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The One Health concept is a global strategy to study the relationship between human and animal health 
and the transfer of pathogenic and non-pathogenic species between these systems. However, to the 
best of our knowledge, no data based on One Health genome-centric metagenomics are available in 
public repositories. Here, we present a dataset based on a pilot-study of 2,915 metagenome-assembled 
genomes (MAGs) of 107 samples from the human (N = 34), cattle (N = 28), swine (N = 15) and poultry 
(N = 30) gut microbiomes. Samples were collected from the five Brazilian geographical regions. Of the 
draft genomes, 1,273 were high-quality drafts (≥90% of completeness and ≤5% of contamination), 
and 1,642 were medium-quality drafts (≥50% of completeness and ≤10% of contamination). 
Taxonomic predictions were based on the alignment and concatenation of single-marker genes, and the 
most representative phyla were Bacteroidota, Firmicutes, and Proteobacteria. Many of these species 
represent potential pathogens that have already been described or potential new families, genera, and 
species with potential biotechnological applications. Analyses of this dataset will highlight discoveries 
about the ecology and functional role of pathogens and uncultivated Archaea and Bacteria from food-
producing animals and humans. Furthermore, it also represents an opportunity to describe new species 
from underrepresented taxonomic groups.
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Background & Summary
The use of metagenomic approaches has revolutionized clinical microbiology allowing simultaneous iden-
tification of all potential pathogens without the need for culture-based methods1,2. For example, real-time 
metagenomic outbreak surveillance has also been useful in the identification and tracking of unknown infec-
tions, as such Shiga-toxigenic Escherichia coli (STEC) O104:H4 in Germany3 and SARS-CoV-2 coronavirus4. 
In the clinical context, metagenomics is also a powerful weapon in the fight against antibiotic resistance patho-
gens in humans and animals5. From the use of advanced methods based on de novo assembly of metagenomic 
sequences, several studies have reported the importance of the resistome (e.g., collection of antibiotic resistance 
genes)6. Improvement in the identification and quantification of antibiotic resistance genes from complete or 
near-complete genes makes the assembly approach useful for characterizing novel antibiotic resistance genes 
and/or comparing them with well-known genes7. On the other hand, it is also possible to establish the link 
between taxonomy and functional annotation using long-assembled sequences8, which can improve the charac-
terization of antibiotic resistance genes and the identification of pathogens.

It is well known that environmental microbiomes are hotspots of antibiotic resistance genes and that these 
genes can be exchanged between environmental and host-associated microbiomes6 or between host- and 
host-microbiomes9. The One Health concept is a global strategy to study the relationship between human, ani-
mal, and environmental health. The exchange of pathogenic and non-pathogenic microorganisms among these 
settings, associating the interconnection between humans, animals, and the environment, has been the main 
focus of one health study10. For example, Mosites and collaborators11 reported that human and animal micro-
biomes share the same species of their gut microbiome in rural livestock-owning households in western Kenya. 
Another study, conducted by Sun et al.11, demonstrated that the three-month exposure of students to livestock 
farms resulted in high sharing of antibiotic resistance genes and the microbial community. However, to the 
best of our knowledge, no one health data based on large-scale sampling and high-throughput sequencing by 
focusing on microbial genome reconstruction from metagenome data has been available in public repositories.

Here, we present a large-scale genome-centric dataset based on a pilot-study of 2,915 metagenome-assembled 
genomes (MAGs) from 107 samples (Supplementary Table 4). Data can be reused to test new hypotheses about 
the potential exchange of microbes between food-producing animals and humans or explored in the biotechnol-
ogy, evolutionary, functional, or ecological context.

Methods
Data generation.  Data was generated from GUARANI (One Health Brazilian Group) network. Initially, the 
aims of the GUARANI network’s project were to quantify the abundance and diversity of antibiotic resistance genes 
(e.g., resistome) of a large number of samples in Brazil (South American), distributed in the major five Brazilian 
geographical regions (North region - Castanhal, 1°17′46.3776″ S–47°55′8.6016″ W; South Region - Blumenau, 
26°55′10″ S 49°3.967′ W; Southeast Region - Bragança, 22°57′9.7″ S–46°32.651′ W; Midwest Region - Dourados, 
22°13′16″–S 54°48.334′ W; Northeast Region - Fortaleza, 3°43′2″ S–38°32.584′ W), and to investigate the relation-
ship between human and food-producing animal microbiomes, and the potential exchange of pathogenic and 
non-pathogenic microbes between these systems (Fig. 1A) by metagenomic approaches. Supplementary Table 1 
describes information about sex, species, age of animals, and demographic localization of the farms and cities where 
samples were collected. In general, the experimental design was based on general and descriptive traits. To cover 
a high number of samples from all geographical regions of Brazil and have great potential to perform large-scale 
genome-centric metagenomic data, we choose to use the same samples in Illumina high-throughput sequencing. 

Fig. 1  The general concept of the large-scale One Health Project and sample site locations. (A) Global strategy 
to study the relationship between human and animal health and the transfer of microbial species (pathogens 
and non-pathogens) between these systems. (B) Five geographic regions in which samples were collected in 
Brazil.
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For this, 107 samples [humans (N = 34), cattle (N = 28), swine (N = 15), and poultry (N = 30)] were collected in 
triplicate from farms located in the five Brazilian geographical regions (Fig. 1B). For each region, properties were 
selected based on the criterion of simultaneous swine, poultry, and cattle rearing. Human samples were collected 
from healthy individuals who lived in the closest urban areas to the rural properties. The World Health Organization 
defines health as “complete physical, mental, and social well-being”, in this study, we followed this concept to define 
adults (>18y-o) without any physical disease or infirmity as healthy individuals. All human data was anonymized, 
and the authors affirm that human research participants provided informed consent for the publication of the micro-
biome data and all information was approved by the research ethics committees. Data collection was approved by 
the Research Ethics Committee (CEP), Committee on Ethics in the Use of Animals (CEUA) from Universidade 
Federal de São Paulo (UNIFESP) and National System of Genetic Resource Management and Associated Traditional 
Knowledge SISGEN (Process numbers: 3.116.383, 2607170119 and AA1668A, respectively). (CEP and SISGEN). 
All Cattle, swine, and poultry samples were collected only from adult animals. In the sample collection, a swab was 
introduced in the first 2 cm of the rectal region to collect faecal samples of animals. Invasive rectal swabs were used 
only to collect samples from animals (swine, cattle, and poultry). For humans, the subjects were instructed to collect 
stool samples using a sterile fecal collection container with no preservative. A sterile charcoal swab was introduced in 
the stool specimen, followed by the rapid removal of stool excess by pressuring the swab against the container wall. 
The samples were stored and shipped to a central lab for DNA extraction.

DNA extraction and sequencing.  DNA extractions were carried out under sterile conditions in a micro-
biological vertical laminar airflow hood. We did not use negative control samples (e.g., “blank swab”) because 
the reagent and laboratory contamination were most problematic in low microbial biomass microbiomes 
(e.g., placenta or lung human microbiome) compared that find in high microbial biomass microbiomes12,13, 
as such that found in the faecal samples used in this study. DNA was extracted directly from swabs using the 
ZymoBIOMICS (Zymo, USA) DNA Miniprep Kit. DNA integrity and quantification were performed using a 
Qubit ® 2.0 Fluorometer (Thermo Fisher Scientific, AU). All samples were quantified by Qubit and organized on 
the sequencing plates according to the DNA concentrations obtained (Supplementary Table 2). The samples that 
had the same range of amount (ng) of DNA were in the same plate, since the number of PCR cycles of amplifica-
tion of the libraries depends on the amount of initial DNA, according to Illumina protocol. The samples from the 
different hosts were treated together with maximum attention to avoid cross contamination. In short, sequencing 
libraries were prepared with the Nextera DNA Flex Library Preparation Kit (Illumina, USA) according to the 
manufacturer’s protocol. Sequencing was carried out in the NextSeq. 500 System (Illumina, USA) using NextSeq. 
500/550 High Output Kit v2.5 (300 Cycles), generating 2 × 150 bp reads.

Pre-processing.  Firstly, raw reads were removed using BBDuk software (http://jgi.doe.gov/data-and-tools/
bb-tools/). Illumina adapters, PhiX and reads with Phred score below 20 were removed using the following 
parameters: minlength = 50, mink = 8, qout = auto, hdist = 1 k = 31, trimq = 10, qtrim = rl, ktrim = l, mina-
vgquality = 20 and statscolumns = 5. Then, host-associated reads were also filtered using four reference genomes 
(Homo sapiens - GRCh38 v.38, Bos taurus - ARS-UCD 1.2, release 106_2108, Sus scrofa - Sscrofa 11.1, release 
106_2107 and Gallus gallus - GRCg6a, release 104a_2108). All alignments were performed in Bowtie 2.4.1 using 
the very-sensitive options14.

Metagenome assembly, binning, and genome quality control.  To increase the throughput and 
maximize the number of MAGs in this dataset, we choose a strategy based on co-assembly. This strategy has been 
used in several studies, including in the reconstruction of genomes from poultry15, cattle16, and human17 metage-
nomes. In this case, samples were merged using the combination of host and region samples (See Supplementary 
Table 3 to check each Co-assembly dataset). Metagenomes were assembled using Megahit software18 with the 
meta-large option (–min-count 2–k-list 27,37,47,57,67,77,87). A total of 4,861,910,960 high-quality reads were 
used to assemble 1,676,286 contigs greater than 2,500 bp (Table 1). The binning approach was used to reconstruct 
genomes from metagenomes based on the compositional traits of individual contigs (e.g., tetra-nucleotide fre-
quency and coverage) using Metabat2 with default parameters19. We considered only the genomes that passed 
rigorous quality control to remove spurious and contaminated genomes in the downstream analyses. Genomes 
with completeness ≥50.0 and contamination ≤10.0 were used in the downstream analyses, following the 
Minimum Information about a Metagenome-Assembled Genome (MIMAG) of bacteria and archaea standards20 
in CheckM software21 with CheckM (lineage workflow). A total of 2,915 MAGs were reconstructed (Table 2 and 
Supplementary Table 3). Of these MAGs, 1,273 are high-quality drafts (≥90% of completeness and ≤5% of con-
tamination), and 1,642 are medium-quality drafts (≥50% of completeness and ≤10% of contamination) (Fig. 2). 
The mean and standard deviation of genome size were 3.1 ± 1.4 Mbp, while the number of contigs had a mean 
of 263 ± 263. In addition, the mean genome size is compatible with those described in human stool communi-
ties22. On the other hand, we assembled contigs greater than 2.02 Mbp in MAGs from poultry metagenomes, 
indicating the accuracy of the metagenome assembly. All MAGs were submitted under the NCBI database and 
post-processing through NCBI’s Contamination Screen to remove adaptador and cross-species contamination.

Taxonomy prediction.  We used standardized bacterial taxonomy based on genome phylogenomics pro-
posed by Parks and collaborators23, using the GTDB-Tk v1.3.0 software24 (classify_wf workflow) and the most 
recent version of the Genome Taxonomy Database (GTDB) Release 05-RS9523. This workflow has been used to 
infer the taxonomy of MAGs, once improved classification of new uncultivated lineages and standardized taxon-
omy ranks based on the phylogenetic information. The most representative phyla were Firmicutes, Bacteroidota, 
and Proteobacteria (Fig. 3A), which are extensively studied in host-associated microbiomes25. However, many of 
the MAGs described here are potential new genera or new families (Fig. 3B), highlighting new insights about the 
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ecophysiology of these new taxonomic groups. Regarding shared species between the four microbial community 
hosts, 45 genera were shared among distinct hosts (Fig. 3C – Supplementary Table 5). This includes environ-
mental species with ecological importance in the digestive microbiomes (e.g., Cellulomonas and Azospirillum). 
Furthermore, four shared genera were generically assigned as SZUA-444, SZUA-584, UBA1305, and UBA8346, 
demonstrating the importance of this dataset to explore new taxonomic groups.

Data Records
The Whole Genome Shotgun project (PRJNA682348)26 has been deposited at DDBJ/ENA/GenBank under 
the accessions JAEVYR000000000-JAEWNV000000000, JAEWNW000000000-JAEXCD000000000, 
JAEXCE000000000-JAEXRH000000000, JAEXRI000000000-JAEYGM000000000, JAEYGN0000000
00-JAEYNF000000000. JAEYNG000000000-JAEZCI000000000, JAEZCJ000000000-JAEZRM000000000 and 
JAEZRN000000000-JAFAGR000000000 (Supplementary Table 3 - NCBI Genome Accession column). The raw 
data of Illumina metagenomic sequencing reads was deposited in SRA-NCBI (www.ncbi.nlm.nih.gov/sra) under 
Bioproject accession PRJNA68445427.

Technical Validation
Here, we reported 2,915 draft genomes assembled from host-associated metagenomes. Illumina metagenomic 
reads used to assemble MAGs went through multiple steps of rigorous quality control, which included removing 
low-quality reads and host-associated sequences. Only a small proportion of the reads (14.64 ± 11.19%) were 
removed during the quality control, which had 0.22 ± 2.12% of host-associated reads (Supplementary Table 2). 
In a total, 4,861,910,960 high-quality reads were used in the downstream analyses.

A total of 37,755,059 contigs were generated during the metagenome assembly steps, being 1,676,286 contigs 
greater than 2,500 bp were assembled (Table 1). Small contigs (≲2,500 bp) were discarded because they car-
ried less compositional signatures (as such used in the binning step: tetranucleotide frequencies and coverage) 
and can bias the construction of clusters during the metagenome-assembled genomes reconstruction step28. 
The longest contigs showed a mean of 1,083,245 ± 295,772 bp (max: 2,020,273; min: 690,014), demonstrating 
the effectiveness of the high sequencing depths used here. These results are similar to those already described 
in other studies reconstructed contigs greater than 900,000 bp using host-associated microbiomes like rumen 
metagenomes29 or caecum chicken microbiome15.

Each metagenome-assembled genome (MAG) was validated using the rigorous standards defined by the 
Minimum Information about a Metagenome-Assembled Genome (MIMAG) of bacteria and archaea con-
sortium20, considering only medium and good quality genomes assigned by the number of single-copy genes 
within a phylogenetic lineage21. Furthermore, only 33 (1.13% of the total dataset) MAGs showed adaptor or 
cross-species contaminations during the NCBI’s Contamination Screen, demonstrating the high quality of this 

Host Region
Number of 
samples

Number of 
high-quality 
reads

Number of 
assembled 
contigs

Number 
of Contigs 
(≥2,500 bp)

Total length 
of sequence 
≥2,500 bp

Longest 
contig (bp)

Human 
(N = 34)

Castanhal 6 259,016,108 1,634,409 81,182 670,841,654 1,057,294

Bragança 7 310,616,922 2,255,248 119,571 970,361,522 1,034,121

Blumenau 7 296,871,652 1,703,918 93,700 756,020,767 838,472

Dourados 7 284,108,138 1,491,995 85,735 719,165,690 1,187,438

Fortaleza 7 446,738,660 2,216,926 133,034 1,171,492,042 1,168,256

Total 34 — — —

Cattle 
(N = 28)

Castanhal 6 254,494,314 2,220,977 75,955 678,070,566 1,234,574

Bragança 6 360,597,786 4,093,158 160,163 1,127,539,900 1,105,705

Blumenau 6 300,801,100 3,666,305 137,492 1,017,974,954 1,436,631

Dourados 6 237,490,610 2,509,355 93,416 792,840,322 891,031

Fortaleza 4 150,991,730 1,892,645 69,144 535,215,175 981,474

Total 28 — — —

Swine 
(N = 15)

Castanhal 3 117,694,018 1,158,246 48,717 437,660,170 788,418

Bragança 3 117,387,524 1,077,507 38,045 385,280,349 980,111

Blumenau 3 151,335,286 1,643,937 74,497 613,584,395 1,004,084

Dourados 3 123,568,764 1,331,505 53,338 420,121,709 1,376,043

Fortaleza 3 169,768,812 1,391,433 60,545 587,776,398 826,244

Total 15 — — —

Poultry 
(N = 30)

Castanhal 6 311,668,528 1,974,410 98,496 848,169,168 978,697

Bragança 6 141,138,814 1,140,082 47,610 459,976,910 690,014

Blumenau 6 223,399,652 1,296,760 62,518 640,029,927 2,020,273

Dourados 6 226,320,474 1,598,993 70,086 668,128,667 1,234,552

Fortaleza 6 377,902,068 1,457,250 73,042 730,871,569 831,481

Total 30 — — —

Table 1.  Number of reads and metagenome assembly metrics of each individual data set.
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Host Region
Number of 
samples

Number of Genomes 
(MAGs)1

Medium-quality 
(MAGs)2

High-quality 
(MAGs)3

Human (N = 34)

Castanhal 6 131 68 63

Bragança 7 219 128 91

Blumenau 7 167 91 76

Dourados 7 153 87 66

Fortaleza 7 294 164 130

Total 34 964 538 426

Cattle (N = 28)

Castanhal 6 138 75 63

Bragança 6 183 134 49

Blumenau 6 183 111 72

Dourados 6 146 86 60

Fortaleza 4 117 73 44

Total 28 767 479 288

Swine (N = 15)

Castanhal 3 80 36 44

Bragança 3 75 32 43

Blumenau 3 112 62 50

Dourados 3 109 60 49

Fortaleza 3 147 77 70

Total 15 523 267 256

Poultry (N = 30)

Castanhal 6 148 96 52

Bragança 6 90 42 48

Blumenau 6 124 62 62

Dourados 6 141 73 68

Fortaleza 6 158 85 73

Total 30 661 358 303

Table 2.  Number and quality of metagenome-assembled genomes (MAGs) of each individual dataset. 
1Genomes with completeness => 50.00 and contamination = <10.00 2Genomes with completeness = >50.00 
and = <90.00 and contamination = <10.00; 3Genomes with completeness = >90.00 and contamination = 
<5.00.

Fig. 2  Quality determination of metagenome-assembled genomes (MAGs). (A) Completeness and (B) 
contamination were estimated by the identification of individual marker genes. (C) Genome size was calculated 
by the sum of bases present in all contigs of each MAG. (D) Number of contigs.
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dataset. As shown in the previous section, the biological traits (e.g., genome size and the number of contigs of 
each mags) were similar to those recently reported in human, poultry, swine, and cattle stool communities, 
demonstrating that the genomes showed good quality and can be used by the scientific community to generate 
new studies.

Code availability
All software used in this study was published in peer-reviewed journals. Additional information was described in 
detail in the Material and Methods section
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