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Abstract

Nitric oxide (NO) is a gaseous signaling molecule, which plays crucial roles in various biological 

processes, including inflammatory responses, metabolism, cardiovascular functions, and cognitive 

function. NO bioavailability is reduced with aging and cardiometabolic disorders in humans and 
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rodents. NO stimulates metabolic rate by increasing mitochondrial biogenesis and brown fat 

activation. Therefore, we propose a novel technology of providing exogenous NO to improve 

metabolic rate and cognitive function by promoting the development of brown adipose tissue. In 

the present study, we demonstrate the effects of the peptide amphiphiles-NO-releasing nanomatrix 

gel (PANO gel) in high-fat diet (HFD)-induced obesity, insulin resistance, and cognitive functions. 

Eight-week-old male C57BL/6 mice were subcutaneously injected in the brown fat area with the 

PANO gel or vehicle (PA gel) every two weeks for 12 weeks. The PANO gel-injected mice gained 

less body weight, improved glucose tolerance, and decreased fasting serum insulin and leptin 

levels compared with the PA gel-injected mice. Insulin signaling in muscle, liver and epididymal 

white adipose tissue (eWAT) was improved by the PANO gel injection. The PANO gel reduced 

inflammation, increased lipolysis in the eWAT, decreased serum lipids, and liver triglycerides. 

Interestingly, the PANO gel stimulated uncoupled protein 1 gene expression in the brown and 

beige fat tissues. Furthermore, the PANO gel increased cerebral blood flow and improved learning 

and memory abilities. Our results suggest that using the PANO gel to supply exogenous NO is a 

novel technology to treat metabolic disorders and cognitive dysfunctions.
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INTRODUCTION

Obesity is a risk factor for various health problems, including hypertension, stroke, 

coronary artery disease, and type 2 diabetes (T2D)1. These abnormalities significantly 

increase cardiovascular events, cognitive decline, and mortality2, 3. There are prescription 

medications for lowering body weight. However, the benefits of weight control medications 

are limited as they remain less effective for obesity-associated cardiovascular disease and 

dementia4–7. Populations of obese and overweight subjects are increasing, and the mortality 

rate related to obesity is being elevated. Obesity is associated with reduced production 

of NO, mainly due to the decreased activity of endothelial nitric oxide synthase (eNOS). 

Reducing fat mass is accomplished by eating less (diet), decreasing appetite (most of the 

current pharmacological therapies), surgical procedures (bariatric surgery), or increasing 

energy expenditure (exercise). However, these approaches have weaknesses, including 

limited effectiveness, high cost, high reversion rates, and adherence to the healthy life-style 

is difficult. Thus, a novel strategy to treat obesity may help improve public health and slow 

the aging process.

Brown fat is characterized by high mitochondrial content and multilocular lipid droplets, 

facilitating fat oxidation and generating heat. Increasing brown fat elevates metabolic rate 

and reduces the risk of metabolic disorders8, 9. The existence of brown fat in humans was 

previously in doubt, but recent reports demonstrate that human brown fat does exist in the 

supraclavicular region10. Moreover, brown-like adipocytes have been found in white adipose 

tissue by conversion of white adipocytes to brown adipocyte-like cells (“beiging”) both 

in mice and humans11. The loss of brown fat is known to cause attenuation of metabolic 

rate and progressive development of obesity, insulin resistance, and T2D in humans12. 
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Thus, the increasing brown and/or beige fat content may be a way to prevent and treat 

obesity-associated metabolic diseases.

Nitric oxide (NO) promotes the differentiation of white adipose tissue (WAT) to brown 

adipose tissue (BAT)13, and endothelial nitric oxide synthase (eNOS) knockout mice have 

defective fat oxidation, hypertension, dyslipidemia, and insulin resistance that are also 

associated with aging14, 15. Reduced NO bioavailability is mainly due to the reduced 

eNOS activity13, 16, 17 and increased oxidative stress18, 19, which affects various metabolic 

processes, including mitochondrial biogenesis, glucose and fatty acid uptake, lipolysis, and 

brown adipocyte development20. Overexpression of eNOS decreases diet-induced obesity16, 

and supplementation of L-arginine (elevation of NO production) increases the development 

of BAT21. Thus, increasing bioavailability of NO has beneficial effects on metabolism and 

related cardiovascular complications.

We have developed a peptide amphiphiles nanomatrix gel that releases sustained levels of 

NO (PANO gel) for a month, and we previously demonstrated that the PANO gel enhances 

angiogenesis and suppresses inflammatory responses22–24. The nanomatrix gel is composed 

of peptide amphiphiles (PAs), comprising multilayers of hydrophilic NO-releasing peptide 

sequences conjugated to hydrophobic alkyl tails. This amphiphilic property of PAs promotes 

the self-assembly of PAs into cylindrical micelle nanofibers that form a nanomatrix gel 

through cross-linking by the addition of calcium ions23, 25. The unique multilayered 

cylindrical micelle nanofibers with NO-releasing peptide enable generating NO23–26. The 

goal of the present study is to evaluate the effects of exogenous NO by the PANO gel on 

BAT on subsequent beneficial effects, such as weight loss, insulin sensitivity, and cognitive 

function.

MATERIALS AND METHODS

Production of NO-releasing nanomatrix gel

The peptides composed of a matrix metalloproteinase-2 (MMP-2) enzyme-mediated 

degradation site with a cell-adhesive sequence (YIGSR) or a NO reactive sequence 

(KKKKK) were alkylated with palmitic acid, which produced PA-YIGSR or PA-KKKKK, 

respectively. PA-YIGSR and PA-KKKKK were mixed at a 9:1 ratio (PA-YK) and then 

incubated with NO gas overnight (PA-YK-NO). PA-YK or PA-YK-NO was mixed with 

CaCl2 (20 ul of 0.1M) to produce nanomatrix gel, as described previously22, 25, 26. The 

PA-YK-NO gel (PANO gel) was used to provide exogenous NO, and the PA-YK gel (PA 

gel) was used as a control (vehicle, V).

Animal housing and maintenance

All animal procedures were performed in accordance with the rules of and approved by 

the Animal Use and Care Committee at The University of Alabama at Birmingham. The 

six-week-old male C57BL/6J mice were purchased from The Jackson Laboratory (Bar 

Harbor, ME). All animals were maintained in a temperature-controlled facility with a 12:12-

h light-dark cycle. Mice were fed a normal chow diet until the age of 8 weeks and then 

fed a high-fat-diet (HFD, 60% calories from fat, D13021802, Research Diets Inc., New 
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Brunswick, NJ). The mice were divided into two groups and were subcutaneously injected 

with either vehicle (PA gel, 50 μl) or nitric oxide (NO) releasing nanomatrix gel (PANO gel, 

50 μl) biweekly.

Body composition measurement

These experiments were performed as previously described27, and were conducted by the 

UAB small animal phenotyping core facility funded by the UAB Nutrition Obesity Research 
Center.

Glucose tolerance test and insulin tolerance test

Intraperitoneal glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed 

after a 6 hr fast. During GTT, tail-vein blood glucose level was determined at 0, 15, 30, 60, 

and 120 min after intraperitoneal injection of 2g/kg body weight glucose with a hand-held 

glucometer (Freestyle; Abbott, Abbott Park, IL). Similarly, for the ITT, glucose levels were 

determined at 0, 15, 30, 60, and 90 min after intraperitoneal injection of 0.5 U/kg body 

weight insulin.

Measurement of serum parameters

The blood was collected from mice after a 6hr fast. The serum was collected of clotted 

blood after centrifugation at 2,200 g for 10 min at 4°C. Serum insulin levels were assessed 

by an ultrasensitive mouse insulin Enzyme-Linked Immunosorbent Assay (ELISA, Chrystal 

Chem, IL). Triglyceride levels were assessed using Pointe Scientific triglycerides liquid 

reagents (Pittsburgh, PA). Cholesterol levels were assessed using Thermo Scientific total 

cholesterol reagents (Pittsburgh, PA). Homeostatic Model Assessment of Insulin Resistance 

(HOMA-IR) was calculated as previously described27.

Preparation of tissue lysates and immunoblotting

Insulin (1 U/kg) was injected intraperitoneally after a 6hr fast. Skeletal muscle, liver, and 

epididymal adipose tissue were collected and frozen in liquid nitrogen until used. Tissue 

homogenates were prepared according to the manufacturer’s instruction for a Tissuelyser II 

(Qiagen, MD). Cell lysates were subjected to immunoblotting with antibodies as described 

previously28, and the total protein as a loading control was visualized with a TGX stain-

free imaging technology (Bio-Rad). Gel images were visualized and were quantified using 

ChemiDoc imaging system and Image Lab 5.0 software (Bio-Rad Laboratories).

Immunohistochemistry

The harvested tissues were fixed in 10% formaldehyde/PBS solution overnight. Paraffin 

blocks were prepared, and the tissue sections were processed as described elsewhere27. After 

the sections were blocked with ABC blocking serum (cat# PK-6105, Vector laboratories, 

Burlingame, CA) for 1 h, they were incubated overnight with an anti-F4/80 antibody (cat# 

565409, BD Biosciences, San Diego CA) or anti-uncoupled protein 1 (UCP1) antibody (cat# 

ab10983, Abcam, Cambridge MA). The tissue sections were processed by using a Vectastain 

Elite ABC kit (Vector Laboratories, Burlingame, CA) according to the manufacturer’s 
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instruction. In some cases, the tissue sections were stained with hematoxylin and eosin and 

mounted with permount. The slides were photographed and analyzed by light microscopy.

Quantitative real-time qPCR

Tissues were collected by snap-freezing in liquid nitrogen and then stored at 

−80 °C until analysis. Total RNA preparation, cDNA synthesis and qPCR were 

performed as previously published27. The primer sequences for the gene expression are; 

Cyclophilin F- CAGACGCCACTGTCGCTTT, R-TGTCTTTGGAACTTTGTCTG, F4/80 
F- TGCCACAACACTCTCGGAAGCTAT, R-TCCTGGAGCACTCATCCACATCTT; Tnfα 
F- CCAACGGCATGGATCTCAAAGACA, R-AGATAGCAAATCGGCTGACGGTGT; 

CD68 F-CCCACCTGTCTCTCTCATTTC, R-GTATTCCACCGCCATGTAGT; IL-1β 
F-, CTCGCAGCAGCACATCAAC, R-ACGGGAAAGACACAGGTAGC; Ucp1 F- 

AGGCTTCCAGTACCATTAGGT, R- CTGAGTGAGGCAAAGCTGATTT.

Cerebral blood flow measurement

Cerebral blood flow (CBF) was measured using a Laser Speckle Contrast Imager (LSCI) 

(Moor Instruments). CBF measurements were performed under anesthesia with 2% 

isoflurane. CBF values were assessed using regions of interest (ROIs) on both sides of 

the middle cerebral artery (MCA) areas on the lateral aspect of the brain. The images were 

recorded while the body temperature, heart rate and SPO2 % were stably maintained for 1.5 

min. The mean values from the 24 perfusion images were chosen for the quantification. The 

flux values were determined with the sum of the 6 different regions that did not include the 

MCA and were normalized with the values of the blood flow into the MCA region. Fluxes in 

the ROIs were expressed as arbitrary units using a 256-color palette.

Morris water maze

The water maze apparatus and procedure were performed as previously described29. 

Learning of the task was evaluated by recording the swimming speed, latency to find the 

platform, path length and percentage of trials for each animal that found the platform. After 

the end of the three trials on day 5 of the testing period, the mice were tested in a 60 s probe 

trial (i.e., trial 16), with no escape platform present.

Statistical analysis

Values were presented as mean ± standard error of the mean (SEM). Statistical significance 

between the two groups was assessed by a two-tailed Student’s t-test with p-value less 

than 0.05. Statistical analysis for the water maze test was performed by two-way repeated 

measures ANOVA combined with Bonferroni post-doc test. Statistical analyses were 

performed using GraphPad Prism Version 9 (GraphPad Inc., San Diego, CA).

RESULTS

Nitric oxide-releasing nanomatrix gel and the time schedule of the animal experiment –

PANO gel has a self-assembly domain, bio-degradable site, and NO-releasing domain 

(Fig. 1A)30. To examine whether the elevated level of NO ameliorates HFD-induced 
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metabolic syndrome, eight-week-old male C57BL6/J mice were fed a HFD. The mice 

were subcutaneously injected with vehicle or the PANO gel every two weeks at the time 

of HFD feeding for 12 weeks (Fig. 1A). The PANO gel increased the phosphorylation of 

vasodilator-stimulated phosphor-protein (VASP) at Serine 239 amino acid residue (S239) 

(Fig. 1B). pVASP (S239), a marker for the stimulation of NO/cGMP/PKG pathway, is a 

substrate for cGMP-dependent kinase (PKG)31. The result suggests that the administration 

of the PANO gel stimulates the NO/cGMP/PKG pathway.

Mice injected with the PANO gel gained less body weight by reducing fat mass -

To examine whether the PANO gel affects HFD-induced weight gain, body weight was 

monitored weekly. The PANO gel-injected mice gained 16.8% less body weight compared 

with the vehicle-injected mice (39.3 g vs. 47.3 g) (Fig. 2A & 2B). To assess the difference 

in fat and lean masses, the body composition of mice was evaluated by a quantitative 

magnetic resonance (QMR). The reduction of body weight by the PANO gel was mainly 

by decreasing fat but not lean mass or water content (Fig. 2C). The reduced fat mass was 

visualized by the photos (Fig. 2A) and the weights of eWAT (Fig. 2D), inguinal adipose 

tissue (iWAT) (Fig. 2E), and BAT (Fig. 2F). The color of BAT was darker in the PANO 

gel-injected mice compared with the PA gel-injected mice.

Administration of the PANO gel reduced pro-inflammatory response and increased 
lipolysis in white adipose tissue.

Hypertrophied adipocytes are the prominent feature of obesity, and a chronic inflammatory 

response in WAT is associated with insulin resistance32. The size of adipocytes in the 

eWAT was reduced by the PANO gel (Fig. 3A, upper panel). The number of F4/80-

positive, a macrophage maker, cells was smaller in the PANO gel-injected mice than in 

the vehicle-injected mice (Fig. 3A, lower panel). To confirm the result, the expression 

of pro-inflammatory genes in the eWAT was evaluated. Administration of the PANO gel 

reduced the expression of pro-inflammatory genes, including F4/80, Il-1β, Tnfα, and Cd68 
(Fig. 3B). The NO/cGMP/PKG pathway stimulates lipolysis17. Therefore, we examined 

whether the PANO gel stimulates the phosphorylation of hormone sensitive lipase (HSL), 

a key enzyme for lipolysis. Administration of the PANO gel increased the phosphorylation 

of HSL in eWAT (Fig. 3C). These results suggest that the PANO gel potentially decreases 

HFD-induced weight gain by increasing the lipolysis in eWAT.

The PANO gel increased UCP1 expression in BAT and iWAT -

NO stimulates brown adipose tissue by mitochondrial biogenesis33. We examined whether 

administration of exogenous NO can stimulate BAT and browning of WAT. Consistent with 

the results in Fig 3, the sizes of adipocytes in BAT and iWAT are smaller in the PANO 

gel-injected mice than those in the vehicle-injected mice (Fig. 4A). Also the gene expression 

of browning gene, Ucp1 was elevated in the BAT and the iWAT by the PANO gel injection 

(Fig. 4A). Furthermore, the protein levels of UCP1 in the BAT and the iWAT were higher in 

the PANO gel-injected mice than in vehicle-injected mice (Fig. 4B). These results suggest 

that the PANO gel stimulates the browning of adipose tissue.
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The PANO gel protected from HFD-induced nonalcoholic fatty liver -

HFD causes the accumulation of lipids in the liver, and obesity is associated with 

nonalcoholic fatty liver disease34, 35. The administration of the PANO gel reduced the 

accumulation of lipids in the liver (Fig. 5A & 5B). This result was confirmed by the reduced 

liver weight and the triglyceride (TG) contents in the liver (Fig. 5C & 5D). The circulating 

TG and cholesterol levels were lower in the PANO gel-injected mice (Fig. 5E & 5F).

The PANO gel improved insulin sensitivity –

Obesity is associated with type 2 diabetes, including insulin resistance and glucose 

intolerance. Insulin resistance and cardiometabolic syndrome are caused by impaired NO 

production36. We examined the effects of exogenous administration of the PANO gel on 

glucose homeostasis and insulin sensitivity. The PANO gel-injected group demonstrated 

improved glucose and insulin tolerance (Fig. 6A & 6B). Furthermore, fasting glucose and 

insulin levels were decreased by the PANO gel injection (Fig. 6C & 6D). The index for 

insulin sensitivity, HOMA-IR, indicated that the PANO gel improved insulin sensitivity 

(Fig. 6E). To examine whether the PANO gel improves insulin signaling pathways, cell 

lysates from the major metabolic tissues, skeletal muscle, liver, and adipose tissue, were 

subjected to western blots with antibodies for insulin signaling molecules. Insulin-stimulated 

phosphorylation of insulin signaling molecules was enhanced in skeletal muscle (Fig. 7A - 

7E), liver (Fig. 7F -7J), and eWAT (Fig. 7K - 7N). These results suggest that the PANO gel 

improved insulin sensitivity and insulin actions in metabolic tissues.

The PANO gel improved cerebral blood flow (CBF) and cognitive function –

Injection of the PANO gel increased the cerebral blood flow while stably maintaining 

the body temperature, heart rate, and blood pressure (Fig. 8A – 8E). Because HFD 

reduces cerebral blood flow and leads to decreased cognitive function37, we examined the 

consequence of the improved CBF by assessing spatial learning ability with the Morris 

water maze test. We observed that the PANO gel significantly improved spatial learning 

ability (Fig. 8F).

DISCUSSION

The present study demonstrates that subcutaneous injection of the NO-releasing nanomatrix 

gel (PANO gel) ameliorates HFD-induced metabolic and cognitive dysfunctions, including 

weight gain, fatty liver, and chronic inflammation in WAT, hyperlipidemia, glucose 

intolerance, insulin resistance, and spatial learning deficits. The metabolic effects of the 

PANO gel seem to be due to increased lipolysis and browning of WAT (Fig. 3 & 4). The 

strategy of reducing body weight by the local delivery of NO may be a novel, efficient, and 

safe way to prevent and treat multiple metabolic diseases.

Despite its short half-life, NO has essential biological roles in vasodilation, 

mitochondrial biogenesis, anti-inflammation, and glucose uptake33, 38–40. The decreased 

NO bioavailability is associated with aging and cardiometabolic syndrome, including 

insulin resistance, diabetes, atherosclerosis, heart failure, and dementia36, 41–43. There have 

been various efforts to supplement exogenous NO-related agents, including L-arginine, 
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NO inhalation, and other NO donors, and phosphodiesterase-5 (PDE-5) inhibitors44. 

Supplementing exogenous NO improves cardiovascular and neuronal function42, 43, 45–47. 

Although the previously reported reagents have some positive effects, most of the reagents 

are used for acute injuries, including stroke, hemorrhage, trauma and encephalopathy44. 

PDE-5 inhibitors have vasodilatory effects and reduce the damage from cerebral infarction 

and hemorrhage48, but other study shows no effect on brain perfusion49. Sildenafil 

improves metabolic functions but has some inconclusive effects on cerebral blood flow48–51. 

Furthermore, L-arginine reduces body weight and improves glucose intolerance21, 52. 

However, a few clinical studies show that the effect of L-arginine is elusive53, 54. Thus, 

developing a novel strategy to provide sustained levels of exogenous NO will be an efficient 

way of treating cardiometabolic disorders. We have developed a novel nanomatrix gel that 

releases NO22, 23. The PANO gel has the following characteristics; 1) sustained release of 

NO over 30 days, 2) promotion of angiogenesis, 3) NO release to promote blood vessel 

dilation and suppresses inflammatory responses, and 4) a biocompatible peptide-based 

material22, 23, 26, 55. These unique characteristics of the PANO gel enable the amelioration 

of chronic diseases, such as metabolic and cognitive dysfunctions. NO-stimulated cGMP 

increases the phosphorylation of HSL and lipolysis through a cGMP-cGMP-dependent 

kinase 1 (cGKI)-dependent mechanism in adipocytes56. Thus, the increased lipolysis 

may explain the reduced body weight and fat mass. Furthermore, NO/cGMP pathway 

stimulates the peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), 

which stimulates the expression of nuclear respiratory factor 1 (NRF-1), and mitochondrial 

transcription factor A (mtTFA). These transcription factors regulate the gene expression 

of mitochondrial genes, such as cytochrome c and cyclooxygenase IV33. The increased 

mitochondrial biogenesis is one of the mechanisms for the conversion of white adipocytes 

to beige adipocytes57, 58. The adipose tissue beiging reduces weight gain and fatty acid 

utilization57, 58. The effect of the PANO gel on adipose tissue beiging may contribute 

to glucose homeostasis and insulin sensitivity. Likewise, we observed that the PANO gel 

improves glucose tolerance and insulin sensitivity (Fig. 6 & 7). Moreover, the vasodilatory 

effect of NO results in increased blood flow and capillary recruitment, which facilitates 

glucose uptake in skeletal muscle59. The vascular action on glucose uptake is dependent 

on insulin activating insulin receptor/insulin receptor substrates1 and 2/phosphoinositide-

dependent kinase 1 (PDK1)/Akt/eNOS pathway60, 61. The effect of the PANO gel on 

glucose uptake mimics the insulin signaling pathway that has been suggested for treating 

cardiometabolic syndrome62. Although improving endothelial function by diet and exercise 

can elevate the physiological level of NO63, pharmacological approaches to increase NO 

are useful strategies to treat diseases in clinical settings. NO inhalation and direct NO 

donors, such as sodium nitroprusside, nitroglycerin, and nitrates are used for angina, heart 

failure, pulmonary hypertension, and erectile dysfunction64. However, long-term usage is 

not recommended because of the safety issues, such as hypotension and other side effects 

of hypernitrosylation65. Thus, the usage of these reagents for metabolic disorders is limited. 

The effects of phosphodiesterase-5 (PDE-5) inhibitors, such as sildenafil or vardenafil, 

on the beneficial metabolic effects in addition to erectile dysfunction and cardiovascular 

disorders have been evaluated51, 66. The combination therapy of leucine, metformin, and 

sildenafil has a weight loss effect and improves insulin sensitivity and non-alcoholic fatty 

liver disease66, 67. On the other hand, sildenafil alone does not have a weight loss effect 
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although browning of WAT was observed50. Also, the intake of L-arginine, which is the 

substrate of nitric oxide synthase, improves insulin sensitivity and reduces body weight 

when hypocaloric diet and exercise are combined68, 69. This suggests that none of the 

currently available therapies provide all the benefits delivered by monotherapy with the 

PANO gel on weight loss, glucose homeostasis, and insulin resistance. Thus, the PANO gel 

alone may be a novel monotherapy approach to improve metabolic functions.

HFD causes cerebrovascular dysfunction associated with cognitive impairment and 

dementia37. Beige adipocytes mediate neuroprotective and anti-inflammatory effects70. At 

present, it is unknown whether our observed effects of the PANO gel on cerebrovascular 

blood flow and cognitive function are the direct effect of NO or are mediated by the 

neuroprotective effects of the adipocyte beiging70.

Although the PANO gel releases NO for up to a month24, we applied the PANO gel 

biweekly. The tissue level of NO released from PANO gel may be determined by multiple 

factors, including the injection volume and frequency, injection tissue, and body weight. We 

empirically determined the injection volume and the frequency of PANO gel by monitoring 

the effects on gaining less weight. Thus, the dose and the frequency of PANO gel in future 

clinical studies may also require optimizing the dose and the injection frequency.

CONCLUSIONS

The PANO gel reduces the HFD-induced weight gain, fatty liver, and pro-inflammatory 

response while increasing glucose tolerance and insulin sensitivity. Activation of beige 

adipose tissue increases fatty acid oxidation and energy expenditure, which enhances 

metabolic rate. Because reduced bioavailability of NO is the hallmark of cardiometabolic 

syndrome, supplying exogenous NO at a sustained level may be an efficient way of treating 

the cardiometabolic syndrome. We conclude that our technology is a novel strategy to 

improve metabolic and cognitive function.
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FIGURE 1. NO-releasing nanomatrix gel and the animal experiment schedule.
(A) Biocompatible PANO gel comprises an alkyl tail, MMP-2 degradable site, cell adhesion, 

and NO-releasing moieties. Eight-week-old male C57BL6/J mice were fed an HFD for 12 

weeks. PANO gel or vehicle (PA, control gel without NO) was injected subcutaneously into 

the area where BAT is located biweekly. (B) BAT was isolated from mice, and the cell 

lysates were prepared. The cell lysate was subjected to a Western blotting with the indicated 

antibodies. NO level indicator, p-VASP, was increased by the PANO gel injection. Total 

protein as a loading control is shown with a stain-free gel. The blot is a representative gel. 

Data are presented as mean ± SEM (n=6). *p<0.05.
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FIGURE 2. Mice injected with the PANO gel gained less body weight.
(A) Eight-week-old male mice were divided into two groups (12 mice/group) and injected 

with vehicle (V) or the PANO gel biweekly. (B) The body weight was monitored weekly. 

The PANO gel-injected mice gained less body weight. (n=12 – 13) Data are presented as 

mean ± SEM. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. (C) The mice were 

subjected to a quantitative magnetic resonance (QMR) analysis. Administration of the 

PANO gel reduced fat mass but not lean mass or water content. Data are presented as 

mean ± SEM (n=6). *p<0.05, **p<0.01, and n.s. not significant. Adipose tissues were 

isolated and weighed. (D) Administration of the PANO gel reduced the weight of adipose 

tissue. Epididymal adipose tissue (eWAT), (E) inguinal adipose tissue (iWAT), and (F) 
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brown adipose tissue (BAT). Data are presented as mean ± SEM (n= 18 – 19). *p<0.05 and 

***p<0.001.
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FIGURE 3. Administration of the PANO gel reduced pro-inflammatory response and increases 
lipolysis in white adipose tissue.
Male epididymal fat was isolated from HFD-fed mice injected with V or the PANO gel. (A) 
H & E staining (upper panel) and immunohistochemistry with anti-F4/80 antibody (lower 

panel) on eWAT were performed. Adipocyte size and F4/80 positive cells were reduced by 

the PANO gel injection. (B) mRNA was isolated from eWAT and the inflammatory gene 

expression was evaluated. The pro-inflammatory response was reduced by the PANO gel 

injection. Data are presented as mean ± SEM (n=6). **p<0.01 and ****p<0.0001 (n = 

9–12). (C) Western blots on the lysate isolated from eWAT. pHSL was increased in the 

PANO gel injected mice. Data are presented as mean ± SEM (n=12). *p<0.05.
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FIGURE 4. The PANO gel increased UCP1 expression in BAT and iWAT.
(A) BAT and iWAT were isolated and subjected to H& E staining (upper 4 panels). BAT and 

iWAT were subjected to immunohistochemistry with an anti-UCP1 antibody (lower 4 panel). 

The PANO gel decreased the size of the adipocytes and increased the expression of UCP1. 

Arrows indicate the expression of UCP1. mRNA was isolated from BAT and iWAT. The 

mRNA expression of Ucp1 was evaluated. PANO increased the expression of Ucp1. Data 

are presented as mean ± SEM (n=8–10) *p<0.05, **p<0.01, and n.s. not significant. (B) 
Lysates from BAT and iWAT were extracted and subjected to Western blotting. The PANO 

gel increased the protein level of UCP1 in BAT and iWAT. Data are presented as mean ± 

SEM (n= 5 – 7). *p<0.05 and **p<0.01.
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FIGURE 5. The PANO gel protects from HFD-induced non-alcoholic fatty liver.
(A) The liver isolated from HFD-fed mice showed pale color due to the accumulation of 

fat in the liver. (B) H&E staining of the liver tissue. Lipid droplets are shown as white 

round circles. (C) The isolated livers were weighed at the time of sacrifice. The PANO gel 

prevented the accumulation of fat and reduced liver weight. Data are presented as mean ± 

SEM. (n = 18 −19) (D) The PANO gel reduced the accumulation of triglyceride in the liver 

(n= 6), and (E - F) circulating triglyceride and cholesterol (n= 9). Data are presented as 

mean ± SEM. *p<0.05 and **p<0.01.
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FIGURE 6. The PANO gel improved insulin sensitivity.
(A & B). V- or the PANO gel-injected HFD-fed mice were fasted for 6 hr. Glucose (2 

g/kg) or insulin (0.5 U/kg) was injected and the serum glucose levels were monitored. 

PANO improved glucose and insulin tolerance. **p<0.01 (n=6) (C-E) Fasting glucose and 

insulin levels were measured after 6 hr of fasting. Insulin sensitivity index HOMA-IR was 

calculated as described in the materials and methods. Data are presented as mean ± SEM 

(n=11). *p<0.05, **p<0.01 and ***p<0.001.
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FIGURE 7. The PANO gel improved the insulin-stimulated signaling pathways.
V- or the PANO gel-injected HFD-fed mice were fasted for 6 hrs. The mice were injected 

with 1 U/kg insulin, and then the lysates were collected from skeletal muscle (A-E), liver 

(F-J), and eWAT (K-N) and subjected to immunoblottings with the indicated antibodies. 

The effects of the PANO gel on insulin-stimulated signaling pathways in skeletal muscle, 

liver, and white adipose tissue was determined. Data are presented as mean ± SEM (n=5–7). 

*p<0.05, **p<0.01 and ***p<0.0001.
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FIGURE 8. The PANO gel improved cerebral blood flow and spatial learning, and memory.
(A) The cerebral blood flow was measured using a laser speckle contrast imager as 

described in the Materials and Methods. (B-E) Administration of the PANO gel improved 

cerebral blood flow while body temperature, heart rate, and blood pressure were steadily 

maintained. Data are presented as mean ± SEM **p<0.01 (n=7) (F) Morris water maze 

test was performed for five consecutive days. Administration of the PANO gel improved 

the ability of spatial learning and memory. Statistical analysis was performed with two-way 

repeated measurements of ANOVA combined with the Bonferroni post-doc test. Data are 

presented as mean ± SEM. ***p<0.001 (n=7)
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