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Abstract
Exosomes are a sub-population of extracellular vesicles. It is released from all types of cells and are observed to be involved 
in cellular communications. It contains DNA, RNA, proteins and lipids. Tumor-derived exosomes can modify the tumor 
micro-environment and promote tumor development. Exosomal miRNAs are functionally linked with cancer progression, 
metastasis, and aggressive tumor phenotypes. In this review, we initially discuss on the fundamental biology of exosomes and 
then summarize the recent understanding of the exosomal miRNAs in oral cancer with various biological events. Moreover, 
the dynamic impact of exosomal miRNAs in the oral cancer micro-environment and their multiple parameter alterations 
can lead to (i) increased uncontrolled cell proliferation, (ii) oral cancer angiogenesis, (iii) oral cancer metastasis, (iv) drug 
resistance in oral cancer, (v) reprogramming of the immune system in oral cancer, and (vi) clinical significance of exosomal 
miRNA in oral cancer detection. Exosomes research can pave way to identify early detection tools in future and personalized 
medicine development for oral cancer. Thus, our review provides an informative biological insight into exosomal miRNAs 
in oral cancer, which can benefit the researchers working in the corresponding domain.
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Introduction

Oral cancer is one of the most challenging disease which 
is the sixth most common health problem globally among 
other types of cancer (Kumar et al. 2016). Oral cavity and 
oropharynx-related cancers are called oral cancers or mouth 
cancers which include epithelial cancers, especially squa-
mous cells, salivary gland cancers, soft-tissue cancers, 
hematolymphoid cancers, and odontogenic carcinomas 
(Feller and Lemmer 2012). Among various types of oral 
cancers, the most common (90%) oral cancer type is the 

Oral Squamous Cell Carcinoma (OSCC) (Feller and Lem-
mer 2012; Lewis et al. 2016) which has a survival rate of 
only 5 years (Turner et al. 2013). According to the current 
statistics, in the year 2022, it is estimated that 54,000 new 
(males 38,700 and females 15,300) oral cancer cases will 
be identified in the US and the mortality associated with the 
disease would be 11,230 (males 7870 and females 3360) 
(Siegel et al. 2022). Taking into consideration the WHO 
statistics in 2020, the prevalence of Oral Cancer in India is 
predicted as one of the leading cancers leading to morbidity 
and death, and it is ranked as the number one fatal disease in 
males and the fourth one in females. In this global scenario, 
the demand for a dependable clinical screening biomarker 
and efficient treatment tools for oral cancer prevention is 
indispensable. Recently, exosomes, a type of extracellular 
vehicles (EVs), have been identified and included in the 
list of promising cancer screening tools in liquid biopsies 
(Lopez et al. 2018). The endosomal originated exosomes 
(40–200 nm) (Shao et al. 2018) contain several biomolecules 
such as proteins, lipids, and large amounts of nucleic acids 
including mRNA, microRNAs, circular RNAs, and long 
non-coding RNAs which play roles in cellular communica-
tions in cancer (Behera and Tyagi 2018).
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It is experimentally observed that in exosomes, the 
secreted rate of oncogenic cells is ten times higher than 
non-oncogenic cells, and the cancer cell-derived exosomes 
promote cellular signaling via mRNAs, non-coding miR-
NAs (ncRNAs), and miRNAs (Mao et al. 2018; Akers et al. 
2013); ncRNAs which are 19–25 nucleotides long miRNAs 
were considered to be the dark matter of genetic, since the 
exact functional role of ncRNAs in biology was not deter-
mined for a long time. However, recent scientific research 
progress has opened up the mystery of ncRNAs and enlisted 
the role of dynamic gene expression regulation of ncRNAs 
in many cells (Morris and Mattick 2014; Esteller 2011). The 
total ncRNAs are of three types, and their classification is 
based on the variable sequence length of the ncRNAs. In this 
classification, miRNAs are considered as short sequences 
containing (~ 21 nucleotides) acting as a major regulatory 
factor in cell biology controlling genomic expression. In the 
study of cancer, miRNAs control several oncogenic devel-
opmental episodes by creating genetic instability (Berindan-
Neagoe et al. 2014). Besides, scientists have observed that 
exosomes derived from different cells maintain their unique-
ness in mRNAs and miRNA levels even if their origins are 
different from each other (Chaput and Théry 2011) Addi-
tionally, collected pieces of evidence also confirm that, 
cancer cells released exosomal miRNAs play a significant 
and effective role in maintaining the tumor environment 
(Tkach and Théry 2016). Moreover, exosomal miRNAs are 
clinically significant as they can serve as early clinical diag-
nostic markers for cancer and they can also contribute to 
cancer therapeutic development. To date, there are numer-
ous articles available regarding exosomal miRNAs and oral 
cancer independently (Aqil et al. 2014; Aqil et al. 2015; 
Rajguru et al. 2020; Mallik and Zhao 2020), while only a 
few research articles have been published on both exosomal 
miRNAs and oral cancer together (Shoff et al. 2020; Sakha 
et al. 2016; Kulkarni et al. 2017). Also, the research articles 
cover only a specific portion of the related topic. Hence, to 
provide more biological insight, we provide a comprehen-
sive review of the association of exosomal miRNAs and oral 
cancer in the maintenance and regulation of various biologi-
cal events, viz., oral cancer cell proliferation, angiogenesis, 
metastasis and EMT, drug resistance, and immunity in oral 
cancer. Interestingly, our review work also highlights the 
participation of exosomal miRNAs in oral cancer progres-
sion and metastasis which would be beneficial to cancer 
researchers.

Exosomes biogenesis

Exosomes are the transitional by-products of early-to-late 
endosomes (Huotari and Helenius 2011) originating from 
the plasma membrane (Shao et al. 2018). Early endosomes 

(EEs) are processed through two different pathways simi-
lar to that of the formation of the lysosomes, one in which 
the “recycling endosomes” play a role and the other which 
involves the “late endosomes” (LEs), also called a multi-
vesicular bodies (MVBs). MVBs carry several membrane-
bound intraluminal vesicles (ILVs), and are a subset of 
endosomes and fusion of these with the plasma membrane 
releases its contents outside of the cells and these extracel-
lular vesicles are called exosomes (Li et al. 2019). Exosomes 
biogenesis occurs by two different pathways, one, which is 
dependent on the “Endosomal Sorting Complexes Required 
for Transport” (ESCRT) called as ESCRT-dependent, while 
the other is ESCRT-independent (Li et al. 2019). In the 
initial stages of the ESCRT-dependent pathway, ILVs are 
synthesized by the developing endosomes. ESCRT, which 
includes a group of proteins, generates ILVs through a com-
plex networking cascade (Colombo et al. 2013). This com-
plex ESCRT was identified in early 2000 and comprises four 
types (viz., ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-
III). In the pathway initiated by ESCRT-0, the ESCRT-0 
connects with high phosphatidylinositol 3-phosphate (PI3P) 
containing part of the membrane and binding occurs through 
Zinc Finger Domains (ZFDs) and Ubiquitin-interacting 
Motifs (UIMs) (Schmidt and Teis 2012). ESCRT-0 have two 
subunits called hepatocyte growth factor regulated tyros-
ine kinase substrate (HRS) and signal-transducing adaptor 
molecule 1/2 (STAM-1/2), and this dimer can bind through 
interactions with eight multiple ubiquitination moieties. 
ESCRT-0 containing HRS C-terminal activates ESCRT-I 
(Schmidt and Teis 2012; Henne et al. 2011), and ESCRT-
I and ESCRT-II together play a major role in endosomal 
cytoplasmic budding from the plasma membrane (Wollert 
and Hurley 2010). During budding, ESCRT-0 guides the 
cytoplasmic packaging component, and the cargo selection 
process is regulated by ESCRT-II and ESCRT-III (Wollert 
and Hurley 2010). ESCRT-III containing proteins such as 
oligomerized sucrose-nonfermenting (Snf7), tumor suscep-
tibility gene (TSG101), and ALG-2-interacting Protein X 
(Alix) are involved in classical vesicle budding (Teis et al. 
2010). Of these, the TSG101 and Alix are the key compo-
nents of the ESCRT system and are used as exosomes mark-
ers for screening in case of ESCRT-dependent processes 
(Kowal et al. 2014).

However, the scientific explanation regarding ESCRT-
independent pathway is not entirely clear. Multiple cargo 
sorting and budding mechanisms are observed that are 
related to ceramide-mediated membrane budding (Niel 
et al. 2011). Ceramides are produced by the disruption of 
sphingomyelin via neutral sphingomyelinase, creating a 
raft-like construct because of its self-organizing property. 
This type of structure formation enhances membrane bud-
ding and CD9, CD63, and CD81 are markers of the ESCRT-
independent pathway (Niel et al. 2011; Verweij et al. 2011; 



3 Biotech (2022) 12:155 

1 3

Page 3 of 12 155

Choi et al. 2015; Thakur et al. 2014; Huang et al. 2013; Eirin 
et al. 2014).

Biosynthesis of miRNAs and packaging 
in exosomes

miRNAs are the outcomes of the transcription processes of 
central dogma and, with the help of DNA polymerases II/
III, synthesize primary miRNAs (pri-miRNAs) initially in 
the nucleus. The combination of DiGeorge syndrome chro-
mosomal region 8 (DGCR8) and Drosha (it is a Class 2 ribo-
nuclease III enzyme, in humans DROSHA gene is encoded 
by it) in the nucleus converts primary miRNAs to precursor 
miRNAs (pre-miRNAs). Exportin 5, a RanGTP-dependent 
dsRNA-binding protein, plays an important role in the trans-
port of pre-miRNAs in the cellular cytoplasm. The Dicer 
complex influences the processing of pre-miRNAs and 
converts them into double-strand miRNAs. After that, the 
exosomal miRNA sorting process starts, and four powerful 
pathways are responsible for sorting miRNAs into exosomes 
(Fig. 1). The first one discovered was the neural sphingomy-
elinase 2 (nSMase2)-dependent pathway, which is responsi-
ble for exosomal miRNA packaging (Zhang et al. 2015), and 

high expression of nSMase2 is attributed to miRNA enrich-
ment present in the exosomes (Kosaka et al. 2013). The 
second packaging mechanism is related to heterogeneous 
nuclear ribonucleoprotein (hnRNP)-dependent pathway. The 
hnRNP has three subtypes of protein family, viz., hnRNPA1, 
hnRNPA2B1, and hnRNPC. These are involved in the pack-
aging of the miRNA in exosomes and hnRNPA2B1 regulates 
the sorting of exosomal miRNA by identifying the GGAG 
motifs in the miRNA sequences (Villarroya-Beltri et al. 
2013). The third pathway is 3′ end Gen Script end miRNA 
sequence-dependent pathway which has an important con-
tribution in packaging the signal process and guiding it into 
the exosomes (Koppers-Lalic et al. 2014a, b). The fourth 
pathway is related to miRNA-induced silencing complex 
(miRISC) which are found in MVBs. Furthermore, conver-
sion of MVBs into lysosomes causes high aggregation of 
miRISCs. It plays a crucial role in MVBs development and 
exosomal miRNAs-based gene silencing. One of the main 
components of miRISC is Argonaute 2 (Ago2), and knock-
out of Ago2 alters the quantity of miRNAs in exosomes 
(Guduric-Fuchs et al. 2012; Momen-Heravi and Bala 2018). 
In this way, the four cellular signaling pathways are involved 
in miRNAs’ packaging in exosomes.

Fig. 1  Biosynthesis of miRNA and its incorporation into 
exosomes. (1) Primary miRNA (Pri-mRNA) synthesis  occurs in 
nucleus via transcription process and involvement of DNA polymer-
ase II/III. (2) Pri-miRNA to precursor mRNA (Pre-miRNA) con-
version by nuclear complex of DGCR8 and Drosha. (3) Exportin 5 
transports Pre-miRNA from the nucleus to the cytoplasm. (4) Cyto-
plasmic Dicer complex modifies pre-miRNA converting it  to dou-
ble-stranded miRNA. Mature miRNA packaging by (5.a)  nSMase2 
pathway (5.b) hnRNP-dependent pathway in which the hnRNPA2B1 

protein identifies  the  GGAG sequence of 3’ end of miRNA and 
plays a role in miRNA packaging in exosomes. (5.c) 3’ end sequence 
dependent pathway which  provides  the guidance for miRNA sort-
ing in exosomes. (5.d) miRNA-induced silencing complex (miRISC) 
contain miRNA, GW182, Argonaute 2(Ago2), and miRNA targeted 
mRNA; this complex destabilizes and suppresses the translation of 
miRNA. (6) All pathways (5.a, 5.b, 5.c and 5.d) assist  in packaging 
of miRNA into multivesicular bodies (MVBs) and miRNA containing 
exosomes are released from MVBs.
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Role of exosomal miRNAs in oral cancer

Exosomal miRNAs are smart influencers and modifiers of 
the oral tumor micro-environment. As a result, different 

processes of cancer cells are altered such as tumor growth, 
angiogenesis, metastasis, drug resistance, and immune 
responses (Fig. 2). The list of important exosomal miR-
NAs and their role in oral cancer is described in Table 1.

Fig. 2  The dynamic role of 
exosomal miRNAs in oral 
cancer. Exosomal miRNAs in 
oral cancer regulates sev-
eral episodes of oral cancer 
development. It alters natural 
cellular proliferation activ-
ity, intiates secondary tumor 
developmental cascade via 
angiogenesis, metastasis, 
epithelial-to-mesenchymal 
transition, and reprogramming 
of immune responses. Exosomal 
miRNAs play a role in devel-
opment of drug resistance 
in oral cancer cells population 
in tumor microenvironmment. 
Oral tumor-derived exosomal 
miRNAs also establish complex 
intercellular communications 
which influences aggressive 
cancer progression and develop-
ment

Table 1  List of important exosomal miRNAs in oral cancer which are involved in oral tumor growth, angiogenesis metastasis, drug 
resistance, and immune responses 

Oral cancer features Exosomal miRNAs Functions References

Tumor growth miR-21-5p
miR-342-3p
miR-1246

Activation of the nuclear factor kappa B 
(NF-κB) inflammatory pathway

(Momen-Heravi and Morvan 2018; Sakha 
et al. 2016.)

Angiogenesis miR-142-3p Elevated expression of Type I TGFβ 
receptor (TβRI) in the donor cancer cells 
and increase of TβRI action in recipient 
endothelial cells

(Dickman et al. 2017)

Metastasis miR-21
miR-342-3p
miR-1246

Down-regulation of Snail, Vimentin, and 
E-cadherin

(Shan et al. 2018; Sakha et al. 2016; Li et al. 
2016a, b)

Drug resistance miR-21 Activation of phosphatidylinositol 3 kinase 
(PTEN) and Pyruvate Dehydrogenase 
Deficiency (PDCD4)

(Harmati et al. 2017; Liu et al. 2017)

Immune response modifications miRNA-24-3p Down-regulation of fibroblast growth 
factor (FGF-11), which inhibits phos-
phorylation of the signal transducer and 
activator of transcription (STAT) and 
extracellular signal-regulated kinases 
(ERK) protein of T cells

(Ye et al. 2016)
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Contribution of exosomal miRNAs in oral cancer cell 
proliferation

Cellular proliferation disorderliness is one of the hallmarks 
of cancer development and initiation. This phase happens 
via mutations of cell division regulatory proteins (Shan et al. 
2018). The exosomes released from Oral Squamous Cell 
Carcinoma (OSCC) cells cause activation of some signal-
ing pathways such as Jun N-terminal Kinase (JNK), Pro-
tein kinase B (AKT), and Mitogen-activated protein kinase 
(MAPK)/extracellular-signal-regulated kinase (ERK) (Sento 
et al. 2016). In case of oral cancer, the oncogenic miR-21-5p 
from the exosomes activate the NF-κB inflammatory path-
way (Momen-Heravi and Bala 2018).

Role of exosomal miRNAs in oral cancer 
angiogenesis

Angiogenesis is a tumor development stage where the 
tumor forms a network of new blood vessels from the 
existing blood vessels which provides all the cell growth 
essential nutrients for the developing tumor. This concept 
regarding angiogenesis was first hypothesized by Folkman 
in 1971 (Wang et al. 2010). During the past decade, sci-
entific research had actively reported that exosomes could 
help tumor angiogenesis which in turn could initiate the 
development and progression of oral cancer (De Andrade 
et al. 2018; Dickman et al. 2017). TGF‐β pathway has two 
transmembrane receptors, viz., transforming growth factor-
beta receptors I/II (TβRI/TβRII), both of which play a key 
role in exosomes-based angiogenesis in oral cancer. OSCC 
cells secrete exosomes that contain miR-142-3p which can 
help in cancer progression and angiogenesis, and also have 
elevated expression of TβRI in the donor cancer and recipi-
ent endothelial cells (Dickman et al. 2017).

Role of exosomal miRNAs in oral cancer metastasis 
and EMT

Metastasis accounts for a great majority of cancer-associated 
deaths, and in this critical mechanism, oncogenic cells lose 
their cellular addition property. As a result, the cancer cells 
migrate and enter the blood or lymph vessels, reach different 
parts of the body, and construct a fresh cluster of cancer cells 
(called a secondary tumor) (Santos et al. 2018). Epithelial-
to-mesenchymal transition (EMT) encompasses dynamic 
alterations of the cellular system to alteration of epithelial 
cellular contact property and gaining a cell motile mesenchy-
mal nature with invasive phenomena (Greening et al. 2015a, 
b). This cellular modulation demands for cancer growth and 
metastasis (Blackwell et al. 2017). Oral cancer cells release 
exosomal-related molecules contributing to dynamic cellular 
alterations and accelerating oncogenic growth. However, the 

mechanism involved in this process remains unsolved. Based 
on the proteomic analysis-related pieces of evidence, it has 
been demonstrated that some tumor-associated proteins are 
observed in OSCC-derived exosomes, viz., Matrix Metal-
loproteinase-13 (MMP-13), Heat Shock Protein-90 (HSP-
90), Tumor Necrosis Factor Receptor-Associated Protein 1 
(TRAP1), and Epidermal Growth Factor Receptor (EGFR). 
Researchers predict that these proteins may play a key factor 
in several stages of oral oncogenic propagation, and it may 
also be used as an OSCC clinical diagnosis biomarker (Ono 
et al. 2018; Shan et al. 2018). Exosomal hypoxia-inducible 
factor-1 (HIF-1α) and latent membrane protein 1 (LMP1) 
positive exosomes influence high motility and invasive-
ness of head and neck cancer (HNC) via EMT (Aga et al. 
2014). HNC-derived exosomes contain a high percentage 
of Desmoglein-2 (Dsg-2) (Overmiller et al. 2017) which 
may regulate the tumor progression by damaging matrix 
metalloproteinase and caveolins through promoting EVs’ 
biogenesis and mitogenic effects (Overmiller et al. 2017; 
Vered et al. 2015). Extreme metastatic oral squamous cell 
carcinoma cells secrete exosomes containing miR-1246 and 
miR-342-3p that boost up the oncogenic growth, metastasis, 
and invasion of recipient cells (Sakha et al. 2016). Hence, 
poor metastatic cells transform to aggressive metastatic 
cells because of the downregulation of the Multiple Acyl-
CoA Dehydrogenase Deficiency (MADD)/DENN domain 
consisting of protein 2D (DENN2D) by the influence of 
exosomal miR-1246. miRNA-21 containing exosomes also 
show an increased expression of mesenchymal markers such 
as vimentin and snail and downregulation of E-cadherin. 
This scientific evidence suggests that OSCC malignant cell 
clusters migrate to distant organs via EMT (Wang et al. 
2019; Shan et al. 2018; Li et al. 2016a, b).

Recent studies have highlighted the association between 
exosomes and metastasis, and it has been demonstrated that 
multiple events like immune suppression, organ-specific 
metastasis, extracellular matrix (ECM)-remodeling, and 
EMT have been observed to play a role in modifying the 
interaction between the exosomes and metastasis (Fig. 3).

Immune suppression: Immune suppression is one of the 
events which occurs during cancer progression and metas-
tasis. In this process, immune cells are reprogrammed via 
multiple tumor-inducing factors and the tumor-derived 
exosomes (TEXs) are   the vital components that induce 
immune suppression. Myeloid-derived suppressor cells 
(MDSCs) are pathologically activated neutrophils and 
monocytes with potent immunosuppressive activity. TEXs 
HSP72 reprogrammes MDSCs for the promotion of cancer 
and immune suppression (Gao et al. 2020). Monocytes are 
a group of sub-population of leukocytes, later transforming 
into macrophages and dendritic cells (DCs). TEXs-mediated 
increased expression of arginase and ROS influences mono-
cytes activity (Javeed et al. 2016). TEXs miRNA-21 cargo 
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enhances macrophage 2(M2) polarization and EMT (Hsieh 
et al. 2018) and these events encourage cancer development. 
Macrophages are antigen-presenting cells (APCs) which 
form a bridge between innate and adaptive immunity. TEXs 
down-regulate phosphatase and tensin homolog (PTEN), 
and enhances signal transducer and activator of transcrip-
tion 3 (STAT3), and M2 polarization via miR-222-3p (Yang 
et al. 2018; Zhou et al. 2020; Wang et al. 2020; Kugerat-
ski and Kalluri 2021), and TEXs-derived miR-1246 also 
directs macrophage-based EMT and metastasis. Dendritic 
cells (DCs) are classified as professional antigen-presenting 
cells (APCs). The miRNA cargos of TEXs suppressed DCs 
differentiation and development while promoting immu-
nological tolerance (Ding et al. 2015). Nature killer cells 
(NK cells) are the players of innate immunity and it also 
plays a vital role against cancer cells via cytolytic activity 
(Morvan and Lanier 2016). This activity is reprogramed via 
through TEXs-mediated HSP70, which reduces NK cell-
mediated cancer cell apoptosis (Gastpar et al. 2005) and 
miR-378a-3p cargo of TEXs acts on NK cells by mediating 
anti-tumor cytotoxicity (Briand et al.2020). B cells are key 

players of humoral immunity of the adaptive immune sys-
tem. TEXs inhibit B-cell activity and their surface protein 
reduces cytotoxicity of B cells (Yang et al.2012; Capello 
et al. 2019). T cells are a type of lymphocyte that is respon-
sible for the cellular immunity component of the adaptive 
immune system. Cytotoxic T  (TC) and Helper T cells 1 
 (Th1) cells are the important components of the anti-tumor 
response in the immune system (Borst et al. 2018). T helper 
17 (Th17) cells have a dual role in cancer; on one side, it 
suppresses the immune response for angiogenesis, and on 
another side, it creates an anti-tumor response (Guéry and 
Hugues 2015). TEXs cargos CD39 and CD73 suppresses 
T-cells activity (Clayton et al. 2011), and miR-29a-3p alters 
the ratio of regulatory T cells (Tregs) and Th17 population 
which promotes cancer development (Zhou et al. 2018). 
TEXs also mediate Programmed death-ligand 1 (PD-L1)-
based signaling and reduces  Th1-mediated cytotoxicity 
against cancer cells (Chen et al. 2018).

Organ-specific metastasis: TEXs play a major role in 
organ-specific metastasis through integrins. Integrins are 
one of the major binding receptors of the extracellular 

Fig. 3  Interrelation between exosomes and metastasis. In cancer 
metastasis, multiple vital events (immune suppression, organ-specific 
metastasis, extracellular matrix (ECM)-remodeling, and EMT) regu-

late via exosomes and its intracellular components play a vital role in 
the cellular transformation.
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matrix (ECM), and based on these, EMT regulation occurs. 
The same mechanism takes place in TEXs-mediated can-
cer cell migration with organ specificity. In general, some 
specific patterns (α6β1, α6β4, αVβ3, αvβ5) of integrins 
are expressed in TEXs. The integrins associated with liver 
metastasis (αvβ5), brain metastasis (α2β), lung metastasis 
(α6β1, α6β4), and bone metastasis (αvβ3, α4β1) are involved 
in metastasis (Tian et al. 2019; Wortzel et al. 2019).

Extracellular matrix (ECM)-remodeling: Extracellu-
lar matrix (ECM) remodeling is related to several cellular 
events like cell morphology maintenance, cell growth, cell 
proliferation, and cell migration. In the tumor micro-envi-
ronment, multiple factors influence ECM, and TEXs are one 
of them. TEXs containing fibronectin is involved in ECM 
remodeling. The proteomic analysis revealed that TEXs 
cargo annexins, α3 integrin, and A Disintegrin and metal-
loproteinase domain-containing protein 10 (ADAM10) are 
involved in cellular migration and invasion (Becker et al. 
2016). These complex cellular ECM modifications play a 
crucial role in cancer metastasis.

EMT and exosomes: EMT is the most dynamic event tha-
toccurs in cancer metastasis and the involvement of tumor-
derived exosomes (TEXs) becomes more complex. Current 
scientific pieces of evidence suggests that TEXs biological 
active cargo like proteins (gp96, EpCAM, CD9, HSP90) 
(Han et al. 2018; Huang et al. 2018), HIF-1α (Nonaka and 
Wong 2018), CircRNAs (circRNA_100290) (Egea-Jimenez 
and Zimmermann 2020), non-coding RNAs (MALAT1, 
lincRNA-ROR, LncRNA00152) (Lebastchi and Callender 
2014, Lee and Roberts 2013; Li et al. 2016a, b; Li et al. 
2017), miRNAs (miR-10b-5p, miR-21, miR-31, miR-142-3p, 
miR-186-5p, miR-195-5p, miR-374b-5p, miR-486-5p, miR-
574-3p, and miR-1246) (Jeck and Sharpless 2014; Kim et al. 
2018; Kiyota et al. 2015; Langevin et al. 2017; Latifkar et al. 
2019), and MMP-13 promote EMT and enhances metastasis.

Role of exosomal miRNAs in drug resistance oral 
cancer

Drug resistance is a major factor that plays a crucial role 
in the unsuccessful chemotherapy-based oncogenic treat-
ment of oral cancer. Oral cancer cells secrete exosomes 
that carry some oncogenic molecules, because of which the 
cancer cells become resistant to the effect of the anti-pro-
liferation and anti-metastatic chemotherapeutic drugs, viz., 
doxorubicin, cisplatin, and ROS-related drugs (Jelonek et al. 
2015). Extreme chemoresistant OSCC cells exhibit drug 
resistance and the DNA damage is decreased by exosomes 
containing miRNA-21 which in turn triggers phosphatase 
and tensin homolog (PTEN) and programmed cell death 
protein 4 (PDCD4) (Harmati et al. 2017; Liu et al. 2017). 
Exosomes secretion is also increased by radiation, stress, 
and uptake of cancer-derived exosomes by normal cells, and 

at the same time the tumor cells become radiation-tolerant 
by the influence of the AKT signaling pathway and hence 
play a key role in repairing double-strand DNA damage 
(Mutschelknaus et al. 2016, 2017).

Exosomal miRNAs and immunity in oral cancer

The efficient proliferation and metastasis of cancer cells 
are not possible if cells are not capable of escaping from 
immune surveillance or treatment-based immune surveil-
lance. Exosomes released from tumor cells create complex 
cellular signaling networks that build tumor immunity (Gao 
et al. 2018). Tumor cell-derived exosomes initiate the Treg 
(regulatory T cells) and tumor micro-environment-related 
macrophages, and then modulate the anti-tumor immune 
responses, thus preparing the tumor cell for immune escape 
and tolerance (Webber et al. 2015; Greening et al. 2015a, b). 
HNC-derived exosomes inhibit the T lymphocytes division 
and prevent T-cell subsets, Th-1 and Th-17 reproduction 
and influences the transformation of all of them to mye-
loid-derived suppressor cells (MDSCs) and Trag (White-
side 2013). Treg cells become more susceptible compared 
to the subset of other T cells for immune suppression by 
tumor-released exosomes (Muller et al. 2016). Cytotoxic T 
cells (CD8 + T cells) are the major players in anti-cancer 
immune response, while HNC-derived exosomes carry high 
galectin-1 that controls low-level phosphorylation of STAT-
1/-3 and high-level phosphorylation of STAT-5 by ERK/
MAPK signaling pathway or low expression of CD27/28-
induced cytotoxic T cells, promoting a suppressor pheno-
type (Maybruck et al. 2017). Hypoxic conditions of HNC 
tumor micro-environment up-regulated exosomes release 
and they contained miRNA-24-3p which down-regulated 
FGF-11, inhibiting phosphorylation of the STAT and ERK 
proteins of T cells (Ye et al. 2016). HNC-derived exosomes 
also regulates the translation of surface protein of CD8 + T 
cells such as major histocompatibility complex I (MHC-I) 
and Fas ligand L (Fas-L) which are playing a role in endo-
cytosis and apoptosis (Ye et al. 2014). Oral cancer cell-
derived exosomes also motivates the conversation of the 
human monocytic cell line (THP-1) cells to tumor-related 
macrophages M2 subtypes. On the other hand, these altera-
tions do not have any symbolic impact on primary human 
macrophages (Al-Samadi et al. 2017).

Clinical significance of exosomal miRNAs 
in oral cancer

Exosomal miRNA-based liquid biopsy is the beginning of 
a new clinical diagnosis era. Generally, exosomes show 
strong superiority with unique biological active signatures 
in oral cancer biopsy. Some dynamic facts that requires 
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attention for detailed investigation are discussed here. First, 
exosomes exist in all parts of the body and it is highly stable 
because of their lipid bilayer capsule shield. It is usually 
stored at 4 °C for 24 hrs and long time stored at − 80 °C in 
a pH 7 solution (Cheng et al. 2019). Second, exosomes are 
released from living cells, which contains abundant informa-
tion about the parental cells. Third, exosomes are identified 
via specific membrane surface proteins like CD63, HSP70, 
TS101, and ALIX (Xu et al. 2016) which confers a unique-
ness to these vesicles and marks them different from other 
vesicles. It can also be characterized by electron micros-
copy because of its specific cup-shaped sized appearance 
(Xu et al. 2016); fourth, exosomes contain specific parental 
protein signatures that assists to identify the source of the 
specific organs. Fifth, exosomes carry several biomarkers 
which indicate the cell’s normal or pathological status. Thus, 
these detailed information supports researchers and helps 
them to  analyze and understand multiple pathological con-
ditions of the human body (Sun et al. 2019). Sixth, exosomes 
provide clues about circulating tumor cells (CTCs) (Avgeris 
et al. 2019; Tovar-Camargo et al. 2016). All of these pieces 
of evidence prove that diagnostic accuracy once again can be 
developed in oral cancer by research on exosomes. In OSCC, 
miR-27a-3p, miR-223 (Tachibana et al. 2016), miR-302b-3p, 
miR-365, miR-412-3p, miR-494-3p, miR-512-3p, and miR-
517b-3p are detected as biomarkers of oral cancer (Gai et al. 
2018). The miR-21, miR-34, and miR-155 are found specific 
to oral cancer stem cells (Shoff et al. 2020). miR-24-3p has 
been reported to demonstrate high expression in oral cancer 
patients (Ye et al. 2014, 2016). miR-21 regulates hypoxic 
conditions in the tumor micro-environment and promotes 
EMT via (hypoxia-inducible factor) HIF1a/HIF2a-depend-
ent pathway (Li et al. 2016a, b). In the current scenario of 
cancer research, exosomal microRNA profiling data have 
helped us to improve treatment efficiency and predict drug 
resistance in cancer patients. Extraexosomal microRNAs 
analysis also has paved the way to discover more precise 
specific biomarkers and proper therapeutic solution for treat-
ment. Thus, exosomal miRNA-based oral cancer profiling 
can assist in early detection of cancers and may play a role 
in the near future for the development of personalized medi-
cine and develop promising cancer diagnostic approaches to 
alleviate the suffering of oral cancer patients.

Conclusion

Research on exosomes opens a new orientation for a better 
understanding of cancer biology. Exosomes play a dynamic 
regulatory role in cancer growth, angiogenesis, metasta-
sis, and immunity of oral cancer. Exosomal miRNAs alter 
genetic material and create genetic instability in cancer cells. 
Profiling of exosomal miRNAs databases helps to develop 

advanced diagnostic tools. However, some challenges asso-
ciated with exosomal research cannot be avoided. First, we 
always follow International Society for Extracellular Vesi-
cles (ISEV) guidelines which gives information on nomen-
clature, separation, characterization update protocols, and 
procedures for clinical application of exosomes. However, 
exosomal heterogeneity in size and sub-population indicates 
that we must develop reliable technologies which can help 
us in the isolation of exosomes and examination of exoso-
mal miRNAs. Second, our present expertise is limited to 
exosome synthesis and how miRNA changes to exosomes 
as well as how exosomal miRNA works in recipient cells. 
In this scenario, a proper molecular mechanism pathway of 
exosomal miRNA transport for the next level of research 
exploration is imminent. Third, the destiny of exosomes and 
exosomal miRNAs is still not a clear understandable story. 
There are still many contradictions. Therefore, large mag-
nification and tracking technologies as well as new in vivo 
models should be developed for better analysis. Fourth, sub-
stantial research combined with clinical safety and patient 
databases is required for proving the exosomal miRNA ther-
apeutic efficiency. Moreover, the next level of research work 
is required for making a clear concept of how miRNAs of 
exosomes create genetic instability in oral cancer. Therefore, 
extensive research is recommended to understand the role of 
exosomal miRNA in oral cancer in terms of the development 
and progression, while the detailed study of the exosomal 
miRNAs profiling contributes to the innovation of exosomal 
miRNA-based clinical diagnosis tools and cancer therapeu-
tic development against oral cancer in the future.
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