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Abstract

Nanomedicine design is often a trial-and-error process, and the optimization of formulations 

and in vivo properties requires tremendous benchwork. To expedite the nanomedicine research 

progress, data science is steadily gaining importance in the field of nanomedicine. Recently, 

efforts have explored the potential to predict nanomaterials synthesis and biological behaviors 

via advanced data analytics. Machine learning algorithms process large datasets to understand 

and predict various material properties in nanomedicine synthesis, pharmacologic parameters, 

and efficacy. “Big data” approaches may enable even larger advances, especially if researchers 

capitalize on data curation methods. However, the concomitant use of data curation processes 

needed to facilitate the acquisition and standardization of large, heterogeneous data sets, to support 

advanced data analytics methods such as machine learning has yet to be leveraged. Currently, data 

curation and data analytics areas of nanotechnology-focused data science, or ‘nanoinformatics’, 

have been proceeding largely independently. This review highlights the current efforts in both 

areas and the potential opportunities for coordination to advance the capabilities of data analytics 

in nanomedicine.
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1. Aim of the Review

The medical use of nanomaterials has shown promising advancement in the field of 

drug delivery. From the first FDA-approved nanodrug Doxil to the clinical use of lipid 

nanoparticles for mRNA vaccines, numerous nanoparticles can efficiently and safely 

deliver small molecules, proteins, nucleic acids, or other active pharmaceutical ingredients 

(APIs).1–3 Encapsulation in nanoparticles improves drug solubility, stability, and potentially 

facilitates the crossing of biological barriers and the selective targeting to disease sites, 

when these pharmacologic advantages have not or cannot be engineered into APIs.4 

However, designing nanocarriers and optimizing the delivery strategy can be time-intensive, 

and typically involves a substantial amount of trial and error. Clinical translation of 

nanomedicines often does not follow pre-clinical development, often due to the complexity 

and heterogeneity of nanoparticles.5 To address these issues, advanced data analytics 

methods promise to accelerate and improve the nanomedicine development processes.

While the prediction of nanomaterial behavior in vivo is challenging due to a lack of 

systematic studies across material types, artificial intelligence (AI) platforms promise 

to improve and streamline nanomedicine development. Since 2007, when the term 

‘nanoinformatics’ was coined,6, 7 there has been an explosion of nanomaterial-related data 

science efforts, which has generated large datasets with nanomaterial characterizations.7 

However, there is a disconnect between the scientists curating the databases and those 

utilizing AI. As a result, some AI platforms are developed using small-scale, project-specific 

datasets that lack translational values. In addition, non-standardized reporting metrics 

make it difficult to compare different material entities, and non-centralized databases are 

inaccessible to research groups who are not equipped with data mining skills. Herein, 

the aims of this review are to (1) review the most recent AI studies that capture the 

epitome of nanomedicine platform development, (2) introduce public databases focused 

on nanomaterial characterizations, and, most importantly, (3) advocate for a collaboration 

between the research groups developing AI platforms and nano-informaticians in order to 

increase the clinical utility of nanomedicine.

2. Introduction to ‘Nanoinformatics’ and Machine Learning

Many science and engineering fields today are becoming more data-driven (ie. data analysis 

is increasingly powering experimental decision-making). Data science is a multidisciplinary 

field that combines mathematics and statistics to extrapolate meaningful insights from 

data.8, 9 As a result of the increasing interest in medical applications of nanotechnology, 

a new field of data science has emerged. ‘Nanoinformatics’ bridges computer science, 

information technology, nanotechnology, and medicine to accommodate the increasing 

investigation for nanomaterial discovery.6 The field encompasses informatics techniques 

to analyze and process structural and physicochemical properties of nanomaterials and 

their biological environments with the primary goal of accelerating and facilitating clinical 

applications.6

Recently, nanomaterial databases have also been under rapid development. This includes 

standardizing nanomaterial nomenclature, reporting physicochemical properties, and 
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developing quantitative structure-activity relationships (QSAR) to understand efficacy and 

toxicity mechanisms from in vitro and in vivo results.7, 10 Coupling these analyses 

with data mining to extract information from literature and patents, data scientists 

have initiated several nanomedicine libraries to collect, compare and analyze different 

formulations.11–13 Although computational data mining techniques are increasingly used 

for data curation, most predictive nanomedicine platforms to date have been developed 

using manually-curated data, which is low throughput and can pose problems for platform 

generalizability.14–18 Many platforms have found it difficult to recruit groups to contribute 

large amounts data, and, as a result, are less impactful than intended. Additionally, as these 

databases are often structured primarily for manual data analytics, they are not primed for 

their use as inputs into AI. Therefore, a gap needs to be filled between the nanoinformatics 

and AI applications in nanotechnology.

AI is a field of computer science in which programs are developed to model cognitive 

functions of human intelligence, such as learning and problem-solving.19 Machine 

learning constitutes a subset of AI that learns underlying trends from data to make 

informed decisions or predictions.19–21 Machine learning platforms typically utilize 

classic algorithmic approaches, such as clustering, regression, and classification, to make 

predictions from complex patterns. As input to train machine learning models, descriptive 

characteristics are curated for each sample, known as a feature vector, and associated with 

a predicted value.20, 21 However, a constant challenge with developing machine learning 

platforms is organizing a dataset that will not overfit the algorithm.22, 23 An overfit model is 

trained to predict the training samples exclusively and will be unsuccessful when challenged 

with new data.20 Optimal datasets include many samples but few features. Creating large 

and comprehensive datasets to train any machine learning model accurately remains a 

challenge for the biological sciences and engineering.24, 25

Because of their ability to deconvolute patterns within datasets, machine learning 

has become one of the exciting analytic methods to tackle challenges in 

nanotechnology development. These models have successfully made predictions of physical 

properties15, 17, 18, 26, 27 and material compositions28–31, in addition to more complex 

nanomaterial-biological (nano-bio) interactions,14, 32, 33 cellular uptake pathways,33–35 and 

toxicity profiles.36–38 Robust algorithms require large amounts of comprehensive data for 

training.20, 21 For this reason, curating nanomedicine properties and experimental results 

into a centralized database can significantly benefit the future of AI in nanotechnology 

(Figure 1).

3. Recent advances in nanomedicine using machine learning

Over the past decade, machine learning applications in biomedical science and engineering 

has gained popularity and changed the landscape of nanomedicine research. According 

to Web of Science, the number of publications with the keywords “nanomedicine” and 

“machine learning” or “AI” has increased 10 times within the past 10 years. Nanomedicine 

research has benefited from various machine learning studies, as many traditional 

methodologies are unable to delineate the complexity and heterogeneity of nanomedicine 

entirely. Recent publications have presented many successful ways to seamlessly integrate 
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AI into nanomedicine development in both exploratory and validation stages. Among the 

compelling stories, AI has been commonly applied to nanomedicine material and synthetic 

efforts to optimize their design.39, 40 Similarly, AI applications have also been widely used 

to understand the underlying principles of nanomedicine-based targeted drug delivery and 

biodistribution.41, 42 While topics on AI guided synthesis,40, 43 strategic delivery,39, 41 and 

AI-based prediction of particle biodistribution38, 42 have been thoroughly covered in several 

recent reviews, we want to additionally highlight works in the field of data curation that may 

benefit nanomedicine development efforts and could facilitate collaborations with other data 

analytics approaches to improve nanomedicines (Table 1).

3.1. Using AI to investigate excipients for nanomedicine designs

Most of current nanomedicine research is focused on a handful of material classes. With 

an increasing demand for nanomaterials to overcome biomedical challenges, discovering 

novel materials is a major effort in nanomedicine research. While over 50 nanomedicines 

have been FDA-approved and hundreds more are in clinical trials, only a small fraction 

of the nanomedicine chemical space has been explored to date.44 Despite a few nanodrugs 

with novel material entities, such as the nanocrystal Ryanodex or albumin-bound nano-drug 

Abraxane, the vast majority of FDA-approved nanodrugs are liposomal formulations with 

similar lipid contents.44–48 Researchers are investigating new material entities to expand the 

options for nanoformulations in order to overcome multifaceted delivery challenges, such as 

physical and biological stability, immune surveillance, and reticuloendothelial clearance. 

Centralized platforms for nanoformulation guidance can potentially accelerate research 

efforts.

Recent studies have investigated the potential of integrating drug excipients in nanomedicine 

formulations for increased stability and high drug-loading.49 Previously, we published 

a self-assembled indocyanine nanoparticle system with high drug-loading carriers for 

hydrophobic small molecules with robust in vivo activities.50 Through a quantitative 

structural assembly analysis, we discovered that certain molecular descriptors of small 

molecules correlate to the formability of the self-assembly system.50 Cheminformatics 

approaches have also been used to carry hydrophobic compounds in polymeric micelle 

formulations. Alves et al. showed a workflow for rational design of these polymeric 

micelle systems through quantitative structure-property relationship modeling.51 The FDA’s 

Inactive Ingredients Database contains about 3000 exipients from previously approved 

drug formulation and animal toxicity studies.52 The database provides a thorough set of 

candidates for nanoformulation design.

Reker et al. recently harnessed machine learning to explore the excipient-drug space and 

discover novel excipients for self-assembling nanoparticles.29 They generated about 2.1 

million drug-excipient combinations, extracting drugs and excipients from the DrugBank 

and FDA libraries, respectively. Each drug-excipient pair was associated with a feature 

vector composed of over 4000 features. These features included physicochemical properties 

of both drug and excipient molecules, as well as parameters of enthalpic, non-covalent 

interactions between the two molecules, as determined through short molecular dynamics 

(MD) studies. Machine learning analysis of the large dataset was accomplished using a 
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random forest classifier because of its inherent ability to parse out important features. 

High-throughput experimental classification using dynamic light scattering (DLS) was used 

to train and validate the platform. Although the MD-related features highly contributed to 

accurate co-aggregation predictions and could aid in understanding nanoparticle stability, 

performing MD for every potential drug-excipient pair is unrealistic due to computational 

costs. Therefore, the model was re-trained without the MD features and achieved 

competitive performance, predicting co-aggregate formation with 0.94 accuracy.29 Several 

predicted co-aggregates from the test set were experimentally validated to verify the 

platform’s predictive capabilities. Compared to other nanoformulations, the new excipient-

drug pairs generally enabled the suspension of higher drug concentrations.

A data analytics-guided formulation design platform could potentially expand the candidates 

for excipients, which may be needed to limit potential excipient-induced pharmacological 

side effects via increasing drug loading and enabling rational excipient selection. Although 

excipients are defined as inactive and nontoxic materials, studies have suggested that they 

are not all “biologically-inert”. Data analytics showed that excipients in oral medications 

may cause allergies and intolerances within certain subpopulations, and these excipients 

are termed adverse reaction-associated inactive ingredients (ARAIIs).53 For instance, cases 

of polyethylene glycol (PEG) allergy were reported in various medications, and a recent 

case of postvaccination anaphylaxis caused by PEG allergy necessitated a re-evaluation 

of these inactive excipients.54 Some excipients carry biological functions that enhance 

bioavailability of the API. For instance, Pluronic block copolymers modulate activities of 

drug efflux transporters, such as P-glycoprotein.55 Pottel et al. interestingly found that 

over 30 known excipients have over 40 biological targets, and combining large-scale 

computational screening with targeted experimental testing, they demonstrated excipient 

biological activities both in vitro and in vivo models.28 A major outcome of this work is the 

need to redefine excipients and explore new biological activities for known excipients.

3.2. Design parameters of nanomaterials in drug delivery

The physicochemical properties of nanomaterials are critical engineering elements that must 

be tailored for each problem.56 These properties are often tied to nanomaterial colloidal 

stability, cellular uptake efficiency, tissue targeting, and likely every step of absorption, 

distribution, metabolism, excretion, and toxicity (ADMET).42, 57–62 A traditional controlled 

approach to study the impact of the physicochemical properties involves changing one 

variable of the particles at a time while keeping all others constant, and systematically 

evaluating the resulting biological efficacy. However, simple linear correlations are 

not sufficient to fully model the intricate relationship between the physicochemical 

properties and the fate of nanomedicine in vivo and clinics. Various prototype machine 

learning algorithms have tackled aspects of nanomaterial design and nanomedicine 

pharmacokinetics/pharmacodynamics (PK/PD) to streamline optimized nanoformulations.

The most common physicochemical properties of nanomedicines include size, shape, 

and surface charge, and these properties are frequently used as features in machine 

learning. Traditional data analysis approaches have found compelling evidence that these 

physicochemical properties play an important role in biological behaviors or therapeutic 
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efficacy. The size dimension of nanomedicine makes it unique in biological and theranostic 

applications. Nano-sized materials are broadly defined between 1 to 1000 nanometers, with 

most nanomedicines less than 100 nm.63 The wide distribution in size enables nanoparticle 

engineering for various biological potentials and introduces heterogeneity for treatment. 

For example, to design nanomedicines for cancer therapeutics, a fine balance needs to be 

achieved between the retention and permeability in tumor tissues: while larger nanoparticle 

sizes increase the retention time, they decrease exposure to the tumor.64 In addition, the 

biodistribution of nanomedicine is also impacted by the cutoff sizes of different organs. 

Nanoparticles with diameters larger than 200 nm accumulated in the spleen, while particles 

smaller than 50 nm localized in the liver.64–66 Nanoparticles less than 6 nm were filtered 

by the kidneys,64 and the size from 50 nm to 100 nm nanoparticles have a higher 

apparent permeability across the blood brain barrier.66 However, many of these studies only 

considered one type of nanomaterial, and thus the results can drastically change when other 

physicochemical properties are considered simultaneously.

The shape of the material has been inspired by evolutionary and microbiology but is less 

commonly studied in a therapeutic aspect.67, 68 Most nanomedicines to date have been 

classified as spherical nanoparticles, despite a wide range of nanomaterials with lower 

dimensions such as rods, sheets and other defined shapes, like carbon nanotubes.56 Studies 

have shown that nanomaterial shape can influence transport motion. Oblate-shaped particles, 

rather than spheres, are transported in a tumbling manner that enhances the lateral drift of 

particles towards the blood vessel walls.56, 69, 70 Shape has also been shown to influence 

clearance via the reticuloendothelial system, which prolongs nanoparticle circulation time 

and enhances the probability of reaching the target site. Nanoparticle shape can also 

influence specific cell interactions. The amount of surface area for multivalent interactions 

can impact the adhesion energy between particles and cells.56 Shape control is difficult in 

many nanomaterial synthesis methods, but technologies like DNA origami can expand the 

reservoir of nanomaterial structures. DNA origami involves folding DNA to create 2D and 

3D nanoscale structures for drug delivery, biosensing, and biomolecular computing.71, 72 

This computer-aided design is highly flexible, tunable, and reproducible as it generates 

homogenous samples. One study shows that the compactness or aspect ratio of the particle 

shape can influence the internalization efficiency and kinetics of cellular uptake.73

The surface charge of nanomaterials affects colloidal stability and biological interactions.74 

A negative surface charge, or zeta potential, stabilizes particles in a suspension and 

promotes cellular absorption to the membrane.57 Interestingly, the nanomedicine charge also 

influences organ targeting. A new technology named selective organ targeting nanoparticles 

(SORT) demonstrated the potential for organ-specific gene therapy.75 Lipid nanoparticles 

with increasing concentration of positively charged lipids drive the cargo transport from 

the liver to the spleen. Eventually, they accumulate in the lung concentration-dependent, 

whereas adding negatively charged lipids specifically enhanced spleen delivery.75

Surface chemistry is another critical component of nanomaterial design that facilitates 

interactions within biological systems. Recent analyses have shown that less than 1% 

of administered nanoparticles reach their target site within murine tumor models.76 

Targeting moieties can improve biodistribution, and surface functionalization can mediate 
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biological interactions. Nanoparticle surfaces have been modified with moieties such 

as antibodies,77, 78 aptamers,79, 80 carbohydrates,81, 82 and polymers83 to modulate 

physiological stability, cellular uptake mechanisms, and tissue targeting.84 For example, 

natural product, such as polysaccharides, has been integrated into delivery formulations not 

only for their stability and synergistic therapy but also for tumor targeting.85, 86 Negatively 

charged sulfate groups have made certain polysaccharides, such as fucoidan, interesting 

moieties to assist in the self-assembly of water-insoluble drugs into nanoparticles,85 and 

its nanomolar binding affinity to P-selectin has been used for targeted therapy in solid 

tumors.82, 87 Recent work by Alafeef et al investigated the relationship between nanoparticle 

physicochemical properties and cellular internalization for various types and stages of 

cancer using machine learning. The results from an artificial neural network model suggest 

that cellular internalization is more strongly dependent on surface chemistry and cell type 

than other parameters tested.88

The effect of the protein corona on nanomaterial interactions with biological environments 

is of increasing interest. Nanoparticle stability, biodistribution, and toxicity can be largely 

influenced by the proteins and other biomolecules absorbed onto their surface.89–91 

Heterogeneity, complex dynamics, and large proteomics profiles all pose a large challenge 

for protein corona analysis, and it is a suitable application for machine learning-based 

methods.92 Recent work by Ban et al. harnessed machine learning and meta-analysis 

to deconvolute the complexities of functional proteins in nanoparticle protein coronas.14 

Many factors, including properties of both nanoparticle surface and serum proteins, can 

influence nano-bio interactions and protein corona formation. Simple linear regressions fail 

to make accurate predictions. Therefore, the group developed a machine learning platform 

to investigate the relationship between protein corona formation and targeted cellular uptake, 

parsing through quantitative and qualitative properties. The first step of the computational 

analysis was to predict the protein composition and isolate functional components. Since 

current nanomaterial databases lack comprehensive reports about protein corona, literature 

mining remains one of the top strategies to obtain sufficient datasets. The authors mined 

56 papers for reports of the composition of protein coronas, and a set of nanoparticles 

with categorized physicochemical properties were generated for machine learning algorithm 

training. A random forest model was used to accurately identify key proteins in the protein 

coronas of various nanoparticles to make predictions with a small, heterogeneous dataset.14 

Still, overfitting the prediction model was a concern because of the small sample size. In 

addition to estimating the prediction using a cross-validation approach to combat overfitting, 

feature importance analysis was used to identify minimal features for model training. In this 

way, sensitivity was balanced with generalizability. With refined features, the random forest 

model achieved high R2 values (> 0.7) with low error scores (below 5%). Experimental 

identification of protein composition verified the machine learning predictions.14

The above study also analyzed the essential factors needed for accurate prediction, 

indicating that surface modification highly influenced protein interactions.14 Additionally, 

this analysis emphasized the heterogeneous distribution of factors that influence corona 

formation in each formulation. Investigating the epitopes of the overall corona, as 

opposed to specific protein composition, can give insight into binding mechanisms and, 

therefore, cellular uptake. Functional epitopes of the protein corona can be mistakenly 
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recognized as exogenous matter and cause unwanted immune or inflammatory responses. 

Protein compositions were tightly correlated (R2 values ≥ 0.8) with uptake efficiencies, 

pro-inflammatory markers, and immune disturbances.14 This model can predict the 

physicochemical properties of the protein corona and identify unique fingerprints, thereby 

guiding nanoparticle design for complex biological environments and specific biological 

activity.

3.3. Machine learning predictions of nanomedicine biological efficacy

One of the most significant hurdles when predicting nanomedicine biological efficacy is a 

poor translation from in vitro to in vivo studies. Nanomedicine therapies often do not display 

therapeutic benefits in vitro because nanoformulations often address immune systems, 

peripheral tissues, and first-pass metabolism issues. All of these are poorly recapitulated 

in cell culture. Thus, studies rely on slower in vivo work, and it is often challenging to 

parse out a single factor from nanoformulation that ultimately contributes to the therapeutic 

benefits. Machine learning has been incorporated into nano-drug development to expedite 

the screening process. The research focusing on a particular structure-activity relationship 

in nanomaterials are currently situation-dependent; most groups chose to incorporate high-

quality and specific data points by in-house high-throughput screening. However, recent 

work also has shown success by mining literature data. Recent work by Yamankurt et al. 

coupled high-throughput screening with machine learning to assess spherical nucleic acid 

(SNA) immune activations and identify cancer-vaccine candidates.93 At first glance, the 

SNA properties did not correspond systematically with biological activity, as measured by 

TLR9 activation. In a high-throughput fashion, SNAs were rapidly formulated and probed 

for immune activity using mass spectrometry. Yamankurt and colleagues trained several 

cross-validated machine learning algorithms, namely linear regression, logistic regression, 

and non-linear XGBoost, using combinations of SNA properties.93 As the variable to be 

predicted, each sample was associated with the experimentally measured immune activity. 

Generally, as the number of features increased, the performance increased, eventually 

plateauing.

Furthermore, the most predictive features remained the same and distinguishable despite the 

feature vector size. The team further investigated whether a small, expansive library of SNAs 

would be sufficient for model training by randomly selecting sample subsets. This work 

investigated the possibility of limited sample numbers to be used to explore a large design 

space. Non-linear models achieved higher performance overall (the highest being XGBoost 

with Q2 = 0.83, where Q2 refers to the R2 of the test set) because of their ability to predict 

complex trends.93 This machine learning-based analysis captured optimal structure-activity 

relationships, using minimal SNA synthesis to predict immune activation.

While machine learning algorithms have been increasingly used to model complex nano-

bio interactions, comprehensive interpretations and understanding of feature interactions 

remains a challenge. Yu et al. investigated feature importance and created a feature 

interaction network in order to overcome some of the interpretation limitations. 94 Through 

literature searches and manual filtering, the authors built a random forest model (with R2 

values > 0.75) to predict immune response and organ burden of a specific nanoparticle 

Chen et al. Page 8

Adv Drug Deliv Rev. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



treatment. They accomplished a multiway importance analysis for their features to reduce 

bias. Feature interaction networks are important for modeling the complexity of immune 

toxicity and give insight into feature relationships, such as synergy or antagonism. The 

feature interaction network highlighted a clear correlation between nanoparticle properties 

and immune response or organ burden. For example, the network showed an influence of 

zeta potential on protein corona formation and nanomaterial uptake, as well as a correlation 

between the length of nanoparticles and severity of immune response. 94 The improved 

interpretability of this framework offers specific guidance on nanoparticle design and 

application.

Another challenge in the nanomedicine field is determining the mechanism of drug release 

in vivo. When a nanoparticle enters the complex solid tumor microenvironment, it interacts 

with barriers and cell types differently. To maximize therapeutic benefits in these cases, 

understanding organ/tissue interactions is critical. Kingston et al. used machine learning 

image analysis to monitor micrometastasis targeting and predict nanoparticle delivery.95 

Tissue imaging with machine learning analysis generated a predictive model for the 

nanoparticle entry to the micrometastasis. Imaging techniques, including tissue clearing 

and 3D microscopy, produced complex images from which machine learning methods could 

extract tremendous amounts of data with single-cell resolution. The machine learning model 

was trained to differentiate between biological structures such as blood vessels, nuclei, and 

metastases. This model outperformed other image analysis techniques because it learned 

important profiles that contribute to structural differentiation from the images. Using these 

profiles, Kingston and colleagues found a higher degree of nanoparticle accumulation in the 

micrometastasis than in the primary tumor tissue. Using a Gaussian support vector machine 

(SVM) algorithm, the platform was expanded to predict nanoparticle delivery in different 

micrometastasis types. With a Pearson correlation of 0.94, the SVM model successfully 

predicted the number of cells with nanoparticles, the mean nanoparticle intensity, and 

the density of nanoparticle-positive cells.95 Micrometastasis imaging and machine learning-

enabled accurate nanoparticle delivery predictions based on specific pathophysiology.

3.4. Challenges of machine learning efforts in nanomedicine

While AI efforts have made great strides in informing nanomaterial design, their 

transformational change has several significant limitations. One of the most ubiquitous 

challenges those developing predictive platforms face is the need for large, unbiased 

datasets for model training. AI algorithms need to be fueled by large amounts of data in 

order to generate robust predictions and distinguish between drug delivery methods.20, 96 

Validation, and interpretation of machine learning results are crucial for successful platform 

development, both of which can be strengthened with comprehensive datasets. Currently, 

there are two main approaches for consolidating data into valuable datasets for machine 

learning. Research groups mine literature for published data and create a database for 

their analysis.14, 15, 97 This technique includes specific keyword searches in literature 

databases, such as Scopus and Web of Science, and manual inspection to select relevant 

data. Alternatively, groups have used their experimental data, including previously published 

data and results from high-throughput experiments.29, 50, 93, 98

Chen et al. Page 9

Adv Drug Deliv Rev. Author manuscript; available in PMC 2023 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



With each research study conducting curation efforts independently, many investigations 

lack generalizability. Standardizing data procurement methods, broadening the net to capture 

more relevant data sets, and creating an unbiased dataset has proven challenging. For 

example, nanomaterial size can be reported differently depending on the instrumentation 

and analysis method. DLS remains the most commonly used method for nanoparticle 

size measurements. However, the results tend to appear larger than sizes determined by 

microscopy due to higher sensitivities to particles with larger diameters.99 In addition, 

analytical methods to extrapolate dimensions from the autocorrelation functions in DLS also 

vary based on the samples’ volume, number, or intensity. In-house data tend to be specific 

for one group’s purpose, and the literature is difficult to effectively and comprehensively 

access. There is a need for broad, standardized databases that are accessible to everyone 

in order to facilitate robust machine learning analyses. With more attention paid to data 

curation efforts and increased collaborations between computer, material, and biological 

scientists, machine learning can be further exploited to strengthen current predictive 

platforms and uncover new insights from the data produced by many investigators (Figure 

2).

4. Data curation for nanomedicine

Recognizing the need for a centralized nanomedicine database to strengthen analyses, nano-

informaticians create platforms that accommodate the storage and sharing of heterogeneous 

nanomedicine data.6, 7, 10 This process falls within a major area of data science - data 

curation. Historically originated in library science, data curation consolidates data from 

various sources into one database.100 In addition to categorizing data into a useful 

presentation, data curators also involves extracting, standardizing, and repurposing the 

datasets.101 Data curation has been heavily used in other scientific and biomedical fields 

such as chemistry, polymer sciences, toxicology, and biology.102–107

Data curation for biomedical science research today is critical yet often underestimated. 

Biomedical data generated from bench to bedside can easily overwhelm the scientists 

without proper data curation tools. Common databases like The Universal Protein Resource 

(Uniprot), The Drugbank Database, National Center of Biotechnology Information (NCBI), 

or The Protein Data Bank (PDB) were all established with tremendous curation efforts 

and have become inseparable resources for day-to-day biomedical research. Recently, an 

increasing demand for curating comprehensive, accessible and up-to-date nanomaterial 

databases is unavoidable for nanomedicine discovery. Access to nanomaterial data is 

essential for further development and optimization of novel technologies via data-heavy 

computational methods. Despite many nanomedicine publications and patents, extracting 

and consolidating relevant information for data analysis has been a challenge. Furthermore, 

research and industry communities lack the ability to perform efficient data exchange. As 

a result, research groups curate their own databases based on in-house data or manual 

literature searches for their specific purpose such as targeting organs, increasing cell 

uptake, or avoiding toxicity and side effects.76, 108 While individual initiatives for dataset 

curation have been successful, there is a need to increase collaborations between research 

laboratories, federal agencies, and private industries in order to encourage data sharing, 

establish standardization guidelines, and provide sufficient data for analysis platforms.109
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4.1. Efforts in nanomedicine data curation

Data curation is necessary to compile and standardize nanomaterial data in order to facilitate 

the development of robust nanomedicine platforms. This process requires a combined 

effort between researchers generating the data and curators establishing and maintaining 

databases.97, 110 To accommodate the increasing amount of nanomaterial information, 

several nanomedicine/nanomaterial-specific databases have been developed in the past 

decade. A list of these databases follows (Table 2):

caNanoLab—caNanoLab (https://cananolab.nci.nih.gov/caNanoLab/#/) was established by 

the National Cancer Institute (NCI) in 2007 to generate a comprehensive database of 

nanotechnologies in the field of cancer care.111 The main goal of caNanoLab is to 

accumulate data relevant to nanomedicine design, such as pre-clinical materials safety, drug 

efficacy, nano-bio interactions, and characterization, to assist with the clinical translation 

of nanomedicine strategies. The caNanoLab database includes complete and comprehensive 

descriptions of the data in line with data sharing guidelines of the National Institutes of 

Health (NIH).

The caNanoLab portal enables exploration in three main categories: protocols (135 results), 

samples (1477 results), and publications (2150 results). The protocol section provides 

vetted assays for physicochemical, in vitro, and in vivo characterization, as well as sample 

preparation and synthesis procedures. Furthermore, samples can be filtered by nanomaterial 

type, functionalization, and function (application). The database contains a broad range of 

nanomaterial types, including dendrimer, polymer, fullerene, liposome, micelle, metal oxide, 

nanorod, and carbon nanotube, each associated with characterization parameters.

To ensure that the caNanoLab data is accessible and to promote database development, 

the NCI Alliance for Nanotechnology in Cancer manages the data curation process with 

assistance from data coordinators and the NCI data curator.112 NCI-funded nanotechnology 

grantees are expected to share their data via caNanoLab portal and often name their own 

data coordinators to do so. Proper annotation methods are detailed on the caNanoLab portal 

to ensure consistent and comprehensible nanomaterial annotations. The NCI curator verifies 

NCI grantee data, extracts data from relevant publications, assists with accurate annotations, 

and organizes the data to maintain a clear and accessible database for users. Coupling 

manual curation with curation algorithms, caNanoLab has the potential to significantly 

increase the curation rate while ensuring the quality of the curated data.

Nano—Nano (https://nano.nature.com), founded by Springer Nature to provide solutions 

for multidisciplinary research. With over 350,000 different nanomaterials, 970,000 

nanotechnology-related publications, and 43 million nanotechnology-related patents, Nano 

consolidates nanotechnology information into one comprehensive database. In addition to 

manually curated data, Nano includes insights from publications and patents accomplished 

using AI technology. Furthermore, Nano allows several search tools and advanced filters 

to explore nanomaterial characterizations and applications. For example, a user can search 

for a specific result, such as toxicity, of the desired nanomaterial in a disease model of 

interest. Nano sets the standard for accessible nano-databases by allowing simple navigation 
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using specific queries. However, ‘Nano’ will be retired by June 30th, 2022 as a standalone 

platform but the data will be incorporated into other existing platforms.

Public Virtual Nanostructure Simulation—The Public Virtual Nanostructure 

Simulation (PubVINAS) is a nanomaterials database established by the Zhu research group 

at the Rutgers University-Camden (http://www.pubvinas.com). The PubVINAS database 

contains curated physicochemical and biological information for over 700 nanocomposites 

from 11 different materials. The platform also includes an online modeling tool, developed 

using curated data113 and can generate PDB files for each nanomaterial along with 

instructive nanostructure annotations. These files can be used to calculate more than 2,000 

molecular descriptors to be used in predictive models. As a result, this platform is one of the 

first databases that promote nanoinformatics and novel nanomaterial design.

S2NANO—Safe & Sustainable Nanotechnology (S2NANO) is a community, established 

by a research group in the Republic of Korea, with a mission to develop nanotechnology 

that is safe and sustainable for humans and the environment. The online portal (http://

portal.s2nano.org/) share protocols, curated datasets prediction models and general support 

for safety assessments of nanomaterials. The goal of the S2NANO database is to mitigate 

concerns regarding nanomaterial hazards and assist with regulatory compliance. Ultimately, 

S2NANO hopes to facilitate “safety by design” development strategies.

The S2NANO database is comprised of experimental nanomaterial data for over 33,000 

nanomaterials, divided into two major components. The “core” database includes 

physicochemical properties and cytotoxicity data from 46 commercial or synthesized 

nanomaterials, generated using S2NANO’s measurement and analysis protocols. The 

“extended” database is composed of curated data from the literature, extracted manually 

using keyword searches in various literature databases such as Google Scholar, PubMed, 

and Web of Science. Since multiple research groups contribute to the data curation, the 

consolidated physicochemical data are verified, and missing values are estimated using the 

published screening and data gap filling methods.49 Specific materials in the database can be 

queried and filtered by nanomaterial, regulation, or product information. Each search result 

contains material descriptors, toxicity results, and physicochemical properties.

The S2NANO interface also provides 14 built-in predictive methods to analyze samples from 

the database. These platforms utilize algorithms such as random forest, logistic regression, 

and support vector machine in addition to in silico QSAR to investigate the relationship 

between physicochemical properties and toxicity results.114 By providing this platform, 

S2NANO enables users to take advantage of the pre-processing procedures for database 

standardization in order to properly prepare the data for further analysis.115

Nanoparticle Information Library—The Nanoparticle Information Library (NIL) 

(http://nanoparticlelibrary.net/index.asp) is a public database created by The National 

Institute for Occupational Safety and Health (NIOSH), in conjunction with their global 

partners, to facilitate nanomaterial characterization sharing. The goal of the NIL is 

to provide a centralized mechanism to catalog nanomaterial information in order to 

accommodate the increasing and distinct nanomaterial research projects around the 
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world.116 By housing public nanomaterial information, the NIL enables collaborations, 

provides curated data for research groups, and ensures the safety of the workers handling the 

nanomaterials.

The database includes information regarding nanomaterial composition, method 

of production, physicochemical properties, applications, and relevant publications. 

Nanomaterials can be searched in the library by their structure, element composition, origin, 

and size range in addition to a regular keyword search. Each result is a publication that used 

the nanomaterial of interest and includes a report that links relevant figures, the contributing 

lab, and related publications. NIOSH partners in Oregon State University (OSU) manage 

the website and characterize nanomaterials to fill the database. Additionally, the NIL 

team encourages users to submit their own experimental data by contacting the NIOSH 

representative.

eNanoMapper—The eNanoMapper database (http://www.enanomapper.net/) is framework 

to search and analyze inter-laboratory nanomaterial data. The platform was developed and 

administered by a group of 8 partners, with expertise spanning the fields of nanotechnology, 

information technology, community building, and computational modeling.13, 117–124 With 

a goal to provide a flexible model that is accessible to any researcher, the eNanoMapper 

database provides both a convenient interface and relatively simple computational access 

that can be tailored to a specific need. Comprehensive tutorials and reference pages are 

included on the website to assist with database navigation. Furthermore, the database 

is structured in a spreadsheet format to be compatible with data uploads and useful for 

downloads.

The database is populated with experimental results provided by the contributing partners 

in addition to data uploaded from research groups.13 Data can be filtered by categories 

such as nanomaterials, protocols, physicochemical properties, methods, and references. Each 

search result includes information on the material composition as well as physicochemical 

properties and toxicity data. Built-in QSAR modeling software is under development to 

facilitate the use of eNanoMapper database results as inputs. Incorporating flexible data 

uploading capabilities, data analysis platforms, and security measures in place for data 

protection, the eNanoMapper database potentially simplifies data curation and nanomaterial 

analyses.

Excipient and small molecule databases—Recent studies have emphasized the utility 

of excipients and other small molecules in the design of novel nanoparticles. For this 

reason, several databases have been established. ZINC (https://zinc.docking.org) is a public 

database that houses comprehensive information about small molecules. Created by the 

Irwin and Shoichet Laboratories in the Department of Pharmaceutical Chemistry at the 

University of California, San Francisco (UCSF),12 ZINC serves as a useful tool for both 

chemoinformatics and biologists. The platform contains ligand, target, biological activity, 

and purchasability information of over 120 million purchasable “drug-like” compounds. In 

addition, the same group founded a smaller excipient-specific database named the Excipients 

Browser (https://excipients.ucsf.bkslab.org/index). With the goal to enhance drug delivery 
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formulations, the Excipients Browser provides comprehensive information about dosage, 

administration routes, and biological activities for over 3,000 excipients.

4.2. Data mining: strategies to automate data curation

It has become nearly impossible for individual scientists to thoroughly review the entire 

scientific literature and gather valuable information, prompting literature mining algorithms. 

Technological advancements in text and data mining enable researchers to automate specific 

data curation processes.125–127 These approaches can be used to access literature data to 

populate nanomaterial databases efficiently. In the biomedical field, automated literature 

search and text and data mining were used to identify relationships and interactions between 

diseases and genes128 and proteins and drugs.127 Text and data mining methods rely on 

natural language processing (NLP), where the computational effort analyzes scientific texts 

to extract important information.129–131 Several of these tools use unique visual outputs to 

facilitate understanding of the search result. For example, Coremine (www.coremine.com) 

and Embase are databases to review >40 million papers on PubMed and summarize valuable 

information in textual and visual ways such as word clouds and connector plots. In this 

manner, one can automatically extract useful information from millions of papers by 

focusing a query with relevant keywords. For example, applying the keywords “Liposomes” 

and “Drug Delivery Systems” in Coremine yields lists of chemical ingredients, relevant 

genes, and biological processes (Figure 3). However, in this example, the list does not 

give the ratio of the lipid combinations or rankings. The biological processes include 

the most studied techniques in liposomal formulations, such as uptake and membrane 

fusion. Furthermore, one can use those lists to extract chemical structures further, calculate 

molecular descriptors, and make predictions.

Launer-Wachs et al. developed a SPIKE-KBC platform for rapid and personalized 

knowledge base construction, aimed at both individual researchers and large teams, without 

prior experience in bio-curation, NLP, or machine learning. In this approach, the basic 

paradigm is rooted in extractive search (ES), which combines interactive search with NLP-

aided knowledge extraction. The extracted knowledge is represented with entities and their 

relations captured from the literature using the SPIKE engine. The user can then briefly or 

thoroughly annotate the links for quality control, resulting in a personalized knowledge base. 

This approach is highly compatible with the main hypotheses in the field of targeted drug 

delivery, suggesting that a biomaterial A can carry drug B to disease C by actively binding 

a molecular target D expressed on cell type E with ligand F. In this work, Launer-Wachs 

et al. used the ES to capture all the known relations between A-F in a relational structure 

which is shown in Fig 4a. A comprehensive knowledge base for cell-specific drug delivery 

(CSDD) was constructed using the SPIKE-KBC app, aimed at supporting the broader 

research community. The extractive search was used to identify pairwise relation candidates 

from the literature automatically, and then all of the added relations were manually validated 

by three annotators. This was done to ensure the high precision expected from a public 

resource. The CSDD consists of 5182 associations between 64 biomaterials, 70 cancers, 

20 cell types, 478 drugs, 254 ligands, and 199 targets. It allows researchers to visually 

navigate through complex hypotheses and assemble new ones (Fig 4b). It also offers the 

possibility to perform a quantitative meta-analysis of the field, such as the most studied 
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hypotheses of different levels of complexity. For example, the most studied ‘biomaterial-

drug-cancer’ trio is ‘Liposomes-Doxorubicin-Breast cancer’, and the most studied ‘cell-type 

-target cancer trios are ‘Cancer cells-HER2-Breast cancer’ and ‘B cells-CD20-Lymphoma’. 

This knowledge base can serve as an ever-growing, living review to map the progress of the 

whole field. The CSDD knowledge base is available at: https://spike-kbc.apps.allenai.org/

projects/csdd

4.3. Data curation: challenges and solutions

Multiple nanomaterials databases have been established to provide users with large sets of 

multiple types of data. However, these platforms have yet to be employed to conduct ‘big 

data’ analytics studies, which could provide insights for the field as a whole. Applications of 

these databases are undervalued based on the publication records given the potential of each 

website (see Table 2). There are several possible reasons that integration of these curated 

databases into machine learning studies is relatively low. First, the nanomaterial databases 

are fairly new, and thus many research groups, especially machine learning-focused groups, 

are still not aware of the existence, size, and potential of these databases. Second, the key 

features of various databases are different (see Table 2). Depending on the goal of machine 

learning projects, and the curation strategies of the databases, certain features may not 

directly translate to usable training sets. The process to extrapolate information from the 

database can be as costly as traditional data mining methods. Third, unlike measurements 

like NMR, for small molecules, or the sequence of a nucleic acid, standardized metrics to 

compare nanomaterials across studies are largely lacking. This has posed a large challenge 

for standardization efforts. One of the key concerns regarding curation and utilization 

of these databases is that physicochemical properties of nanomaterials depend on both 

intrinsic and extrinsic conditions. For instance, nanomedicines formulated in different 

buffer solutions can greatly affect their surface charge, size, or stability; the site of 

action for the nanomedicines can change the releasing rate where the discrepancies can 

occur between acidic environment like tumor microenvironment and neural physiological 

conditions. Unfortunately, experimental methods and data types are highly dependent on 

the project, material, and laboratory, and the inability to toggle parameters in the existing 

databases can be another reason for slow adoption. Fourth, the physicochemical properties 

of nanomedicines can also be changed by APIs encapsulated. Different APIs used in studies 

can also contribute to the heterogeneity in the literature data when comparing a specific API 

with different formulations or a specific formulation with different APIs.

Advances in nanomaterial development are also propelled by inventions of autonomous 

systems.132 For example, microfluidics technology has brought important control 

capabilities to nanomedicine synthesis. By precisely controlling the flow rate and 

temperature, microfluidics drastically decreases batch-to-batch variations during the 

synthesis and can be easily scaled-up or down based on the needs of the research 

labs. Microfluidics also potentiates the standardization efforts on reporting some of 

the nanomaterial synthesis. Parameters like stir rate, time, and temperature now can 

be accurately quantified in the instrumental settings and make them easily reported 

and reproduced among labs given a promising quality control for the instruments.133 

Other automated technologies can also have great impact on studies of many aspects 
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of nanomedicine research, like high-throughput DLS systems, automated microscopy 

technology, robotic liquid handling systems, or bioreactors. Experimental automation and 

digitalization can address data curation challenges and increase the quality of the datasets. 

However, it is not trivial to streamline all nanomaterial characterizations. Nanomaterials 

can range from stable entities (e.g., carbon nanotubes) to metastable systems (e.g., drug 

aggregates), and the latter ones are more prone to changes in environmental factors. 

Although an in-house screening can generate more homogenous datasets, literature datasets 

are heterogenous. Subsequent machine learning studies can also be largely affected by the 

data source. For example, in-house screenings may produce a more predictable model, but 

they may be challenged by the datasets outside of the research lab.

Input from nanomedicine researchers, database developers, and AI researchers is important 

for taking advantage of the capabilities of data analytics to improve nanomedicines. 

Databases should be continually enriched with data from research groups in addition to 

published data, requiring assistance from individual labs and/or incentives from publishers, 

funding agencies, or other entities. AI researchers can help structure nanomaterial 

databases in ways that facilitate data integration into AI platforms. To enable this, data 

formats should be standardized. For research scientists, reporting thorough synthetic 

procedures, instrumentation uses, and highlighting the important material features in 

publications can fundamentally help to improve the data standardizations, quality control, 

and reproducibility.134 For data scientists, understanding the discrepancies between 

different instrumentations and focusing on key features that are commonly used in 

biomedical research is also a starting point for the collective efforts. Organizations and 

committees around the world have contributed tremendous work to standardize metrics in 

nanomaterials, and this works should be implemented into research and development in 

the future.135 Curated databases will be relevant to chemical, structural, biomedical, and 

computational scientists and will improve our understanding and facilitate the development 

of nanomedicines.

5. Conclusions and Outlook

In the past decades, the field of nanomedicine has rapidly expanded preclinically and 

clinically. However, many practical obstacles have delayed the translation of most pre-

clinical research into the clinic, including formulation difficulties/scale-up, unsatisfactory 

PK/PD, and costs.136 We believe these issues can be ameliorated if the field can learn 

from the massive amounts of data already collected by the field. Recent advances in “big 

data” analytic approaches, including machine learning, have shown an exciting potential 

to improve processes in many fields. However, the complexity and heterogeneity of 

nanomaterials has hindered machine learning efforts to design and clinically translate many 

potential candidates. On the one hand, comprehensive research done in academic and 

industry laboratories has been fruitful and resulted in novel nanomedicines entering clinical 

trials, but, on the other hand, this research has generated enormous amounts of nanomaterial 

characterization data that has not been fully utilized. As a result, a substantial amount of 

money is spent funding research to optimize nanoformulations. Currently, AI efforts are 

primarily developed using data from one or few laboratories. We believe that the integration 
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of data curation and AI platforms will be instrumental for researchers to capitalize on 

current nanomaterials for the rational and streamlined design of novel nanomedicines.

In this review, we presented the recent capabilities of machine learning algorithms to 

develop novel nanomedicines and characterize their biological activity and interactions. 

Machine learning platforms have become popular methods to design novel nanomaterials 

and predict bioavailability, biocompatibility, cell uptake, treatment efficacy, and toxicity. 

However, researchers commonly concede that the main limitation with machine learning 

platform development is the lack of data. Training algorithms to make robust predictions 

requires enormous amounts of heterogeneous data.

Nanoinformatics researchers have started to focus on nanomedicine data curation. We 

highlighted several curation initiatives that paved the way for generating comprehensive 

and accessible databases to facilitate downstream analysis. While these platforms are mostly 

populated using manually curated data from literature, text, and data mining, algorithms are 

increasingly used for automatic data curation. These algorithms can extract relevant data 

from thousands of publications using specific keywords. However, issues remain before 

these types of databases can be effectively used for most machine learning analyses due to 

the standardization of data formats, for instance. The field should agree upon some standards 

such as the best light scattering processing algorithms, such as providing annotation, and 

considering depositing most data in a central database and integrating text and data mining 

methodologies. Additionally, funding authorities should continue to improve efforts to 

encourage scientists to contribute to these databases to promote data curation efforts actively.

The integration of AI platforms will further nanomedicine research and facilitate clinical 

translation. By creating a community for data sharing and user-friendly platforms, 

scientists can learn from each other to improve nanomedicines. Moreover, computational 

design methods can minimize lengthy trial-and-error bench experimentation and reduce 

animal usage. We believe that a partnership between nano-informaticians and researchers 

developing intelligent platforms are essential for the success and development of 

nanomedicines. We hope that this review will encourage such collaborations.
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Figure 1. 
Workflow for nanomedicine data curation and data analytics.
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Figure 2. 
Machine learning platforms are trained using physicochemical and biological features to 

predict the biodistribution of nanomedicines accurately. The generalization of the platform 

can promote optimization of the biological efficacy and improvements towards clinical 

translations of nanomedicines.
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Figure 3. 
Data mining of chemicals and biological processes related to liposomes using the Coremine 

database.
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Figure 4. 
Construction of the cell-specific drug delivery (CSDD) knowledge base. a) Construction 

scheme and network view of total knowledge base relations between classes. b) 

Representative visualization and user interface of the tree-view after applying the filter for 

sorafenib and hepatocellular cancer carcinoma.
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Table 1:

Selected studies in nanomedicine development using machine learning, their dataset source, and curation 

strategy.

Study Dataset source Curation strategy Training data size Algorithm Ref.

Novel excipient 
candidates

DrugBank, 

Drugs@FDA*,

High throughput screening for 
drug- excipient interactions, 

Cheminformatics computed by 
RDkit, and molecular dynamics 

studies

2.1 million drug-excipient 
pairings Random forest 29

Nanoparticle 
protein corona Literature, UniProt

Data mining for nanoparticle 
properties and classification, 

physiochemical descriptions of 
protein corona.

56 papers with 178 independent 
proteins Random forest 14

Biological 
activity 

prediction

Literature, in-house 
screening and 

imaging

Structure-activity relationship, 
image analysis

960 SNAs with 17,000 MALDI-
MS data points; 1620 samples 
for immune responses and 301 

samples for organ burdens; 
1301 micrometastases for image 

analysis

Random forest, 
XGBoost; 

Support Vector 
Machine

95, 96, 
97

*
Excipients can be sourced under Inactive Ingredient Search for Approved Drug Product
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Table 2:

Summary of key databases.

Database # Data Points Data Source Key Feature Total 
citations

caNanoLab >1480 Data contributed by individual 
laboratories

Annotated, streamlined property database 
and design protocol for nanoformulations 52

Nano >350,000 Literature Comprehensive nanomaterial database N.A.

Public Virtual 
Nanostructure 

Simulation
>700 Data contributed by individual 

laboratories Quantitative modeling of nanocomposites. 21

S2NANO >33,000 Data contributed by individual 
laboratories & Literature

Promoting safety and sustainability in 
nanomaterials use. 59

Nanoparticle 
Information Library >85 Data contributed by individual 

laboratories
Promoting standardization of nanomaterial 

information 734

eNanoMapper >5,500 Data contributed by individual 
laboratories & Literature

Virtual platform for accessing tailorable 
information on nanomaterials 166

Excipient and small 
molecule databases >120 million Literature Comprehensive database on small 

molecules and excipients. 8
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