system or
community-level ICE-1. Results were robust to alternate model specifications.

Discussion: Increasing temperature was related to higher rate of outpatient UTI, particularly in

the shoulder seasons (spring, autumn).
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Introduction

Urinary tract infections (UTI) are among the most common outpatient infections in the
United States (US) (Foxman, 2010; Medina and Castillo-Pino, 2019). UTI occurs when
uropathogens from fecal flora ascend the urethra to infect the bladder (Flores-Mireles et al.,
2015). UTI is more common in women among whom the lifetime prevalence of UTI is 50—
60% (Albert et al., 2004; Foxman et al., 2000). The clinical and economic burden associated
with UTI is substantial: sequelae include frequent recurrences, pyelonephritis, bloodstream
infection (BSI), and complications associated with frequent antibiotic use (Flores-Mireles et
al., 2015). In the US, more than 10 million office visits, two million emergency department
visits, and 100,000 hospitalizations are attributable to UTI each year (Flores-Mireles et al.,
2015; Foxman, 2002; Bruxvoort et al., 2020), and UTI remains the third-leading cause of
antibiotic prescriptions in adults and children (Medina and Castillo-Pino, 2019; Mazzariol et
al., 2017; Hersh et al., 2011).

Established risk factors for UTI include recent sexual intercourse or a new sexual partner
(Flores-Mireles et al., 2015; Scholes et al., 2000), recent personal history or family

history of UTI (Flores-Mireles et al., 2015; Scholes et al., 2010), structural or functional
abnormalities of the urinary tract (Hickling et al., 2017; Foxman, 2014), and diabetes
(Patterson and Andriole, 1997; Stapleton, 2002). Beyond these individual-level risk factors,
past research has identified increases in Google searches, medication sales, and inpatient
and outpatient encounters related to UTI as well as increased frequency of culture-positive
UTI during the summer months (Simmering et al., 2017; Anderson, 1983; Rosello et al.,
2018; Melamed et al., 2014; Rossignol et al., 2013). Prior studies have further identified

a direct link between UTI and higher ambient temperatures (Hopp et al., 2018; Malig et
al., 2019; Simmering et al., 2018; Simmering et al., 2021). Several potential explanations
have been put forth for the apparent seasonality of UTI, including inadvertent prophylaxis
from antimicrobials prescribed in winter to treat respiratory infections (Stamm et al., 1991)
or changes in sexual partners and the frequency of sexual intercourse, as supported by
some evidence that sexually transmitted infections also peak during the summer months
(Wright and Judson, 1978; Cornelisse et al., 2016; Shah et al., 2007; Freeman et al., 2009).
It has been hypothesized previously that warmer temperatures increase UTI risk through
dehydration, resulting in diminished urine production and decreased clearance of urinary
pathogens (Eckford et al., 1995; Beetz, 2003). Alternatively, warmer temperatures may
promote bacterial proliferation and facilitate transfer of potential uropathogens to the urethra
(Anderson, 1983). A major limitation of many prior studies on season, temperature, and UTI
is reliance on inpatient UTI diagnoses, which constitute the minority of cases and are often
healthcare-associated.

An understanding of the relationship between temperature and outpatient UTI will be vital
to both prepare for and mitigate the worst impacts of rising temperatures under climate
change. The present study leveraged electronic health records (EHR) data to examine the
relationship between temperature and UTI. Building upon prior research, we employed
distributed lag nonlinear models (DLNM) to precisely characterize the temporal relationship
between warmer temperatures and UTI. We additionally considered effect modification

by season, healthcare system catchment area, and neighborhood poverty as past research
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indicates both season and socioeconomic position are determinants of UTI (Casey et al.,
2021). We hypothesized a priorithat rates of UTI would be positively associated with
higher temperatures, with stronger associations during the summer and fall and in areas of
concentrated poverty.

Methods

We conducted a case-crossover study (Maclure, 1991; Maclure and Mittleman, 2000;
Armstrong et al., 2014) using EHR data between January 1, 2015 and December 31,
2017 from Kaiser Permanente Southern California (KPSC) and Sutter Health in Northern
California (Bruxvoort et al., 2020; Casey et al., 2021). Case-crossover studies compare
exposures that occurred prior to outcome onset with exposures that occurred in control
periods for each individual. This approach eliminates confounding by time-invariant
individual- and area-level confounders and is therefore well-suited to the study of short-
term effects of environmental exposures (Wichmann et al., 2012; Kyobutungi et al., 2005;
Buckley and Richardson, 2012).

KPSC is an integrated healthcare organization serving approximately 4.7 million individuals
in nine Southern California counties who are generally representative of local populations
except for modest under-representation of the highest and lowest income individuals
(Koebnick et al., 2012). KPSC is a closed membership system with integration of the health
plan, hospitals, and physician medical groups such that members are incentivized to receive
health care within the system. Sutter Health is a mixed-payer system that delivers care to
3.5 million patients across 22 Northern California counties and is generally representative
of the local population. In contrast with KPSC, Sutter Health is an open system and
therefore we emulated membership by constructing a primary care cohort that included

all individuals who visited a primary care clinic between 2008 and 2017. Our study included
approximately 800 thousand adult KPSC members and Sutter Health primary care cohort
members who received care for a UTI at an outpatient encounter (i.e., virtual and in-person
outpatient clinic visits and emergency department visits) over the study period. We excluded
individuals under the age of 18 at the time of UTI diagnosis, with addresses that did not
geocode to county, or who lived outside their respective health care system’s catchment area
(Supplemental Fig. 1).

Both KPSC and Sutter Health use Epic EHR (Epic Systems Corporation, Verona, W1,
USA) systems that catalogue patient-level data including sociodemographic characteristics,
diagnoses, laboratory tests, and medication orders from all care settings. The Institutional
Review Boards at KPSC, Sutter Health, and Columbia University approved this study.

Urinary tract infections

We identified UTI using diagnoses, antibiotic prescription data, and positive urine culture
results for £. coli; the most commonly identified organism for UTI in the general population
(Gales et al., 2000; Gupta et al., 1999; Gupta et al., 1999; Hooton and Stamm, 1997;

Jones et al., 1999). Diagnoses were defined using /nternational Classification of Diseases,
Ninth Revision (1CD-9) diagnostic codes 595.0, 595.9, 599.0, 590.10, 590.11 and /CD-10
codes N30.00, N30.01, N30.90, N30.91, N39.0, and N10. As previously described, positive
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urine cultures were defined using KPSC and Sutter Health laboratory guidelines of >

1,000 colony-forming units (CFU) per mL for sterile samples and = 10,000 CFU/mL for
clean-catch. Thresholds for CFU were selected consistent with thresholds provided to KPSC
clinicians. Therefore, we used these thresholds to define UTI instead of higher thresholds
(e.g., =100 000 CFU/mL) to reflect real-world practice. Cultures that were identified by the
laboratory as positive for contaminants were excluded (Bruxvoort et al., 2020; Armstrong et
al., 2014). Patients were categorized as having UTI if they met one of two criteria: (1) UTI
diagnosis with antibiotic order on the same day; or (2) positive urine culture. A complete
list of eligible antibiotics is presented in Supplemental Table 1. Multiple infections in an
individual patient were treated as distinct episodes. Further, because multiple health care
encounters may be related to a single infection, occurrences of UTI within 30 days were
defined as a single event. The first health care visit within the 30-day window was treated as
the date of UTI diagnosis.

2.2. Assessment of daily temperatures

We obtained data on daily mean temperature from the Parameter-elevation Regressions on
Independent Slopes Model (PRISM), which gathers climate observations from a wide range
of monitoring networks and applies sophisticated quality control measures to generate a
nationwide temperature dataset, with full space and time coverage over our study period
(Daly and Bryant, 2013). County-averaged PRISM data has been found to accurately
estimate ambient temperatures at weather monitors (Spangler et al., 2019; Basu and Ostro,
2008; Weinberger et al., 2020). Consistent with prior studies, we assigned measures of daily
average temperature at the county level. We used gridded daily temperature estimates at

a resolution of 4 km? to generate area-weighted daily temperatures for each county. We

first intersected county shape-files with gridded daily temperature estimates to obtain the
proportion overlap of the county with each 4 km? grid cell. Then we calculated daily county
temperature as the average of the intersection segments, weighted by the proportion overlap.
Daily temperatures were assigned to each individual based on their county of residence for
the 14-day period prior to UTI diagnosis and for the 14-day control periods. Although we
anticipated that increased ambient temperatures would increase UTI risk within one to three
days of exposure, we specified a 14-day exposure window to accommodate potential delays
in treatment-seeking.

2.3. Covariates

EHR data provided encounter and patient-level characteristics including age at time of
health care encounter, sex, race/ethnicity (non-Hispanic Asian or Pacific Islander, non-
Hispanic Black, non-Hispanic white, Hispanic, and other or unknown), season (winter,
Dec-Feb; spring, Mar-May; summer, June—Aug; fall, Sept—-Nov), and year of encounter. We
derived the Index of Concentration at the Extremes for Income (ICE-1) at the census tract
level based on 2011-2015 American Community Survey data. The ICE-I captures spatial
concentration of wealth and poverty simultaneously and was calculated as:

(A = P)/T;,
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Where A, is the count of individuals in census tract /with an income greater than

or equal to the metropolitan area 80th percentile and A;is the count of individuals in

census tract /with an income less than the metropolitan area 20th percentile, and 7;is

the total number of individuals in census tract 7 (Krieger et al., 2016). For individuals

living outside metropolitan areas, we used county-level thresholds (Tran et al., 2020).

An ICE-I of 1 is total concentration of wealth in that tract, and an ICE-I of -1 is total
concentration of poverty. We created a categorical variable of ICE-I based on the quartile

of ICE-I of the patient’s residential census tract. Relative humidity was collected from

the California Irrigation Management Information System of the California Department of
Water Resources (California Department of Water Resources, 2021). Relative humidity from
the Monrovia monitoring station was used for the KPSC counties and the Pleasanton Station
for the Sutter Health Stations.

2.4, Statistical analyses

We assessed the association between daily temperature and UTI diagnosis using a time-
stratified case-crossover study, in which we matched case dates to control periods by year,
month, and day of the week at the individual level, and then compared 14-day temperature
exposure prior to case and control days (Armstrong et al., 2014). For example, if an
individual were diagnosed on Thursday, March 26, 2015, then their control days would be
the other Thursdays of March 2015; March 5, 12, and 19, and temperature exposure would
be based on the individual’s county of residence. Matching on county of residence addresses
potential confounders that vary across space and matching on year, month, and day of the
week addresses potential confounders that vary over time (Maclure and Mittleman, 2000;
Armstrong et al., 2014; Janes et al., 2005). Since exposure was measured at the county level,
individuals who were diagnosed with UTI on the same day and resided in the same county
had the same exposure profile and covariates; we thus pooled individuals by county and day
of UTI diagnosis. Our primary analysis was restricted to women as more than 85% of UTI
cases occurred among women and given that mechanism of UTI differs appreciably by sex.

Because daily temperature data are temporally autocorrelated, we used distributed lag
nonlinear models (DLNM) to model the association between UTI and lagged temperature
exposures. This approach addresses autocorrelation by constraining lag-specific associations
to vary smoothly across lags (Gasparrini et al., 2010). An additional advantage of this
approach is that DLNM can capture potentially complex nonlinear relationships, even
when the shape of the exposure-response relationship varies across lags (Kim et al., 2019;
Scovronick et al., 2018; Yang et al., 2012). Because of these properties, DLNMs have

been implemented in past research that examines the health effects of temperatures (Kim
etal., 2019; Guo et al., 2011; Rowland et al., 2020). Based on an Akaike weight of

84.4%, we constrained the exposure—response to a natural spline with three degrees of
freedom (df) and we constrained the lag-response to a natural spline with three df, with
knots placed along log-based intervals (Gasparrini, 2016; Wagenmakers and Farrell, 2004).
(Supplemental Table 2).

2.4.1. Primary analysis—We fit conditional Poisson models in which the expected
number of outcomes for matched observations are conditioned on the total number of
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outcomes in that matched set; the conditional Poisson yields the same result as the
conditional logistic model when using area-level exposure metrics (Armstrong et al., 2014).
We used a quasi-Poisson distribution to account for overdispersion and adjusted for 14-day
mean relative humidity. We report effect estimates as the percent change in the daily UTI
diagnosis rate calculated from (eP /—1) x 100, where B As the log risk ratio for a temperature
change on lag AMaclure, 1991). Because we observed an approximately threshold
exposure—response relationship, for quantitative effect estimates we primarily report the
association for a temperature increase from the 5th percentile (6°C) to the mean observed
temperature (16.2°C), where we observe a positive association. We additionally calculated
cumulative association between UTI and temperature increases over 14 consecutive days.

2.4.2. Secondary analyses—To assess whether the relationship between temperature
and UT]I diagnosis varies throughout the calendar year, we fit models stratified by season.
We then plotted the exposure-response relationship for same-day associations, restricted

to the 5th to 95th percentile of temperature observed in each season and qualitatively
compared their shapes. We next examined whether the association varied across the
catchment areas of the two health care systems, which also differ by geography, climate,
and population demographics. We hypothesized that we would observe similar associations
across catchment areas. Finally, we assessed whether individuals living in areas of
concentrated poverty had a larger association than individuals in the other quartiles, by
comparing census tracts in the bottom quartile of income-based ICE-I (i.e., low-1CE-I)

with other quartiles. For these models we qualitatively compared the shapes of the exposure—
response relationships and then compared effect estimates for temperature increase from the
5th percentile to the mean. As an exploratory secondary analysis, we restricted our analysis
by catchment area and ICE-I to the fall. Finally, we separately examined the association
between UTI and temperature among men.

2.4.3. Sensitivity analyses—We performed several sensitivity analyses to assess the
robustness of our results to alternative model specifications. First, we present our primary
analysis with the fifth percentile specified as the referent rather than the mean. Second, to
evaluate the influence of relative humidity in our main analysis, we first fit a model without
controlling for relative humidity and second fit a model with a DLNM for 14-day relative
humidity with the same constraints as the temperature DLNM. All the above-described
sensitivity analyses included the same terms for temperature as described above for our
main analysis. Finally, to assess the influence of our choice of a 14-day lag, we fit a

model using a 21-day lag for temperature exposure with quasi-Akaike-Information-Criteria-
selected constraints (exposure: three df natural spline; lag: three df natural spline) (Rowland
et al., 2020).

2.4.4. Reproducibility—All statistical analyses were conducted using R statistical
software version 4.0.4 (R Foundation for Statistical Computing, Vienna, Austria). Data
preparation code for the original health care data is not publicly available, otherwise the
analysis code is available via GitHub (https://github.com/s-rowland/Daily Temp-UTI) with
the following packages used for coding management: tictoc v 1.0.1 (Izrailev, 2016); pacman
0.5.1 (Rinker et al., 2018); data cleaning and manipulation: tidyverse 1.3.0 (Wickham et al.,

Environ Int. Author manuscript; available in PMC 2022 July 01.
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2019), fst 0.9.4 (Klik, 2019); statistical analysis: MuMIn 1.43.17 (Barton and Barton, 2015);
dinm 2.4.5 (Gasparrini, 2011); gnm 1.101 (Turner and Firth, 2007); and data visualization:
ggplot2 3.3.5 (Wickham et al., 2016), egg 0.4.5 (Auguie, 2019), cowplot 1.1.1 (Wilke et al.,
2019), and gridExtra 2.3 (Auguie et al., 2017).

3. Results

In total, we identified 600,883 UTI cases in the KPSC population and 197,154 UTI cases
in the Sutter Health population from 2015 to 2017 among individuals over 18 years old. We
excluded 9,101 (1.5%) KPSC cases and 398 (0.2%) Sutter Health cases with addresses that
did not geocode to a California county. We further excluded 642 (0.1%) KPSC cases and
710 (0.4%) Sutter cases outside of the healthcare catchment counties. This yielded a final
sample of 591,140 UTI cases in the KPSC population and 196,046 UTI cases in the Sutter
Health population (Supplemental Figure 1).

The majority of UTI cases occurred among female patients in both the KPSC population
(88.1%) and in the Sutter Health population (90.8%), and median age at UTI diagnosis was
older for men in both populations. Of cases occurring in female patients, within the KPSC
population more UTI cases were observed among Hispanic patients (43.1%) and fewer cases
were observed among white patients (38.2%) as compared with Sutter Health where 15.2%
of cases occurred among Hispanic patients and more than half of cases (58.4%) occurred in
white patients. More female UTI cases occurred in patients living in low ICE-I Census tracts
in the KPSC population (26.9%) as compared with Sutter Health (19.5%). The distribution
of UTI cases was even across seasons and year of diagnosis. (Table 1).

UTI occurred most frequently in August and was diagnosed relatively infrequently on
weekend days versus weekdays (Supplemental Figure 2). The mean overall temperature
throughout the study period was 16.2°C (standard deviation; SD 6.6°C), ranging from a
daily minimum of —3.1°C to a maximum temperature of 38.6°C. Average temperatures were
generally higher in KPSC counties than in Sutter Health counties. Temperatures ranged from
1.2 to 38.6°C for KPSC and from -3.1 to 33.8°C for Sutter Health (Supplemental Table 3).

We observed an approximately threshold association wherein the rate of UTI diagnoses
increased up to approximately 10°C but remained relatively constant thereafter. (Fig. 1)
For example, an increase in daily temperature from the 5th percentile to the mean was
associated with a 3.2% (95% ClI: 2.4, 3.9%) increase in same-day UTI diagnosis rate,
whereas an increase from the mean to 95th percentile had an association of 0.0% (95% CI:
-0.7, 0.6%). This association persisted for lags between one and nine days prior to day of
diagnosis, whereas associations for 10 to 13 days prior were substantially attenuated or null
(Fig. 2, Supplemental Table 4). Coefficients for distributed lag terms and knots from our
primary analysis which can be used to calculate any comparison of interest are presented in
Supplemental Table 5.

3.1. Secondary analyses

We observed mostly positive associations between temperature and UTI across temperatures
in the fall and spring with inverse associations in the winter. Higher temperatures were not
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clearly associated with increased rates of UTI diagnosis during the summer. We observed the
clearest monotonic increase in the rate of UTI diagnosis with higher temperatures in the fall
(Fig. 3, Supplemental Fig. 3). By catchment area, we observed a monotonic increase in UTI
diagnosis rate for the KPSC catchment with decreased UTI diagnosis rate for temperatures
below the mean and increased rates for temperatures above the mean. For the Sutter Health
catchment area, the relationship was similar at lower temperature, but temperatures above
the 85th percentile were associated with lower rates of UTI diagnosis (Fig. 4). Results

were similar by census tract-level concentration of poverty, with slightly stronger cumulative
associations for an increase from 5th percentile to mean seen in low ICE-I communities.
(Fig. 5). Patterns of effect modification by catchment area and ICE-I were consistent when
restricted our analysis to UTI cases that occurred during the fall. (Supplemental Figs. 4,

5) Among men, we generally observed an attenuated and less precise exposure—response.
(Supplemental Figure 6).

3.2. Sensitivity analyses

Results with the fifth percentile specified as the referent showed a similar dose-response, but
associations stronger in magnitude than our primary analysis in which the mean temperature
was specified as the referent. Findings were robust to alternative model specifications with
no adjustment for relative humidity, and with DLNM for relative humidity incorporated
(Supplemental Figure 7). Associations were slightly greater in magnitude for the 21-day lag
model, with protective associations for lags 14 through 20 (Supplemental Figure 8).

4. Discussion

In this case-crossover study, we examined the relationship between ambient temperature
and outpatient UTI diagnoses in two California health care systems from 2015 to 2017.
Using DNLMs to account for temporal autocorrelation in daily temperatures and flexibly
model potentially complex non-linear relationships, we observed increased frequency of
UTI diagnosis among women associated with higher temperatures in the spring and fall.
Our findings were robust to alternative model specifications and the inclusion of men who
comprised ~ 11% of outpatient UTI diagnoses in the combined study population.

Our findings are generally consistent with prior research that examines temperature and
UTI. In a case-control study using data from the National Inpatient Sample from 1998 to
2011, Simmering et al. found that the odds of hospitalization with a primary diagnosis of
UTI were increased during months with higher ambient temperatures in a dose-dependent
manner (Simmering et al., 2018). Among 23.7 million Medicare enrollees, Hopp et al.
found that risk of UTI hospitalization was increased during heatwaves—defined as at least
two consecutive days exceeding the 99th percentile of daily temperatures for county

of residence—as compared with non-heatwave periods from 1999 to 2010 (Hopp et al.,
2018). Malig et al. estimated the probability of hospital admission for UTI increased by

a cumulative 7.3% over a 14-day period for every 10°F (i.e., 5.5°C) increase in daily
temperature with DLNMs applied to statewide California data, 1999-2009 (Malig et al.,
2019). Over a 14-day period, we observed approximately 12% cumulative increase in UTI
diagnosis rate for a shift from 6.0 to 16.2°C.

Environ Int. Author manuscript; available in PMC 2022 July 01.
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In analysis of all hospital admissions in Adelaide, South Australia from 2003 to 2014,
Borg et al. found that a 1°C increase in daily minimum temperature was associated with
increased rates of daily emergency department admissions for urinary tract infection ands
and lower urinary tract infections (Borg et al., 2017). Using data from Beijing, Chu et al.
used time-series analyses from 2013 to 2018 and found the strongest association between
increased temperature and hospital admissions for urinary system disease occurred on lag
day zero, with elevated risk through lag day two (Chu et al., 2021). We observed elevated
risk beginning on lag day zero and extending through lag day seven, with minimal risk
associated with lags after day nine. Future studies are needed to further refine the critical
period of temperature exposure in relation to UTI risk, particularly when more accurate
measures of symptom onset (rather than treatment-seeking) are available.

Finally, in the only prior study to assess the relationship between temperature and outpatient
UTI using national claims data, Simmering et al. found an association between increases

in week-prior temperature and UTI among women based on 15 million unique outpatient
encounters from 2001 to 2015 (Simmering et al., 2021). Our analysis offers a substantial
extension of these prior works, considering UTI in the outpatient setting, where the majority
of infections are diagnosed and treated, using DLMNSs as a modeling strategy, and relying
on electronic health record data that provided both diagnosis codes and laboratory data
from which to identify UTI cases. Only one prior study employed DLNMs to account for
temporal autocorrelation of daily temperature data and capture potential non-linearities in
the exposure—response relationship.

In our primary analysis, we observed a threshold phenomenon wherein the frequency of
UTI diagnosis increased monotonically up until 10°C but remained relatively constant
thereafter. Our findings suggest that in California changes from mildly cool to mildly

warm temperatures may confer the greatest increase in UTI risk, rather than extreme heat.
These findings are particularly relevant as the magnitude of average daily temperatures are
projected to increase as the global climate changes. It has been previously hypothesized

that higher temperatures may increase UTI risk through dehydration — even subclinically —
leading to decreased urinary frequency and reduced clearance of potential pathogens from
the urethral meatus (Eckford et al., 1995; Beetz, 2003; Nygaard and Linder, 1997). Our
findings suggest nuance in this mechanism, as one would expect dehydration — and therefore
rates of UTI diagnosis — to increase in a monotonic fashion with rising temperature. One
possible explanation for the threshold phenomenon we observe is behavior change wherein
individuals protect themselves against higher temperatures, for example by spending time in
air-conditioned indoor spaces, that mitigate exposure to higher temperatures.

Past research has also focused on seasonality with increased rates of UTI often, though not
always (Vorland et al., 1985; Stansfeld, 1966), observed during the fall and summer when
temperatures are generally warmer (Falagas et al., 2009; Yolbas et al., 2013; Anderson,
1983; Rosello et al., 2018; Melamed et al., 2014; Rossignol et al., 2013). We therefore
considered effect modification by season in our analysis. Whereas we observed a slightly
decreased frequency of UTI diagnosis at higher temperatures relative to the mean during the
summer, there was a clear monotonic increase in the frequency of UTI diagnosis during the
fall. Again, behavior change could explain this relationship. Individuals may take protective

Environ Int. Author manuscript; available in PMC 2022 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Elser et al.

4.1.

Page 11

measures during the summer, but not during the fall or spring when warmer temperatures
may be unexpected.

Finally, we considered effect modification by catchment area and by ICE-I, a measure of
concentrated neighborhood poverty and wealth. By catchment area, we observed decreased
rates of UTI diagnoses for the highest temperatures in the Sutter Health catchment, which
has a more temperate climate relative to the KPSC catchment. Although we caution that
the divergence in dose—response curves by catchment was only observed for the highest
temperatures where estimates were relatively imprecise due to data sparsity. We observed
no clear evidence of a difference in response between ambient temperature and UTI by
concentration of poverty (low ICE-I) community status. This finding is consistent with
prior studies using these data that showed no clear relationship between low individual- or
community-level socioeconomic status and overall UTI diagnosis rate (Casey et al., 2021).

Limitations

While the electronic health records data employed in this analysis provided detailed,
longitudinal health records for a large population of individuals in Northern and Southern
California, they represent only a subset of individuals residing in these areas. While

the Sutter Health population is generally representative of the underlying population in
their region, individuals in with the highest and lowest incomes are under-represented in
the KPSC patient population. This limits generalizability of our results to the region in
generally, and certainly to other parts of the country where local climates, behaviors, and
healthcare utilization may differ. Another limitation of EHR data is that we are only able
to identify UTIs among individuals who sought care. This means that the least severe cases
may not appear in our dataset. We suspect it is unlikely that care-seeking for UTI differs
systematically by ambient temperatures.

We used daily average county-level temperature estimates, which may have resulted in
exposure misclassification due to error in the exposure model, spatial variability within
county, and participant housing quality and behaviors. Our seasonal results suggest a role
of behavioral adaptation to hot temperatures. It is possible that other temperature metrics
not included in our analysis, for example maximum daily temperature, nighttime average
temperature, or temperature variability, matter more for UTI diagnosis rates (Li et al., 2017).
We used ICE-I to stratify infections based on neighborhood poverty, however the ICE-I
variable was constructed with data collected from 2011 to 2015. Little overlap between
these dates and the study period may introduce misclassification, as neighborhoods can
change quickly. We have no reason to suspect this misclassification would be systematic
with respect to UTI and temperature. Finally, our case-crossover study design was able

to handle time-invariant confounding and analyses that additionally controlled for relative
humidity did not change effect estimates. The DLNM also assumes that the effect of
temperature on rates of UTI diagnosis would vary smoothly over the days; we selected the
degree of smoothness based on quasi-Akaike Information Criteria, a metric that balances
goodness-of-fit with penalties for model complexity.
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5. Conclusion

In this time-stratified case-crossover analysis, we examined the relationship between
ambient temperature and the rate of outpatient UTI diagnosis using EHR data from two
California healthcare systems. We observed a threshold phenomenon wherein frequency

of UTI diagnosis increased with higher temperatures and then plateaued at approximately
10°C. Our results further suggest the dose—response differs by season with a clear monotonic
increase in frequency of UTI diagnoses observed in the fall and an increase at temperatures
above the mean during the spring. Overall, our findings underscore the importance of
modeling approaches that can capture potential non-linearities and seasonal variation in the
exposure—response relationship. Further, as climate change intensifies, public health and
healthcare professionals should pay attention to the joint implications of temperature and
season in future study and treatment of outpatient UTI.
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Fig. 1.
Exposure-Response relationship for selected lags. Panels A and B depict dose response

curves for lag-specific and cumulative associations, respectively, between temperature and
risk of UTI diagnosis relative to the 5th percentile temperature 16.2°C. We fit conditional
quasi-Poisson models adjusting for 14-day relative humidity. We constrained the exposure—
response to a natural spline with four degrees of freedom and we constrained the lag-
response to a natural spline with three degrees of freedom. Shaded areas represent 95%
confidence intervals and dashed vertical lines indicate the 5th and 95th percentiles. Panels C
and D depict the distribution of observed daily mean temperature from 2015 to 2017.
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Lag-response effect estimates. Panel A illustrates the percent change in daily UTI diagnosis
rate for an increase in temperature from the 5th percentile to the mean for each lag. We

fit conditional quasi-Poisson models adjusting for 14-day relative humidity. We constrained
the exposure—response to a natural spline with four degrees of freedom and we constrained
the lag-response to a natural spline with three degrees of freedom. Panel B illustrates

the cumulative association for the same temperature change. Error bars represent 95%

confidence intervals.
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Fig. 3.

Season-stratified exposure-response relationship for 14-day cumulative association between
temperature and UTI risk relative to the mean (16.4°C). We fit conditional quasi-Poisson
models adjusting for 14-day relative humidity. We constrained the exposure—response to a
natural spline with four degrees of freedom and we constrained the lag-response to a natural
spline with three degrees of freedom. For each season, we restricted the temperature range
to the 5th to 95th percentile of observed temperature for that season. Shaded areas represent
95% confidence intervals.
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Stratified analysis of exposure—response relationship for UTI diagnosis for KPSC and
Sutter Health. Panel A depicts the exposure—response relationship for 14-day cumulative
temperatures separately for each catchment area and Panel B depicts the associations for
same-day through seven-day lags. We constrained the exposure—response to a natural spline
with four degrees of freedom and we constrained the lag-response to a natural spline with
three degrees of freedom. Shaded areas and error bars represent 95% confidence intervals.
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Fig. 5.

St?atified analysis of exposure—response relationship for UTI diagnosis for low-1CE-I and
high-ICE-I Census tracts. Panel A depicts the exposure—response relationship for 14-day
cumulative temperatures separately for high- and low-poverty Census tracts. Panel B
depicts associations for the same-day through seven-day lags for the exposure—response
relationship. We constrained the exposure—response to a natural spline with four degrees
of freedom and we constrained the lag-response to a natural spline with three degrees of
freedom. Shaded areas and error bars represent 95% confidence intervals.
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Table 1

Characteristics of UTI cases in KPSC and Sutter Health, 2015 — 2017.

KPSC Sutter Health

Female Male Female Male
Total Cases 520,653 70,487 177,934 18,112
Age — Median (IQR) 49 (31 -65) 67 (53-78)  50(32-69) 68 (52 - 79)
Race/Ethnicity — N (%)
Non-Hispanic Asian & Pl 43,730 (8.4) 4791 (6.8) 22,265 (12.5) 1,939 (10.7)
Non-Hlspanic Black 41,944 (8.1) 7546 (10.7) 5473 (3.1) 787 (4.3)
Non-Hispanic White 199,123 (38.2) 32,360 (45.9) 103,891 (58.4) 11,561 (63.8)
Hispanic 224,309 (43.1) 24513 (34.8) 27,015(152) 2,062 (11.4)
Other 11,547 (2.2%) 1277 (1.8) 19,290 (10.8) 1,763 (9.7)
Season — N (%)
Winter 125476 (24.1) 17,398 (24.7) 44,060 (24.8) 4,656 (25.7)
Spring 126,843 (24.4) 17,531 (24.9) 44,035(24.7) 4,550 (25.1)
Summer 133,739 (25.7) 17,714 (25.1) 45059 (25.3) 4,413 (24.4)
Fall 134,595 (25.9) 17,844 (25.3) 44,780 (25.2) 4,493 (24.8)
Year — N (%)
2015 165,035 (31.7) 22,350 (31.7) 60,484 (34.0) 5,996 (33.1)
2016 173,609 (33.3) 23,430(33.2) 59,160(33.2) 6,174 (34.1)
2017 181,010 (35.0) 24,707 (35.1) 58,290 (32.8) 5,942 (32.8)
Census Tract Poverty — N (%)
Low ICI-I 140,053 (26.9) 19,055 (27.0) 36,444 (19.5) 3,715 (20.5)
High ICI-I 380,600 (73.1) 51,432 (73.0) 141,490 (80.5) 14,397 (79.5)

Environ Int. Author manuscript; available in PMC 2022 July 01.

Page 22



	Abstract
	Introduction
	Methods
	Urinary tract infections
	Assessment of daily temperatures
	Covariates
	Statistical analyses
	Primary analysis
	Secondary analyses
	Sensitivity analyses
	Reproducibility


	Results
	Secondary analyses
	Sensitivity analyses

	Discussion
	Limitations

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1

