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Motor dysfunction in Drosophila melanogaster
as a biomarker for developmental neurotoxicity

Ana Cabrita,1 Alexandra M. Medeiros,1 Telmo Pereira,2 António Sebastião Rodrigues,3 Michel Kranendonk,3,*

and César S. Mendes1,4,*

SUMMARY

Adequate alternatives to conventional animal testing are needed to study devel-
opmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of
known (toluene (TOL) and chlorpyrifos (CPS)) and putative (b-N-methylamino-L-
alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed
to these compounds during development and evaluated for survival and adult ki-
nematic parameters using the FlyWalker system, a kinematics evaluationmethod.
At concentrations that do not induce general toxicity, the solvent DMSO had a
significant effect on kinematic parameters. Moreover, while TOL did not signifi-
cantly induce lethality or kinematic dysfunction, CPS not only induced develop-
mental lethality but also significantly impaired coordination in comparison to
DMSO. Interestingly, BMAA, which was not lethal during development, induced
motor decay in young adult animals, phenotypically resembling aged flies, an ef-
fect later attenuated upon aging. Furthermore, BMAA induced abnormal devel-
opment of leg motor neuron projections. Our results suggest that our kinematic
approach can assess potential DNT of chemical compounds.

INTRODUCTION

Neurotoxicity and developmental neurotoxicity (DNT) are important adverse health effects of environ-

mental contaminants, occupational chemicals, and natural toxins. Moreover, neurotoxicity is one of the

most frequently occurring therapeutic drug side effect (Bal-Price et al., 2015b). Exposure to neurotoxicants

during development has been recognized to be of particular importance as the developing human brain is

inherently more susceptible to damaging agents than is the brain of an adult (Bondy and Campbell, 2005;

Rodier, 1995). DNT has been implicated in the etiology of various neuropsychiatric and neurological disor-

ders, including autism spectrum disorder, attention-deficit hyperactive disorder, schizophrenia, Parkinson,

and Alzheimer disease (Grandjean and Landrigan, 2014).

Many cellular and molecular processes are known to be crucial for a proper development and function of

the central (CNS) and peripheral nervous systems (PNS). However, there are relatively few examples of well-

documented pathways for how chemicals may interfere in these processes (Bal-Price and Meek, 2017). The

paucity of toxicological data for tens of thousands of chemicals in commercial use and thousands of new

chemicals produced each year has called the attention during the last decade, for development of sensitive

and rapid assays to screen for their neurotoxic propensity, particular for DNT (Smirnova et al., 2014).

The main reason for the lack of data lies in the current guidelines (OECD TG 426 and US EPA 712-C-98-239;

OECD, 2007; US EPA, 1998) largely based on in vivo experiments, which are costly, time consuming, and

unsuitable for testing large numbers of chemicals (Bal-Price et al., 2012). Therefore, there is a need for

adequate alternatives to conventional animal testing for neurotoxicity and DNT (Bal-Price et al., 2012).

Hence, efforts are being directed toward the development of alternative models, utilizing either mamma-

lian cells in culture or non-mammalian model systems, with the inclusion of new testing strategies to facil-

itate transition to more mechanistically based approaches (Xie et al., 2020). Such approaches can unveil

mechanistic cues that can assist in optimizing sensitive and practical assay endpoints for pathway-specific

screening and the determination of predictive key events, which can be used as biomarkers for specific

neurotoxic outcomes (Bal-Price and Meek, 2017). Models such as zebrafish, Caenorhabditis elegans, and

Drosophila melanogaster are increasingly recognized for their suitability to test a larger number of
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Figure 1. Measurements of pupal and adult survival of Drosophila melanogaster developing in the presence of

the neurotoxic agents TOL and CPS

(A) Schematic of the procedure and metrics used in this study. Embryos are placed in tainted or untainted food (control).

Several parameters were quantified in this study (in italic), see main text for details.

(B and C) Survival of adult animals, which were exposed during development to increasing concentrations of (B) TOL (0;

5 mM; 50 mMor 47 mM; n = 75 for each condition) and (C) CPS (0; 0.5; five or; 50 mM) compared to solvent (DMSO; n = 75 for

each condition). *p < 0.05; **p < 0.01; ***p < 0.001. (B0, C0) Partial survival scores. Light gray represents embryo to pupae

survival, and dark gray represents pupae to adult survival.
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candidate compounds, in addition to acquire ‘‘mode of action’’ type of information regarding neurotox-

icity, and neurological disorders and diseases (Peterson et al., 2008). The fruit fly D. melanogaster has

got particular attention in the modern regimen of neurotoxicological testing due to similarities of their

neurological and developmental pathways with those of vertebrates (Rand, 2010), emphasizing its unique

attributes for assaying neurodevelopment and behavior (Affleck and Walker, 2019; Rand et al., 2019).

Recent investigations have propagated several powerful assay methods with Drosophila in developmental

and behavioral toxicology (Rand, 2010). However, most studies rely on parameters that poorly reflect

neuronal defects or decay. In these studies, several parameters are tested in an attempt to find parameters

indicative of more general toxicity such as mortality, female-male ratio, DNA damage (Cox et al., 2016),

climbing assay, alteration in acetylcholinesterase activity, and other enzymes (Dinter et al., 2016; Rand

et al., 2014). Despite their usefulness, climbing assays only provide low resolution in distinguishing different

experimental conditions, i.e., just a one-dimensional perspective of a complex and multidimensional phe-

nomenon such asmulti-jointed walking, highly dependent on a properly developed and fine-tuned nervous

system. Coordinated walking in vertebrates and multi-legged invertebrates such as D. melanogaster re-

quires a complex neural network coupled to sensory feedback (Dickinson et al., 2000). Perturbation of

such neural networks in humans has been indicated as the source of several neurological disorders, in which

exposure to neurotoxic chemicals was implicated (Grandjean and Landrigan, 2014).

The combination of increasingly sophisticated optical systems with computer algorithms has allowed to

track movement of multi-segmented body parts with high spatiotemporal resolution and extract a multi-

tude of quantifiable data that accurately describe walking performance (Berman et al., 2014; Günel

et al., 2019; Kain et al., 2013; Mathis et al., 2018; Mendes et al., 2013; Pereira et al., 2019; Uhlmann et al.,

2017; Wu et al., 2019). Such tools have identified the effects on the motor system of internal and external

manipulations such as increased body load or lack of a particular neurotransmitter, among others (Enriquez

et al., 2015; Howard et al., 2019; Mendes et al., 2014; Schretter et al., 2018).

In the current report, we describe the use of D. melanogaster as a model to study the DNT of two known

neurotoxic agents standardly applied in testing, namely the solvent toluene (TOL) and the pesticide chlor-

pyrifos (CPS) (Aschner et al., 2017), in addition to testing the putative neurotoxic agent b-N-methylamino-L-

alanine (BMAA) (Weiss and Choi, 1988). For this, we combined classical metrics such as animal survival with

a sensitive and detailed kinematic assay that accurately and quantitatively reports the status of the motor

system (Mendes et al., 2013), using it as indicator of DNT.

RESULTS

Effect of DMSO, TOL, and CPS on developmental survival

Two known neurotoxins, applied as standards in neurotoxicity screenings, were used to study their effect

on the development of D. melanogaster, by transferring fertilized eggs into food containing defined con-

centrations of these compounds (Figure 1A). We chose the aromatic hydrocarbon TOL, widely used as a

solvent, in addition to its usage as a recreational drug (Filley et al., 2004), and the commonly used organ-

ophosphate pesticide CPS.

Drosophila’s development from an egg to adult takes approximately 11 days at 25�C, comprising a station-

ary embryonic stage, lasting 22 h. (Ashburner, 1989), followed by three larval stages, in which activity con-

sists of mostly food consumption with a duration of four days. Subsequently, third-instar larvae crawl away

from their food source and start a molting process outside the food source, undergoing a metamorphosis

process lasting approximately 3 days (Denlinger and Zdarek, 1994; Heredia et al., 2021; Markow et al., 2009;

Powsner, 1935). The development of any multicellular organism depends on the rigorous execution of a

specific developmental and genetic program. As this developmental process is highly sensitive to chemical

insults, we measured initially three developmental features: i) survival from egg to adult, ii) egg to pupae,

and iii) pupae to adult (Figure 1A), an approach described previously (Khatun et al., 2018; Nazir et al., 2001;

Zhou et al., 2010a). Owing to poor aqueous solubility, both TOL and CPS were diluted in aqueous DMSO,

Figure 1. Continued

(D–F) Pupal distance. (D) Climbing scoring scheme: Pupal positions were divided into four groups: I. (purple) inside the

food; II. (green) slightly above the food; III. (yellow) up to 1 cm from the food; and IV. (red) occupying the area above 1 cm.

(D) Pupal distance represented as a percentage stacked bar graph for increasing concentrations of (E) TOL and (F) CPS

compared to solvent (DMSO). Number of animals tested (n) is indicated in the figure. See STAR Methods for details.
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which although is used widely as solvent in experimental biology and a preferred cryoprotectant, can per se

induce developmental toxicity (Gurtovenko and Anwar, 2007; Nazir et al., 2003; Uysal et al., 2015) and

neurotoxicity (Awan et al., 2020; Bakar et al., 2012). Control experiments were performed, testing several

food concentrations of DMSO at pupal and adult stages, to determine a concentration that would allow

to predilute TOL and CPS, without interference of this solvent (Figure S1; see STAR Methods). A concen-

tration of 140 mMDMSO in fly food induced a reduced number of enclosed animals (hatching from the pu-

pal case), consequence of a reduced pupal to adult transition (Figure S1B). However, lower concentrations

of DMSOdisplayed little or no effect on survival, and a 70mM aqueous solution of DMSOwas subsequently

used as solvent for TOL and CPS (Figure S1B). Exposure of developing Drosophila to increasing concen-

trations of CPS during development showed a dose-dependent lethality with concentrations as low as

5 mM showing an approximately 50% reduction in the number of animals reaching adulthood (Figure 1C).

Additional drop in survival (approximately 22%) was found during the pupa to adult transition (Figure 1C’),

indicating the detrimental effect of CPS even after animals ceased to be exposed to the tainted food. A

50 mM concentration of CPS induced complete lethality with no animals reaching the pupal stage

(Figure 1C’).

In Drosophila, the feeding larval stage is followed by a wandering phase where larvae exit the food to find

an appropriate pupation site (Denlinger and Zdarek, 1994). The pupation traveling distance can be influ-

enced by genetic traits and external factors such as moisture and environmental cues (Beltramı́ et al.,

2010; Johnson and Carder, 2012; Narasimha et al., 2015; Sokolowski and Bauer, 1989). This distance has

been used in different paradigms, including exposure of the developing larva to toxic compounds, as a

marker for fitness of the neuromuscular system to drive the crawling larva to a safe location for metamor-

phosis (Johnson and Carder, 2012; Joshi and Mueller, 1993; Khatun et al., 2018; Sood et al., 2019). Accord-

ingly, we measured the pupation distance by recording the position of pupa relative to the food level in

four categories: I. within the food, II. slightly above the food line, III. up to 1 cm from the food, and IV. above

1 cm mark (Figure 1D).

Exposure to TOL during development did not influence the pupal positioning even at higher concentra-

tions withmost (>76%) of wondering larvae pupating at a position higher than 1 cm from the food (Figure 1E

and Table S1). Moreover, no statistically significant difference in pupal positioning was detected between

the solvent and tested TOL concentrations (Table S1). These results are consistent with a lack of lethality

observed previously (Figure 1B), further suggesting that TOL does not impair the larval neuromuscular sys-

tem while exposed to the tainted food in these conditions. Similarly, increasing concentrations of CPS did

not significantly change the percentage of pupae located beyond the 1 cmmark (76G 10% for control con-

dition vs 76G 7% and 73G 1%, for 0.5 and 5 mM, respectively; Figure 1F and Table S1). Moreover, there was

an increase, albeit non-significant, in the number of pupae present at the food interface, simultaneously

matched by a decrease of pupa above the food line but below the one cm mark (Figure 1F and

Table S1). Although statistical analysis did not show a difference between these groups, these data suggest

that CPS can affect the ability of wandering larva to emerge from the food, in order to pupate. Overall,

these results show that two known neurotoxic agents—TOL and CPS—can have distinct effects on the abil-

ity ofDrosophila to survive development. While CPS induced lethality at relatively low concentrations, TOL

was unable to influence the survival rate even at a high dose of food exposure.

Effect of DMSO, TOL, and CPS on adult kinematics

While surviving adult animals that developed in the presence of TOL and CPS did not show clear anatom-

ical defects (data not shown), we tested if there were any detrimental effects of these known neurotoxins on

coordination in their walking conduct (Figure 2). For this purpose, a standardized pipeline was followed

from sample preparation to kinematic output generation (Figure S2 and STAR Methods). Walking behavior

of multi-segmented organisms such as Drosophila displays a highly reproducible and stereotyped pattern

aimed to move the animal in an energy-efficient and stable fashion (Mendes et al., 2013; Ramdya et al.,

2017; Strauss and Heisenberg, 1990; Szczecinski et al., 2018; Wosnitza et al., 2013). However, disruption

of the motor neuronal circuit has direct consequences on gait properties of walking animals. For example,

inactivation of serotonergic neurons in the ventral nerve cord of Drosophila (the analog of the mammalian

spinal cord) has a significant effect on gait properties (Howard et al., 2019). We thus considered that expo-

sure to neurotoxins may not lead to lethality during development but nevertheless could affect the proper

development and function of the motor nervous system. To test this hypothesis, we analyzed the kinematic

behavior of untethered adult flies, which during development were exposed to food containing non-lethal
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levels of TOL (50 mM) or CPS (5 mM) using the FlyWalker system. This approach allows the extraction of a

large set of kinematic parameters with a high spatiotemporal resolution (Mendes et al., 2013) (Figures 2,

S3, and S4).

We compared the kinematic performance of adult animals developing in the presence of water, 70 mM of

the solvent DMSO, the solvent plus 50 mMTOL, and the solvent plus 5 mMCPS (Figures 2, S3, and S4). When

Figure 2. Kinematic parameters of adult animals exposed during development to water, 70 mM DMSO (solvent),

DMSO plus 50 mM TOL, and DMSO plus 5 mM CPS

One-week-old animals were exposed during development to water, 70 mM DMSO (solvent), DMSO plus 50 mM TOL, and

DMSO plus 5 mM CPS and kinematics features were recorded and analyzed using the FlyWalker system (n = 20 for each

condition).

(A) Representative stance traces (normalized to body-length represented by the oval shape), which marks the tarsal

contacts relative to the body axis during stance phases. See (Mendes et al., 2013) for details. (B–C) PCA of all kinematic

parameters.

(B) Tridimensional representation of three-component PCA analysis. Each individual small dot represents one video while

larger dots represent the average point (n = 20 for each condition). Contribution of each component is indicated in each

axis.

(C) 2D representation with ellipses delimiting 50% of variance of the data.

(D and E) Comparison of each PC coordinate. *p < 0.05, **p < 0.01. ***p < 0.001. (D) PC1 coordinates. (E) PC2 coordinates.

See STAR Methods for details.
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compared to water, animals developing in the presence of the aqueous DMSO alone or in combination

with 50 mM TOL or 5 mM CPS displayed stance phases with inconsistent leg positioning relative to the

body axis, including during touch-down and swing-onset (Figure 2A).

By further analyzing the kinematic features of our experimental conditions, we found an effect on a large

number of parameters compared to water (Figure S3A). Moreover, by comparing the performance of

70 mM DMSO supplemented with 50 mM TOL, we found a shift in six of the 39 parameters analyzed,

with some alterations targeting the front and middle hemi-segments (Figure S3B). In contrast, we found

that 5 mM CPS induced kinematic alterations on 15 parameters (Figure S3B and Video S1), most notably

on step frequency, step length, and stance straightness, which measures the consistency of the stance

phase (or power stroke), indicating that CPS promotes an aggravated uncoordinated walking behavior

compared to its solvent (Figure S4).

We subsequently subjected all the kinematic parameters to a three-order principal component analysis

(PCA) generating a three-dimensional representation (Figures 2B–2E). We chose this dimensionality reduc-

tion method due to its general acceptance, ease of implementation, in addition for its ability to reduce

redundancy in an unsupervised manner and not biased by class-structures (for review see (Bishop, 2006;

Postma et al., 2009). 3D and 2D scatterplots display the spatial distribution of each experimental condition

among the most representative components (Figures 2B and 2C, respectively). PC1, representing 43.3%

variance of the dataset, allowed the discrimination of exposure between water vs. DMSO and DMSO vs.

DMSO plus 5 mM CPS (Figures 2C and 2D). Moreover, PC2, representing 16.2% variation variance, also al-

lowed the differentiation of animals exposed to DMSO alone vs. supplemented with CPS (Figures 2C and

2E), further indicating a kinematic effect induced by the exposure to CPS during development. These data

also show that while TOL can induce a shift in a few kinematic parameters, it does occupy the same behav-

ioral space compared to the solvent DMSO, which could have masked any possible DNT effect (Coecke

et al., 2016). As a negative control, we also tested the effect of glycerol, a common polar organic solvent

with very low toxicity (Figure S5). Although some kinematic parameters were affected, PCA analysis shows

that animals exposed to 68 mM glycerol during development did not occupy a different behavioral space

compared to water.

Altogether, our results support that animals, although surviving exposure to specific levels of neurotoxic

agents during development, may display motor dysfunction, highlighting the presence of neuronal de-

fects. Our data also indicate that DMSO may mask DNT effects in Drosophila, which can hamper an

adequate assessment of test compounds. This is an important issue for in vitro toxicological studies in gen-

eral regarding solvents that can per se induce a biological effect (Coecke et al., 2016). Nevertheless, our

data analysis highlighted the ability of our FlyWalker approach to quantitatively identify CPS as capable

to induce kinematic dysfunction and thus developmental neurotoxicity.

Effect of BMAA on developmental survival

Subsequently, we evaluated the effect of BMAA on the development ofDrosophila. The non-proteinogenic

amino acid BMAA has been suggested to induce neurotoxic effects and has been implicated in the etiology

of amyotrophic lateral sclerosis (ALS) (Banack et al., 2015; Jonasson et al., 2010; Lobner et al., 2007; Muñoz-

Sáez et al., 2015; Murch et al., 2004; Pablo et al., 2009; Proctor et al., 2019; Roy-Lachapelle et al., 2017; Weiss

et al., 1989). Former studies of BMAA inDrosophila showed that BMAA severely reduced life span, climbing

capabilities, andmemory (Zhou et al., 2009, 2010b). Interestingly, our data show that exposure to increasing

food concentrations of BMAA did not affect the survival of developing Drosophila, with similar number of

animals reaching adulthood and pupal stages compared to control animals (solvent, i.e., water) (Figures 3A

and 3B). Still, BMAA induced a shift in pupal positioning from positions below or at the food level, a strong

indication for larval neuromuscular system impairment, to positions located further away from the food

source (Figure 3C and Table S2), suggesting a potential repellent, or escaping effect of BMAA on wander-

ing third-instar larvae.

We also tested the climbing capabilities of animals developing under the presence of growing concentra-

tions of BMAA (Figure 3D). Flies have the innate behavior to move against gravity (termed negative

geotaxis), and a reduced climbing performance is indicative of motor dysfunction (Dinter et al., 2016; Ga-

netzky and Flanagan, 1978). Moreover, continuous exposure of adult flies to 2–8 mM BMAA induced climb-

ing defects (Zhou et al., 2009, 2010b). Using this assay, we found that only the highest concentration of
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500 mM induced a statistical difference compared to the solvent (Figure 3D). Thus, using this metric, devel-

opmental neurotoxicity induced by BMAA is only measurable at higher concentrations.

Effect of BMAA on adult kinematics

We next tested if developing Drosophila exposed to increasing food concentrations of BMAA displayed

kinematic dysfunction, using the FlyWalker system, including at lower concentrations where the climbing

assay failed to identify a significant effect (Figure 3D). We found that 1-week-old adultDrosophila displayed

a dose-depended motor dysfunction when exposed to increasing concentrations of BMAA during devel-

opment (Figures 4 and S6 and Video S2). All parameter classes were altered and stance phases display an

increasingly inconsistent leg positioning relative to the body axis, including during touch-down and swing-

onset (Figures 4A and 4B). The PCA analysis indicated a 44.5% variance of data by PC1 (Figures 4C and 4D),

and 2D visualization shows that increasing concentrations of BMAA corresponded to a stronger effect (i.e.,

dose-response), relative to the control condition (Figure 4D). While PC1 analysis quantitatively shows a

dose-response effect, PC2 representing 17.1% variance only discriminated intermediate concentrations

of BMAA compared to control groups (Figure 4F), indicating the capture of the most relevant variation

in motor function by PC1. Similarly, individual analysis of gait parameters confirmed the aforementioned

trend, with several parameters showing increasing divergence from control conditions with increased con-

centrations of BMAA (Figure S6).

Time effect of BMAA-induced motor dysfunction

We subsequently verified the effect of aging and the reversibility of BMAA-induced motor dysfunction. For

this, we evaluated kinematic performance using the FlyWalker system of 3-week-old flies maintained on

Figure 3. Pupal and adult survival of Drosophila melanogaster developing in the presence of the BMAA

(A) Survival of adult animals developing in increasing concentrations of BMAA (0; 0.5; 5 or 500 mM) compared to solvent

(water; n = 75 for each condition).

(B) Partial survival scores. Light gray represents embryo to pupae survival, and dark gray represents pupae to adult

survival.

(C) Pupal distance. Pupal positions were divided into four groups: I. (purple) inside the food; II. (green) slightly above the

food; III. (yellow) up to 1 cm from the food; and IV. (red) occupying the area above 1 cm. Number of animals tested (n) is

indicated in the figure. Results represented as a percentage stacked bar graph for increasing concentrations BMAA

compared to solvent (water).

(D) Climbing performance of 1-week old animals developing in increasing concentrations of BMAA (0; 0.5; 5 or 500 mM)

compared to solvent (water; n = 50 for each condition). For each condition, groups of 10 animals were tested for the ability

to climb the 8 cm mark after 10 s **p < 0.01. n.s., not significant. See STAR Methods for details.
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Figure 4. Kinematic parameters of one-week adult animals exposed to increasing concentrations of BMAAduring

development

Exposure levels were 0, 0.5, 5, or 500 mM of BMAA. Kinematic features were recorded and analyzed using the FlyWalker

system (n = 20 for each condition).

(A) Representative stance traces, which mark the tarsal contacts relative to the body axis during stance phases, (see

(Mendes et al., 2013) for details).

(B) Heatmap of kinematic parameters. Features are distinguished by ‘‘Step’’ (pink box), ‘‘Spatial’’ (yellow box), and ‘‘Gait’’

(black box), parameters. For each parameter, values are matched to animals exposed to solvent (water) and p values are
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normal, untainted food, but exposed during their development to increasing concentrations of BMAA.

Because Drosophila have a life expectancy of �60 days with a 50% survival rate of 40 days (Ashburner,

1989), we first tested if aging per se could affect kinematic features. Interestingly, we found that 3-week-

old flies display alterations in many parameters, including spatial parameters, consistent with age-related

movement uncoordination (Figures S7 and S8). Similar to 1-week-old animals, we found a dose-dependent

effect of BMAA on kinematic features of this older age group (Figures 5 and S9). Higher concentrations of

BMAA induced a more significant uncoordinated stance profile (Figure 5A) and larger differences when

compared to control conditions (Figure 5B). However, two noteworthy aspects should be highlighted.

Firstly, compared to control animals, the impact of BMAA exposure in 3-week-old animals appears to be

reduced when compared to 1-week-old animals. For example, exposure to 0.5 mM of BMAA during devel-

opment affects many of the kinematic parameters in 1-week-old animals (Figure 4A), while in 3-week-old

animals only one parameter showed a significant difference to control conditions (Figures 5 and S9). Sec-

ondly, while in 1-week-old animals a seemingly linear dose dependence in response on kinematic effects

can be observed (Figures 4E and S6), this is not the case for 3-week-old animals in which lower and inter-

mediate concentrations of BMAA occupy a similar pattern to control conditions in a PCA (Figures 5C and

5D). These results suggest an adaptation of the neuromuscular system regarding the detrimental effect of

BMAA during development. Nevertheless, at higher concentrations of BMAA (500 mM), this compensatory

effect was less pronounced, visible through the heatmap pattern and PCA quantification (Figures 5B, 5E,

and 5F), suggesting a threshold concentration for which the neurodevelopmental impairment no longer

can be compensated and becomes permanent.

Subsequently, we tested the hypothesis that the motor dysfunction induced by BMAA, particularly at

higher concentrations, could include a time-dependent neurodegenerative component beyond the initial

neurodevelopmental effect. To test this hypothesis, we compared the behavioral 3-dimensional PCA of 1-

and 3-week-old animals exposed to increasing concentrations of BMAA during development (Figure 6).

Interestingly, we found that aging did not exacerbate the differences between the control condition and

flies reared in the presence of BMAA, even at the maximum concentration of 500 mM. These results support

the model that BMAA interferes with the proper development of the neuromuscular system leading to an

uncoordinated phenotype.

Effect of BMAA on motor neuron targeting

We found that exposure to BMAA during development induces motor impairments during adulthood (Fig-

ures 4, 5, 6, and S6–S9). Neurodevelopmental dysfunction of motor neurons has been shown to cause mo-

tor impairments with dendritic or axonal mistargeting, causing abnormal execution of motor commands

(Enriquez et al., 2015). We hypothesized that the neuromuscular system is targeted by BMAA, resulting

in an uncoordinated walking pattern. We thus tested if the motor defects induced by the developmental

exposure to BMAA could be caused by a defect of the muscular fibers or a neurodevelopmental defect

of the motor neurons.

We first tested if defects in muscular fibers were responsible for the motor phenotype observed. For this,

we used aDrosophila strain that expresses a GFP fusion protein of tropomyosin 1 (Buszczak et al., 2007), an

integral component of actin filaments within muscle fibers (Lehman et al., 2009; Schachat et al., 1985; Wang

et al., 1990), generating a muscle pattern that can be visualized by confocal microscopy (Figure S10). An-

imals exposed to 500 mM BMAA did not demonstrate any defect in their tropomyosin 1-GFP muscle

pattern, both in general pattern and periodicity (Figures S10A–S10C), indicating that muscular dysfunction

is not the cause of mobility coordination defects caused by BMAA.

We next questioned if development of motor neurons could be influenced by BMAA. To test this hypoth-

esis, we genetically labeled the neuromuscular junction (NMJ) of a single motor neuron enervating the tibia

Figure 4. Continued

represented by a color code with red and blue shades indicate a decrease or increase relative to control, respectively.

White indicates no variation.

(C–F) PCA of all kinematic parameters. (C) Tridimensional representation of three-component PCA analysis. Each

individual small dot represents one video while larger dots represent the average point (n = 20 for each condition).

Contribution of each component is indicated in each axis; (D) 2D representation with ellipses delimiting 50% of variance of

the data. (E–F) Comparison of each PC coordinate. **p < 0.01, ***p < 0.001, ****p < 0.0001. (E) PC1 coordinates. (F) PC2

coordinates. See STAR Methods for details.
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Figure 5. Kinematic parameters of 3-week adult animals exposed to increasing concentrations of BMAA during

development

Exposure levels were 0, 0.5, 5, or 500 mM of BMAA. Kinematics features were recorded and analyzed using the FlyWalker

system (n = 20 for each condition).

(A and B) Representative stance traces, which mark the tarsal contacts relative to the body axis during stance phases (see

Mendes et al. (2013) for details) (B) Heatmap of kinematic parameters. Features are distinguished by ‘‘Step’’ (pink box),

‘‘Spatial’’ (yellow box), and ‘‘Gait’’ (black box), parameters. For each parameter, values were matched to animals exposed
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depressor muscle (tidm) within the proximal femur (Azevedo et al., 2020; Soler et al., 2004) (Figure 7A). This

was obtained by expressing the Rab3-YFP fusion protein that marks presynaptic sites (Zhang et al., 2007),

driven by a motor neuron-specific promoter (Azevedo et al., 2020). Three-week-old control (solvent

exposed) animals displayed a normal NMJ pattern, very similar to the one previously reported (Azevedo

et al., 2020) (Figure 7B). Strikingly, we found that exposure to 500 mM of BMAA during development

induced an altered NMJ pattern, with projections located more dorsally, closer to the center of the femur,

while targeting the same tidm muscle (Figures 7C–7F and Video S3). Moreover, BMAA-exposed animals

displayed a more linear axonal profile compared to control animals, which showed a more twisted appear-

ance (Figures 7E’ and 7G and Video S3). It should be noted that other metrics, such as the number of

branches and the most distal position, remain unchanged (Figures S10D and S10E and data not shown).

These results indicate that although animals developing in the presence of BMAA display an altered

neuronal pattern, no signs of neurodegeneration were visible, consistent with the kinematic results

observed previously (Figure 6). As such, BMAA exposure during development can induce an altered motor

neuron profile, which can ultimately be responsible for an impaired walking performance.

DISCUSSION

Here, we present data on the use of a D. melanogastermodel for DNT studies, using a kinematic assay that

accurately and quantitatively reports the status of the motor system.

Our results indicate that this test strategy can identify changes in the neuromuscular system that strongly

matches the predicted neurotoxic effect of CPS, affecting several motor parameters without affecting sur-

vival during development (Figures 1, 2, S3, and S4). Noteworthy, while we also observed a significant kine-

matic dysfunction in flies exposed to DMSO (Figures 2 and S3), we could still resolve the kinematic effect of

the additional presence of CPS further validating the usefulness of our approach.

Moreover, we found that the putative neurotoxic agent BMAA induces strong motor defects in a dose-

dependent fashion in adult animals exposed to this compound during development, possibly by

inducing motor neuron mistargeting, without inducing lethality (Figures 3, 4, 5, 6, 7, and S6–S10). Impor-

tantly, using the climbing assay, we failed to identify motor dysfunction in adult animals exposed to 0.5

and 5 mM BMAA during development (Figure 3D), strongly suggesting a higher sensitivity of the

FlyWalker approach.

Exposure to neurotoxic agents can adversely interfere with the function and development of the nervous

system in humans (Grandjean and Landrigan, 2006). Several chemical substances have been shown to

induce DNT, given the susceptibility of the developing brain (Aschner et al., 2017). Nevertheless, neuro-

toxicity has also been reported in adult exposure, including environmental and in occupational settings.

Known neurotoxic agents include mercury, lead, methylmercury, polychlorinated biphenyls, arsenic, and

toluene (Grandjean and Landrigan, 2006, 2014). The assessment of neurotoxicity is usually carried out us-

ing OECD test guidelines and those of other national regulatory agencies (US EPA, guidelines), based on

animal models. These models assess changes in neuroanatomical, neurophysiological, neurochemical,

and neurobehavioral parameters (Makris et al., 2009). However, there is a paucity of data on DNT. Of

the 350,000 chemicals in use globally (Wang et al., 2020), DNT data are only available for approximately

110–140 compounds (Sachana et al., 2021). Current data requirements for in vivo DNT testing are consid-

ered insufficient to adequately screen and characterize compounds potentially hazardous for the human

developing brain (Bal-Price et al., 2015a). Therefore, a pressing need exists for developing alternative

methods that can more rapidly and cost effectively support the identification and characterization of

chemicals with DNT potential. Alternative DNT testing methods have been proposed, including human

in vitro models, non-mammalian 3Rs models, and in silico approaches (Bal-Price and Fritsche, 2018).

Figure 5. Continued

to solvent (water) and p values are represented by a color code with red and blue shades indicate a decrease or

increase relative to control, respectively. White indicates no variation.

(C–F) PCA of all kinematic parameters. (C) Tridimensional representation of three-component PCA analysis. Each

individual small dot represents one video while larger dots represent the average point (n = 20 for each condition).

Contribution of each component is indicated in each axis. (D) 2D representation with ellipses delimiting 50% of variance of

the data. (E-F) Comparison of each PC coordinate. *p < 0.05, **p < 0.01, ****p < 0.0001. (E) PC1 coordinates. (F) PC2

coordinates. See STAR Methods for details.
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Two of the compounds tested here, TOL and CPS, present strong evidence for DNT effects in humans and

are listed as a reference compound for validation of alternative test methods to indicate DNT potential

(Aschner et al., 2017).

Our data indicate that exposure of developing Drosophila to increasing concentrations of TOL did not

significantly induce lethality or pupal positioning at any developmental stage, while the same type of

exposure to CPS showed a dose-dependent lethality (Figure 1). The lack of overt lethality to TOL could

be due to several factors. Although TOL is a volatile compound, the chosen exposure route was via food;

therefore, uptake was essentially through ingestion, although contact exposure and volatilization cannot

be excluded. Alternatively, metabolization of TOL to toxic metabolites may occur less efficiently during

developmental stages. Moreover, TOL did not show significant motor dysfunction, using the PCA as a

criterion to identify DNT (Figure 2), albeit the large body of evidence describing TOL as a neurotoxic

compound (Echeverria et al., 1989; Filley et al., 2004; Hersh, 1989; Zeng et al., 2014). Among the reasons

for this, detection failure could be the concentration of TOL used in our assay (50 mM), a masking by the

solvent DMSO (Coecke et al., 2016), or as with the lethality assay, using ingestion as the delivery method.

Previous studies using Drosophila have identified motor dysfunction after exposure to volatile com-

pounds including TOL. Tatum-Gibbs et al. exposed flies for 4 h to an atmosphere containing 175 to

1400 ppm TOL, and observed a narcotic effect. However, motor activity returned to pre-exposure levels

when the vapor was removed from the air, indicating a transient effect (Tatum-Gibbs et al., 2015).

Although acute toxicity studies have been performed in Drosophila (Adebambo et al., 2020; Bushnell

et al., 2017; Tatum-Gibbs et al., 2015), to the best of our knowledge, no DNT studies with TOL were

described so far, for this model. Neurotoxicity has been identified by inhalation studies in humans

and animals as a critical endpoint (Cruz et al., 2014). However, limited neurotoxicity studies by the

oral route are available (Ameno et al., 1989). Data suggest that TOL generally does not elicit develop-

mental effects except at doses that are significantly higher than those causing other systemic perturba-

tions (EPA., 2005; Tyle et al., 2003).

Figure 6. Time effect on motor dysfunction induced by BMAA neurotoxicity

(A–C) Animals were exposed to solvent (water); 0.5, 5, or 500 mM of BMAA during development and maintained for one

and three weeks before being tested for kinematic features using the FlyWalker system (n = 20 for each condition). Data

are represented as a 2D representation of a three-component PCA. Each individual small dot represents one video while

larger dots represent the average point, with ellipses delimiting 50% of variance of the data (n = 20 for each condition).

Contribution of each component is indicated in each axis (A0-C0) Comparison of PC1 coordinates. *p < 0.05, **p < 0.01,

***p < 0.001, n.s., not significant.
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CPS is a chlorinated organophosphorus ester widely used as an insecticide in agricultural settings. CPS acts by

inhibiting the enzyme acetylcholinesterase (AChE), thus preventing the degradation of the neurotransmitter

acetylcholine (ACh) within synaptic clefts, both at neuromuscular or neuroglandular junctions. This leads to

ACh accumulation and cholinergic hyperstimulation (Casida, 2017). CPS is highly lipophilic and is readily ab-

sorbed through the skin and lungs. CPS is also quickly absorbed through the placenta into fetal tissues and it

has been implicated in learning and behavioral effects, including developmental delays related to cognition

and motor function, attention-deficit hyperactivity disorder, autism spectrum disorder (ASD), and tremors (Bai

et al., 2014;Gray andLawler, 2011; Rauhetal., 2011, 2012, 2015).CPS toxicityhasbeenevaluated in severalmodel

systems, including rats, zebrafish, and C. elegans, with some replicating the neurotoxic effects observed in hu-

mans (Silva, 2020). Inour system,CPSdisplayedan impact on15motor parameters,most notably stepand spatial

parameters, suggesting that bothmotor and pre-motor centers at the level of the ventral nerve cord (the equiv-

alent of the vertebrate spinal cord) are targeted leading to an uncoordinated walking behavior. Overall, the CPS

dataset supports the sensitivity and detailed motor information obtained with the FlyWalker approach on this

known neurotoxic agent, largely coinciding with its known mode of action, with additional mechanistic clues.

While DMSO was used as a non-toxic solvent to prepare working solutions of CPS, the significant kine-

matic dysfunction observed was unexpected since there was no observed lethality at the concentration

Figure 7. Long-term effect on motor neuron morphology by exposure to BMAA during development

Animals were exposed to solvent (water) and 500 mMof BMAA during development and maintained on untainted food for

three weeks before being examined. Genotype: R22A08-LexA/+; lexOp-Rab3:YFP/+.

(A) Schematic representation of the fly leg. cx., coxa; trc., trochanter; fm., femur; tb., tibia; t.s., tarsal segments. Dashed

square represents the scanned region in B–D.

(B and C) Representative projections of a single motor neuron in the proximal femur (green) and cuticle autofluorescence

(pink) in control animals (B) and exposed to 500 mM of BMAA during development (C). Bar, 30 mm.

(D) Overlapped projections of the aligned images shown in B (green) and C (pink). Cuticle autofluorescence (white). Bar,

30 mm.

(E and F) Schematic of the quantification presented in (F). The average distance to leg axis was calculated by measuring

the distance between a line along the center of the femur to the average YFP signal perpendicular to the proximal-distal

axis. (E0) Schematic of the quantification presented in (G). The distance to longest-branch ratio was measured by

identifying the longest branch from the trochanter-femur joint and calculating the ratio between the distance of the

longest branch and its straight-line path. See STAR Methods for details. (F) Average distance to leg axis along the

proximal-distal axis. Average values for animals developing in water (green, n = 6) or BMAA (pink, n = 7) are represented

with shadowed areas representing SD. Statistical analysis between 150 and 270 mm using Mann-Whitney non-parametric

test, ****p < 0.0001).

(G) Distance to longest branch ratio was calculated for animals developing in water (green, n = 6) or BMAA (pink, n = 7).

*p < 0.01.
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used. DMSO is an aprotic solvent that can solubilize a wide variety of otherwise poorly soluble polar and

nonpolar molecules for which there are no alternative solvents ((Santos et al., 2003); OECD Guidance

Document on Good In Vitro Method Practices (GIVIMP)). At commonly used concentrations, as was

the case in our study, 70 mM corresponding to 0.5% (v/v), DMSO is not cytotoxic, and indeed has several

pharmacological uses, such as an anti-inflammatory and reactive oxygen species scavenger (Santos et al.,

2003), and is routinely used as a cryoprotectant in autologous bone marrow and organ transplantation.

DMSO is considered a relatively safe solvent in doses up to 50 mg per day (Hanslick et al., 2009). Never-

theless, DMSO readily crosses the blood–brain barrier, and has been reported to be neurotoxic. The

quantitative nature of the FlyWalker system allows us to quantitatively compare different experimental

conditions, delineating the simultaneous effect of two neurotoxic compounds, further validating our

approach.

Particular attention was paid to BMAA since from the three tested compounds, it was the less studied

and has been implicated in several neurodegenerative conditions (Kurland, 1988). BMAA is a natural

non-proteinaceous amino acid produced by cyanobacteria (Cox et al., 2005), diatoms (Jiang et al.,

2014) and dinoflagellates (Lage et al., 2014). Neurotoxicity of BMAA has been reported in various studies

(Cox et al., 2005; Spencer et al., 1987). Particular interest in BMAA arose from the association with

endemic neurodegenerative diseases, such as Parkinson-dementia complex and ALS, in the indigenous

people of Guam (Kurland, 1988). Intense research efforts have identified various possible mechanisms of

neurotoxicity, including misincorporation into cellular proteins, which may lead to adverse effects

(Dunlop et al., 2013; Dunlop and Guillemin, 2019). BMAA is excitotoxic against neurons via glutamate

receptors (Weiss and Choi, 1988), and also displays suppression of cell cycle progression of non-neuronal

NIH3T3 cells (Okamoto et al., 2018).

None of the BMAA concentrations tested affected the survival rates (Figure 3), eclosion timing, or external

morphology (not shown). However, increasing concentrations of BMAA rendered walking increasingly un-

coordinated (Figures 4 and S6, and Video S2), further suggesting a higher sensitivity of the developing

neuronal system to toxic insults. This correlation between dosage and phenotype was attenuated in

3-week-old animals, suggesting adaptation of the neuromuscular system to long-term motor constrains,

leading to a shift in the walking behavior. Such adaptation has been described previously after long-

term weight bearing or injury (Isakov et al., 2016; Mendes et al., 2014), underscoring a potential form of mo-

tor plasticity.

Our data indicate that BMAA exposure during development does not trigger acute adult neurodegenera-

tion, instead promotes motor dysfunction phenotypically resembling aging. This conclusion is based on

two observations: First, non-exposed aged animals displayed a coordination phenotype resembling young

animals exposed to higher BMAA exposures (3-weeks-old control animals resemble 1-week-old animals

exposed to BMAAduring development, see Figures 6B0 and 6C0). Second, although themotor neuron anal-

ysis displayed an altered axonal pattern in animals raised on BMAA (Figure 7), these do not show any met-

rics consistent with degeneration (Figures 7 and S10). The observed effects of BMAA on motor neuron tar-

geting suggest that the misincorporation of BMAA into proteins, critical for the proper wiring of neuronal

circuits, such as transcriptional regulators or cell adhesion receptors, may alter synaptic terminal differen-

tiation phenotypes, ultimately leading to motor and, potentially, cognitive defects (Enriquez et al., 2015;

Skarlatou et al., 2020; Venkatasubramanian et al., 2019).

It should be noted that our study focused on the effects of neurotoxic compounds during development, as

adults were fed non-tainted food, and the reported neurodegenerative effects are probably due to a

continuous exposure to BMAA (Kurland, 1988). Although it was out of the scope of this study, it would

be interesting to test the long-term effects of BMAA in motor neurons degeneration and kinematic activity,

or if alternatively, neurons become more susceptible to additional insults.

According to OECD, DNT has been regarded as an area in need of time- and cost-effective in vitro testing

methods for predictive outcomes as well for regulatory decisions (Fritsche et al., 2017). Accordingly, several

alternative in vitro and in silico DNT models have been proposed, as well as non-rodent animal models,

most notably, the climbing assay in flies. Here, we provide evidence for the use of the FlyWalker as an addi-

tional method to identify DNT due to its vast kinematic profile and sensitivity. In addition, our kinematic

assay was also able to identify aging-associated alterations in kinematic parameters in 3-week-old flies,
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suggesting its additional usefulness studying aging processes. In this regard, exposure to neurotoxic

agents may accelerate the dysfunction observed in aged individuals. Furthermore, the cost associated

with the methodology described here is much lower when compared with rodent in vivo assays.

Finally, the rich dataset generated by the FlyWalker software requires a proper post hoc analysis method,

such as PCA, which provides a simple and powerful approach to identify global kinematic changes caused

by test compounds (Figure S2 and see STAR Methods). Nevertheless, other methodologies for dimension-

ality reduction could be implemented for specific objectives (Anowar et al., 2021; Bishop, 2006; Postma

et al., 2009).

Overall, our results highlight the potential of detailed motor surveillance tools in simpler and more

approachable model systems for the identification of neurotoxicity, with the potential to provide important

cues. These cues can be subsequently explored in finding predictive key events of pathways leading to

DNT, which may serve as sensitive and practical read-outs in the evaluation of DNT of chemicals. By using

the extensive genetic toolkit of Drosophila currently available, one may further explore such cues to obtain

additional insights on the mode of action (MoA) of neurotoxins. One could compare kinematic parameter

patterns of known neurotoxins i.e., with identified MoAs, with patterns obtained from yet to be identified

neurotoxins, for the identification of type(s) of MoA(s) in their potential DNT. This could assist in the confir-

mation of key events and/or obtaining additional ones, useful for evaluation of chemical DNT.

Limitations of the study

Exposure assessment to test compounds was not performed, thus we do not know the actual exposure to

the agents in individual flies. Nevertheless, it is not feasible to calculate the individual intake of each fly dur-

ing larval stages. A further limitation, as exemplified with TOL, is the difficulty assessing DNT of volatile

compounds in the current setup. The application of the FlyWalker for the determination of DNT was

only demonstrated by testing few compounds; testing additional compounds (both known and unknown

neurotoxins) is necessary to further validate this approach.
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Skarlatou, S., Hérent, C., Toscano, E., Mendes,
C.S., Bouvier, J., and Zampieri, N. (2020). Afadin
signaling at the spinal neuroepithelium regulates

ll
OPEN ACCESS

18 iScience 25, 104541, July 15, 2022

iScience
Article

https://doi.org/10.1038/nn1681
https://doi.org/10.1038/nn1681
https://doi.org/10.1016/j.jmb.2009.03.060
https://doi.org/10.1016/j.jmb.2009.03.060
https://doi.org/10.1016/j.nbd.2006.10.002
https://doi.org/10.1016/j.nbd.2006.10.002
https://doi.org/10.1289/ehp.11447
https://doi.org/10.1289/ehp.11447
https://doi.org/10.1111/j.1420-9101.2008.01649.x
https://doi.org/10.1111/j.1420-9101.2008.01649.x
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.1038/s41593-018-0209-y
https://doi.org/10.7554/eLife.00231
https://doi.org/10.1371/journal.pone.0109204
https://doi.org/10.1371/journal.pone.0109204
https://doi.org/10.1016/j.neuro.2015.04.001
https://doi.org/10.1111/j.1600-0404.2004.00320.x
https://doi.org/10.1111/j.1600-0404.2004.00320.x
https://doi.org/10.1371/journal.pone.0117280
https://doi.org/10.1080/15376510309846
https://doi.org/10.1080/15376510309846
https://doi.org/10.1007/s002440010270
https://doi.org/10.1007/s002440010270
https://doi.org/10.1787/9789264067394-en
https://doi.org/10.1787/9789264067394-en
https://doi.org/10.1038/s41598-018-36418-9
https://doi.org/10.1038/s41598-018-36418-9
https://doi.org/10.1111/j.1600-0404.2008.01150.x
https://doi.org/10.1111/j.1600-0404.2008.01150.x
https://doi.org/10.1038/s41592-018-0234-5
https://doi.org/10.1016/j.neuro.2008.04.006
https://doi.org/10.1016/j.neuro.2008.04.006
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref74
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref74
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref74
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref74
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref75
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref75
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref75
http://refhub.elsevier.com/S2589-0042(22)00813-6/sref75
https://doi.org/10.1371/journal.pcbi.1007225
https://doi.org/10.1038/ncomms14494
https://doi.org/10.1038/ncomms14494
https://doi.org/10.1016/j.ntt.2009.06.004
https://doi.org/10.1002/0471140856.tx0112s59
https://doi.org/10.1002/0471140856.tx0112s59
https://doi.org/10.3389/fgene.2019.00666
https://doi.org/10.3389/fgene.2019.00666
https://doi.org/10.1289/ehp.1003160
https://doi.org/10.1289/ehp.1003160
https://doi.org/10.1016/j.neuro.2015.09.004
https://doi.org/10.1016/j.neuro.2015.09.004
https://doi.org/10.1073/pnas.1203396109
https://doi.org/10.1073/pnas.1203396109
https://doi.org/10.1289/ehp.95103s673
https://doi.org/10.1289/ehp.95103s673
https://doi.org/10.3390/toxins9030076
https://doi.org/10.3390/toxins9030076
https://doi.org/10.3390/biology10020086
https://doi.org/10.3390/biology10020086
https://doi.org/10.1016/s0006-2952(03)00002-9
https://doi.org/10.1016/s0006-2952(03)00002-9
https://doi.org/10.1083/jcb.101.3.1001
https://doi.org/10.1083/jcb.101.3.1001
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/s41586-018-0634-9
https://doi.org/10.1038/s41586-018-0634-9
https://doi.org/10.1002/bdr2.1661


central canal formation and gait selection. Cell
Rep. 31, 107741. https://doi.org/10.1016/j.celrep.
2020.107741.

Smirnova, L., Hogberg, H.T., Leist, M., and
Hartung, T. (2014). Developmental neurotoxicity -
challenges in the 21st century and in vitro
opportunities. ALTEX 31, 129–156. https://doi.
org/10.14573/altex.1403271.

Sokolowski, M.B., and Bauer, S.J. (1989). Genetic
analyses of pupation distance in Drosophila
melanogaster. Heredity 62, 177–183. https://doi.
org/10.1038/hdy.1989.26.

Soler, C., Daczewska, M., Da Ponte, J.P.,
Dastugue, B., and Jagla, K. (2004). Coordinated
development of muscles and tendons of the
Drosophila leg. Development 131, 6041–6051.

Sood, K., Kaur, J., Singh, H., Kumar Arya, S., and
Khatri, M. (2019). Comparative toxicity evaluation
of graphene oxide (GO) and zinc oxide (ZnO)
nanoparticles on Drosophila melanogaster.
Toxicol. Rep. 6, 768–781.

Spencer, P.S., Nunn, P.B., Hugon, J., Ludolph,
A.C., Ross, S.M., Roy, D.N., and Robertson, R.C.
(1987). Guam amyotrophic lateral sclerosis-
parkinsonism-dementia linked to a plant excitant
neurotoxin. Science 237, 517–522. https://doi.
org/10.1126/science.3603037.

Strauss, R., and Heisenberg, M. (1990).
Coordination of legs during straight walking and
turning in Drosophila melanogaster. J Comp
Physiol [A] 167, 403–412.

Szczecinski, N.S., Bockemühl, T., Chockley, A.S.,
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STAR+METHODS

KEY RESOURCES TABLE

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, César S. Mendes (cesar.mendes@nms.unl.pt).

Materials availability

The fly line generated in this study is available from the lead contact without restrictions.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The full list of Drosophila melanogaster strains used in the paper is described in the key resources table.

Flies were fed with standart food and kept under constant temperature (25ºC) and humidity (�70%).

METHOD DETAILS

Generation of transgenic lines

The lexOp-Rab3:YFP strain was generated by excising the Rab3:YFP ORF (a gift from Matthew Scott) using

NotI and XbaI restriction enzymes and cloning this fragment into a LexOp -MCS (pLOT) plasmid (Lai and

Lee, 2006). Transgenic lines were generated by standard P-element-mediated transformation procedures

in an yw background. Lines were selected based on strength and background expression.

Embryo collection

Ten females and five males of wild type CantonS flies were transferred to a cage with a petri dish containing

a layer of apple juice and maintained overnight. Produced eggs were collected and transferred to a 70 mm

nylon cell strainer (BD Biosciences) with the help of distilled water and a brush. Embryos were submerged in

a 50% (v/v) solution of commercial bleach for a few minutes, in order to dechorionate the eggs to test for

fertilization. To identify fertilization and viability, each egg was individually observed with a fluorescence

stereoscope (SteREO V8, Zeiss) with an Intermediate LED tube FL S, 38 HE GFP - (EX BP 470/40, BS FT

495, EM BP 525/50). Fertilized eggs were selected based on the presence of developing intestine and

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Canton-S BDSC RRID:BDSC_64349

Tm1[CC00578] BDSC RRID:BDSC_51537

[R22A08]-LexA BDSC RRID:BDSC_54692

lexOp-Rab3:YFP This paper

Software and algorithms

FlyWalker (Mendes et al., 2013) https://doi.org/10.7554/eLife.00231

Fiji (Schindelin et al., 2012) https://fiji.sc

MATLAB 2020 Mathworks https://www.mathworks.com/products/matlab.html

Imaris 9.5 Oxford instruments https://imaris.oxinst.com/

RStudio 1.1.442 RStudio https://www.rstudio.com

GraphPad Prism v6 GraphPad https://www.graphpad.com/scientificsoftware/prism

Python 3.6.4 Anaconda Anaconda https://www.anaconda.com/distribution/

Data processing- Residuals Analysis This paper https://github.com/NeurogeneLocomotion/

Data-Processing—Residuals-Analysis.git

Data Visualization- Outlier removal and Heatmap This paper https://github.com/NeurogeneLocomotion/

Data-Visualization–Outlier-removal-and-Heatmap.git

Data visualization- Principal Component Analysis This paper https://github.com/NeurogeneLocomotion/

Principal-Component-Analysis.git
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movement, distinguishable from non-fertilized ones, which showed a homogeneous white colouring. The

former ones were transferred from the container for further experimentation. Twenty five fertilized eggs

were transferred to each test vial, ensuring that the same larva:food ratio is kept and thus ensuring a com-

parable animal size.

Food preparation

Eggs were exposed to tainted and control food, containing 1 gram of food (approximately 1 ml) in a 2 cm

diameter vial. For each condition, stock solutions of test compounds were prepared and 5 mL added to a

vial of food, except in the case of DMSO (see below). Food was mixed using a handheld drill with a dispos-

able fork with two tines. To obtain a homogenous layer, the vials were centrifuged at 280 g. Lastly, food was

left overnight to allow even spreading of test compound by diffusion. For each condition, 3 vials were

prepared.

Control experiments were carried out to evaluate potential neurotoxic effects of the solvent DMSO. Three

food concentrations were studied, namely 0.07, 70 and 140 mM. The two highest concentrations were ob-

tained by adding 5 and 10 mL, respectively, of pure DMSO (Merk, Darmstadt, Germany) into the food vial.

For 0.07 mM, pure DMSO was diluted 1003 in water and 5 mL were added to the food vial. For TOL (Sigma-

Aldrich, St. Louis, MO, USA), two stock solutions of 10 and 1 mM were prepared using DMSO as solvent.

Five mL of these solutions were mixed with fly food to reach a concentration of 5 and 50 mM. Five mL of pur-

chased TOL were used to generate 47.5 mM in fly food. Regarding CPS (Sigma-Aldrich, St. Louis, MO,

USA), a stock solution of 1 M was prepared in DMSO. This solution was further diluted in DMSO to obtain

10, 1 and 0.1 mM, and 5 mL of these solutions were added to fly food vials to generate 50, 5 and 0.5 mM,

respectively, leading to a constant DMSO of 70 mM (0.5% v/v) in each of these three dose levels. Glyc-

erol-containing food was prepared by micropipetting 5 mL of glycerol (Alfa Aesar, Ward Hill, Ma, USA)

per gram of food, corresponding to approximately 68 mM (0.5% v/v) concentration. The amino acid

BMAA (Sigma-Aldrich, St. Louis, MO, USA), was dissolved using water as solvent to obtain a stock solution

of 1 M. This solution was further diluted to obtain 1000, 100, 10, 1 and 0.1 mM, and 5 mL of these stock so-

lutions were added to fly food vials to obtain 5000, 500, 50, 5 and 0.5 mM final food concentrations,

respectively.

Adult animals were kept on normal, untainted food for the FlyWalker assay and imaging experiments. If

necessary, food was changed every week.

Survival and pupal climbing positioning

For each exposure condition, 25 fertilized, and viable eggs were placed in each test vial, performed in trip-

licate, totalling 75 animals. The positioning of the pupa in the vial wall was measured according to four

height-locations: I. pupae located inside the food; II. placed slightly above the food; III. positioned up

to 1 centimetre (cm) from the food; and IV. occupying the area above 1 cm (Figure 1D). The number of an-

imals reaching pupal stages and eclosing (exiting their pupal cases) were additionally recorded.

Climbing assay

Climbing (or negative geotaxis) assay was carried in 1-week post-eclosion females as previously described

(Dinter et al., 2016; Zhou et al., 2009, 2010b). Groups of 10 animals were transferred to 2.5 cm diameter glass

vials and after a 30-min period of acclimatization, each tube was gently tapped to the bottom and the num-

ber of flies crossing a line at 8 cm height within a period of 10 s was scored. 3 consecutive readings were

carried out per group. For each condition 50 flies were analysed.

Kinematic analysis

Kinematic behavioural experiments were carried out as described previously (Mendes et al., 2013). After

eclosion, flies were collected and kept for 3 days in a new vial containing normal fly food and a humid paper

filter to prevent contamination of the walking arena. Individual flies were placed into a walking chamber

and filmed with a Photron (Tokyo, Japan) Mini UX-100 camera using a Nikon (Tokyo, Japan) AF 24-85mm

lens at 250 frames per second (fps). For each condition, 10 animals were filmed twice, generating 20 videos.

Kinetic parameters of fly movement were obtained through analyses of obtained videos, using the

FlyWalker software package (Mendes et al., 2013). All parameters were normalized to body length.
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In addition to the previously published kinematic parameters (Mendes et al., 2013, 2014), two additional

parameters were quantified:

� Stance Straightness: Ratio between the distance from AEP to PEP (stance phase) and the path

described by the tarsal contacts relative to the body (stance trace).

� Body displacement ratio: Ratio between of the distance traveled over the body path.

Leg dissection and microscopy

T1 legs were isolated using a dissecting microscope from selected animals with the correct genotype. Legs

were kept in cold PBS, followed by a quick rinse with ethanol to remove the wax from the cuticle, preventing

floating and maintaining legs submerged during the procedure. After three washes in PBS, legs were fixed

overnight in 4% paraformaldehyde in PBS at 4�C. After three washes in PBS, legs were mounted on glass

slides in glycerol and imaged with a Zeiss (Oberkochen, Germany) LSM710 confocal microscope with a 403

objective using a 514 nm excitation laser and a emission windows of 519-582 nm (for YFP), and a 594 nm

excitation laser and a emission windows of 599-797nm (for auto-fluorescence).

QUANTIFICATION AND STATISTICAL ANALYSIS

FlyWalker data

Kinematic parameters were extracted using the FlyWalker Software, in which each video resulted a single

data point (Mendes et al., 2013). Since many of the measured gait parameters vary with speed, we analyzed

the data for these parameters by firstly determining the best-fit regression model for the control experi-

ment. Subsequently the residual values for each experimental group in relation to this regression model

were determined, using RStudio 1.1.442 (Mendes et al., 2014). The residual dataset was subsequently

tested for normality and homoscedasticity using the Shapiro-Wilk and Levene Tests. Statistical significance

between the control and each of the experimental groups were determined using Kruskal-Wallis analysis of

variance followed by Dunn’s post hoc test (for non-normal distributions) or one-way-ANOVA followed by

Tukey’s post hoc test (for normal distributions). Significant differences were represented by a Heatmap

where each column represents the different groups compared with the control and in each line the kine-

matic parameters. Red and blue bars indicate an increased and decreased value, respectively. Lighter,

intermediate, and darker colors indicate a p value of <0.05, <0.01 and <0.001, respectively.

PCA

To have a more succinct representation of the data we used Principal Component Analysis (PCA), an unsu-

pervised dimensionality reduction method. PCA finds a linear projection of the data from a high-dimen-

sional space onto a lower-dimensional subspace, while maximizing variance of the projected data, and

thus retains meaningful information, resulting in a description of the data as a function of a smaller set

of uncorrelated variables (or principal components). The data was first pre-processed by centering and

scaling, after which the PCA algorithm computed the covariance matrix in order to determine the correla-

tion between variables and calculated the eigenvectors and eigenvalues of the covariance matrix in order

to identify the principal components. We chose the first three principal components to visualize the data.

The first two components were chosen to generate a two-dimensional plot. Each dot in the plots corre-

sponds to a video, representing these new abstract variables. Color-coded dots were used to distinguish

specific groups. As such, clusters of dots reflect similar walking patterns, shared by the corresponding flies.

Microscopy data

TropGFP images were analyzed using Fiji for profile tracing (Schindelin et al., 2012), and a MATLAB

(MathWorks Inc, Natick, MA, EUA) custom script for peak signal measurement and coefficient of variation

calculation. Muscle profiles were obtained using a Fiji line tool manually placed along each muscle fibre in

locations with good signal in different locations from 4 independent images for each condition. Muscle

profiles were then analysed using a custom MATLAB script, which detected each peak (‘‘find-peaks’’ func-

tion) and quantified the periodicity of each profile. The coefficient of variation (standardized measure of

dispersion of a probability distribution) of each profile was then calculated and plotted.

Motor neuron imaging data was analysed using a customMATLAB script. Leg upper and lower boundaries

were segmented using the cuticle autofluorescence signal. Noise was reduced using a gaussian filter
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function (imgaussfilt) with sigma 2 and a global threshold was determined. With these two boundaries a

central leg axis was detected and used for subsequent calculation. The neuronal profile was binarized using

an OTSU global threshold and the intensity centre of mass in each position was found along the proximal-

distal axis.

For the ratio betweenNMJ penetration depth (starting from the trochanter-femur joint) and the total length

of the longest branch (starting from the trochanter-femur joint) images were processed in Imaris 9.5 (Oxford

instruments, Abingdon, U.K.) using the filament tracer tool semi-automatically (results were manually

curated) and measurements were made using the measurement and statistics tools.

All other measurements were carried out using the Imaris 9.5 imaging analysis package.

Graphs and statistical analyses

Bar graphs represent the average percentage of animals surviving each developmental stageG SEM. Box-

plots represent the median as the middle line, with the lower and upper edges of the boxes representing

the 25 and 75% quartiles, respectively; the whiskers represent the range of the full dataset, excluding out-

liers (open circles). Outliers are defined as any value that is 1.5 times the interquartile range below or above

the 25 and 75% quartiles, respectively. Climbing assay results were tested using one-way-ANOVA followed

by Tukey’s post hoc test (Figure 3D). For microscopy experiments (Figures 7 and S10), plots represent the

mean as the middle line G SD. Statistical analysis with one-way ANOVA followed by Tukey’s post hoc test

(for normal distributions) or Kruskal-Wallis followed by Dunn’s post hoc test (for nonnormal distribution).

Statistical analysis was performed using custom MATLAB and Python scripts and GraphPad Prism.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; n.s., not significant.
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