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Anthropogenic activities are increasingly affecting ecosystems across the
globe. Meanwhile, empirical and theoretical evidence suggest that natural
systems can exhibit abrupt collapses in response to incremental increases
in the stressors, sometimes with dramatic ecological and economic conse-
quences. These catastrophic shifts are faster and larger than expected from
the changes in the stressors and happen once a tipping point is crossed.
The primary mechanisms that drive ecosystem responses to perturbations
lie in their architecture of relationships, i.e. how species interact with each
other and with the physical environment and the spatial structure of the
environment. Nonetheless, existing theoretical work on catastrophic shifts
has so far largely focused on relatively simple systems that have either
few species and/or no spatial structure. This work has laid a critical foun-
dation for understanding how abrupt responses to incremental stressors
are possible, but it remains difficult to predict (let alone manage) where or
when they are most likely to occur in more complex real-world settings.
Here, we discuss how scaling up our investigations of catastrophic shifts
from simple to more complex—species rich and spatially structured—
systems could contribute to expanding our understanding of how nature
works and improve our ability to anticipate the effects of global change
on ecological systems.

This article is part of the theme issue ‘Ecological complexity and the
biosphere: the next 30 years’.
1. Introduction
The Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES) recently estimated that approximately one million species are
currently threatened with extinction. Meanwhile, the 2021 Intergovernmental
Panel on Climate Change (IPCC) report highlights that, even under the most
optimistic emissions scenario, we still have decades (at least) of warming
ahead. As these and other stressors gradually increase, there is growing concern
that many natural ecosystems may exhibit sudden, abrupt, and persistent col-
lapses. While extreme environmental events, such as fires or hurricanes, can
have significant, and sometimes irreversible, consequences for ecosystems, we
are interested here in ecosystem responses that are much larger and faster
than one would intuit from the driver of change. Evidence for these striking,
nonlinear ecosystem responses to incremental changes in conditions has accu-
mulated from a range of experimental and natural systems, including
desertification, eutrophication, the degradation of coral reefs and the collapses
of fisheries [1–11]. One of the most pressing scientific challenges of our time is
to predict where and when this possibility is likely to be realized [12].
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Theoretically, these phenomena are described as ‘cata-
strophic shifts’ or ‘regime shifts’, which have been well
studied using classical ecological models [3,10,13–15]. These
models show that there are different ways in which a
system may respond to gradual changes in external con-
ditions. The response can be gradual, from something
almost linear to something that can be highly nonlinear or
even abrupt [16]. These latter responses may happen when
an ecosystem has more than one possible stable state for
the same range of conditions. The ecosystem can then be pro-
pelled from its current state to an alternative one, resulting in
discrete, surprising changes that can be more or less easily
reversed. Such catastrophic shifts between ecosystem states
can happen because of a perturbation of the ecosystem state
itself or when an environmental condition is changed
beyond a threshold value, or ‘tipping point’.

Our current theory of these phenomena is limited to
‘simple’ models that either assume (a) very few species, or
(b) unrealistic spatial settings. In other words, theoretical
work on catastrophic shifts has so far largely focused on
species-poor systems [3,10,13–15,17] or on species-rich sys-
tems in which species interact with each other with a single
interaction type (e.g. feeding or pollination) [18,19]. Further-
more, the vast majority of work has focused on isolated
systems ignoring the spatial structure of the landscapes in
which ecosystems are embedded. More specifically, there is
a good understanding of how alternative stable states can
emerge in simple settings but it is less well understood
how these dynamics occur when embedded in systems that
have more realistic complex diversity in species, interaction
types and spatial structure. This means that, despite clear evi-
dence that alternative stable states, catastrophic shifts and
ecological tipping points are possible in a range of ecosys-
tems, we have no strong theory to predict which natural
ecosystems on earth are most vulnerable to exhibiting rapid
collapses in the context of global changes. This poor under-
standing of the conditions under which complex ecological
systems may exhibit alternative stable states, and thereby cat-
astrophic shifts and tipping points, strongly limits our ability
to anticipate and manage natural systems.

Here, we argue that—if we want to predict which ecosys-
tems are vulnerable and prioritize ‘at risk’ ecosystems before
they collapse—current ecological theory on catastrophic
shifts and tipping points needs to explicitly address species
rich and spatially complex systems. In particular, we need
to investigate if, when and how scaling up the current
theory from simple—species poor and local—to more
complex systems leads to possible emergent alternative
ecosystem states as species, interactions or spatial comple-
xity are incorporated. We review the current state of
theoretical work and illustrate that these are pieces of a
puzzle that still need to be assembled toward a more com-
prehensive framework of how complex systems can
exhibit abrupt transitions to equip our societies to face the
challenges to come.
2. Scale up to more complex systems: species
diversity

The majority of theoretical studies on catastrophic shifts has
focused on ‘simple’ models, that is, typically either consider-
ing a subset of the species of a community while ignoring the
rest or lumping species into groups [3,10,13,15,20]. These
models have highlighted early on the importance of reinfor-
cing feedbacks for the emergence of alternative stable states
and therefore possible catastrophic shifts between them
[14,15]. A reinforcing feedback occurs when species have
positive effects on themselves. For example, in drylands,
where water is often the most limiting resource, vegetation
can improve local conditions for itself by improving
water availability and thus creating a reinforcing feedback:
when vegetation growth is increased, vegetation biomass
increases, and more water becomes available for plants to
grow. This stabilizes an ecosystem state where vegetation is
present. However, the feedback loop can work the other
way around: if vegetation is lost, for instance, due to pertur-
bations, so that the amount of vegetation falls below a
threshold, local conditions will degrade and prevent new veg-
etation to settle. The loss of vegetation reinforces itself, thereby
stabilizing another possible ecosystem state with low or even
no vegetation. In these models, a reinforcing feedback loop,
often between a biotic and an abiotic component of the eco-
system, creates the possibility for alternative stable states,
and therefore for tipping points and catastrophic shifts of
the ecosystem.

Understanding the emergence of alternative stable states
in relatively simple systems is very useful, especially for eco-
systems in which a few strongly interacting species dominate,
such as lakes or drylands [10], but what about other ecosys-
tems? Ecological communities in nature are composed of
the many species they host and of the network of interactions
those species have with each other and with the environment.
This raises the question of whether and how increased biotic
complexity can allow or prevent the emergence of alternative
stable states. Predicting the response of species-richer systems
to changes is difficult because the response of the whole
system does not only depend on the properties of the entities
(the species) but also on the presence, type and strength of
the interactions between species and on the way they are
arranged, i.e. the structure of the interaction network
[21–23]. Addressing the question of how the species interaction
network impacts catastrophic shifts therefore requires scaling
up our understanding from simple to species-richer systems.
Although stability in general, and possible catastrophic
shifts in particular, have been understudied in ecological
networks [24,25], some previous works have addressed those
questions. We present their insights in the following.

(a) Large random species interaction networks
Gilpin & Case [26] already discussed in the 1970s the theor-
etical possibility of several stable equilibria in multispecies
competition models. Going further, using a modified version
of a multi-species Lotka–Volterra model, van Nes & Scheffer
[27] confirmed that alternative stable states commonly arise
in complex communities that are randomly generated, in
agreement with later studies [28]. This implies that such
complex communities could occasionally exhibit abrupt
responses to gradual environmental changes.

(b) Structured species interaction networks
One shortcoming of the above-discussed studies is that they
do not take the structure of species interaction networks
into account. Decades of work have shown that real ecologi-
cal networks are far from random and that their structure



royalsocietypublishing.org/journal/rstb
Phil.

3
matters for community dynamics, and in particular for stab-
ility (e.g. [21,23,29]). For example, food webs (i.e. ecological
networks composed of feeding interactions) tend to be orga-
nized into compartments [29], that is, groups of species that
interact preferentially with each other and less with the rest
of the network. This organization in compartments contrib-
utes to the reduction of the spread of perturbations by
containing them within the compartments [29]. These
approaches have, however, largely overlooked the possibility
of the emergence of alternative stable states at the network
scale (but see examples below). Therefore, until recently,
little was known about the species interaction network con-
figurations that favour the emergence of alternative stable
states and ecologically significant transitions in species-rich
ecological networks.
 Trans.R.Soc.B
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(c) Hints on underlying mechanisms
As previously mentioned, mathematical models have high-
lighted early on the importance of reinforcing feedbacks for
the emergence of alternative stable states [14,15]. In a com-
plex network of species interactions, feedbacks are typically
composed of a succession of interactions between species as
well as between species and their abiotic environment, and
the type of the feedback emerges from the interplay between
all direct and indirect effects [30].

To investigate themechanisms leading to alternative stable
states in ecological networks, Karatayev et al. [19] studied a
multispecies model of consumer-resource interactions with
different types of feedbacks: specialized (species-specific feed-
backs that occur between a given pair of species) or aggregate
(which do not depend on the identity of the species).

They show that alternative stable states are more preva-
lent under aggregate than specialized feedbacks. Indeed, for
species-specific feedbacks, variability among species may
desynchronize their dynamics and potentially dissipate the
feedback. Conversely, if all species experience the same mech-
anism (with e.g. the same threshold), this can lead to a
synchronization of the feedbacks and the emergence of
global tipping points.

In the case of species-specific feedbacks, a model of
mutualistic plant–pollinator communities showed that polli-
nator populations can either collapse partially (partial
collapse) or simultaneously (all pollinator populations
collapse simultaneously; ‘whole community collapse’) as
the driver of population decline increases beyond a threshold
[18]. The probability of having a single whole community
collapse, instead of several partial collapses, is strongly
influenced by the structure of the mutualistic networks (con-
nectance and/or nestedness). Indeed, pollinators have direct
negative effects on each other through competition, and they
also can have indirect positive effects on each other when
they pollinate the same plant. Pollinators that depend on
the same plant species have stronger positive net effects on
each other as stress increases. Higher connectance and nest-
edness increase the fraction of mutualistic partners shared
by pollinators and thereby favour the emergence of reinfor-
cing feedback at the network scale. This means that in
highly connected and/or nested networks, pollinators even-
tually collapse simultaneously as the stress level goes
beyond a threshold.

In conclusion, these studies have provided key elements
towards understanding the type of ecological mechanisms,
and more specifically, the structure of the species interaction
networks, that can transform pairwise interactions into
whole-system feedback that can promote the emergence of
alternative stable states. However, how those results expand
toother systems, other interaction types aswell as tomulti-inter-
action ecological networks is unknown. Therefore, we still lack
a more general understanding of the network configurations
that can lead to alternative stable states at the system scale,
and whether transitions between these alternative stable states
correspond to partial or whole collapses.
3. Scale up to more complex systems: space
Most studies discussed up to here have considered ecological
systems in isolation, that is, only at one given location in
space. However, ecosystems are typically embedded in com-
plex landscapes within which exchanges of energy, materials,
and organisms occur [31,32]. Work on human-made net-
works (e.g. electricity and internet networks) has shown
that the spread of failures can have drastically different,
and even opposite, effects in isolated rather than in interde-
pendent networks [33,34]. In the same vein, a regime shift
in one ecosystem of a landscape composed of several, con-
nected ecosystems could trigger shifts in others and
possibly lead to a cascade of shifts. If ecosystems exhibiting
alternative stable states locally are spatially connected by
the movements of species and fluxes of matter, what are the
dynamical properties that emerge at the broad spatial scale,
or ‘meta’-scale? Are global tipping points possible in such
spatially connected systems? Recent studies discussed in the
following have started exploring these questions. Note that
we are here not interested in the links between spatial struc-
ture and tipping points within ecosystems (e.g. [17,35,36]) but
in the role of the spatial connectivity between ecosystems.

(a) Implicit space
Investigating the consequences of spatial flows between
local systems for functioning at the meta-scale has been the
focus of the metapopulation, metacommunity and metaeco-
system theoretical frameworks [31]. Space has been found
to be stabilizing, for instance, in the context of stochastic
metapopulations where times to extinctions increase due to
the rescue of extinct patches via dispersal [37]. Similar results
have been found in classical metacommunity studies (e.g. the
patch dynamics paradigm; [38]) and have been scaled up to
entire metaecosystems (e.g. [31,32]). Regarding alternative
stable states more specifically, classical work on metapopula-
tion dynamics of the Glanville fritillary has shown that
multiple equilibria can exist in connected ecological systems
when the effects of dispersal on local dynamics are taken
into account [39,40]. However, these models are spatially
implicit and therefore do not take into account the role of
the way patches are located in space and connected to
others. How the spatial structure of the patches themselves
affect the possibility of alternative stable states at the
meta-scale remains a largely unresolved question.

(b) Spatially explicit meta-ecosystems
In analogy to species interaction network topology, one can
ask how spatial network topology affects the spread of
shifts in a setting where ecosystems are connected to each
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other in space by the movements of species and fluxes of
matter. To answer this question, model studies have included
spatial structure explicitly under two paradigms: (i) models
of continuous space that are used to describe systems,
which lack clear spatial patches and where the habitat can
be considered relatively homogeneous (see the example of
Lake Veluwe in [41]) and (ii) models of discrete space that
are better suited to discontinuous habitats with clear patches
connected by dispersal of individuals and flow of resources.
/journal/rstb
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(i) Continuous space
Let us imagine an ecosystem which has two stable states
locally. Studies have investigated how local shifts can
spread when such ecosystems are connected in continuous
space. They have found that the most stable of the two
stable states often dominates over the other: a local shift
from the dominant state recovers, while shifts to the
dominant state spread through space at a constant speed (tra-
velling wave) [41,42]. The whole system is generally not
expected to exhibit ‘spatial bistability’ (i.e. the coexistence of
the two stable states in space) in a continuous habitat.
Because of that, the whole system is expected to exhibit
sharp transitions between a fully occupied state and an
empty state (i.e. regional bistability). Moreover, hysteresis is
expected to be largely reduced at the landscape scale [41].

(ii) Discrete space
Because the spatially continuous view can be difficult to ana-
lyse mathematically and is often more appropriate for
relatively small spatial scales, an option is to consider land-
scapes as discrete patches connected to each other by fluxes.
Such discrete systems, modelled in the form of lines or grids,
have been found to behave in a similar way to continuous
ones when dispersal is strong: a local shift to the dominant
state spreads from patch to patch in a domino effect [42,43].
Here again, regional scale hysteresis mostly disappears if dis-
persal is strong. However, as dispersal [42] or flushing rates in
aquatic systems [43] decrease, the speed of the travelling wave
decreases and can eventually come to a halt (so-called ‘pin-
ning’ phenomenon). In that case, alternative stable states can
coexist in a landscape for intermediate environmental con-
ditions, which can smooth the transition at the regional scale.

Both in discrete and continuous space, several mechan-
isms have been found to smooth the landscape-scale
transitions between the fully occupied and the empty state.
Demographic stochasticity [44], spatial heterogeneity in
environmental conditions [44,45] or in dispersal rates [41]
facilitate spatial bistability and smooth large-scale transitions.

We thus have a relatively good understanding of the
whole-system dynamics of spatially connected ecosystems
with locally bistable dynamics when the connections between
the local systems are simplified to be along a line or a two-
dimensional grid. The whole system will then only have
homogeneous stable states (fully empty and fully occupied)
and exhibit sharp transitions between them. However,
regional bistability and hysteresis being largely reduced,
these shifts cannot usually be called catastrophic shifts.

(c) Increasing spatial complexity
As previously mentioned, for practical reasons, studies have
so far focused on simplified settings in terms of how
ecosystems are connected to each other in space. Real
landscapes, however, are discontinuous, heterogeneous and
have emergent properties—e.g. terrestrial populations
usually show emergent modularity [46] and riverine systems
are dendritic [47]. Importantly, the structure of real land-
scapes have been shown to affect ecological outcomes
[48–50]. Ignoring these impacts is an important shortcoming
of the current state of the literature as the properties of such
habitats—e.g. the heterogeneity in connectivity resulting
from local barriers to dispersal—may change how local
bistability affects regional scale dynamics and equilibria
[41,45].

Recently, Saade et al. [51] have started to tackle this issue
by investigating the landscape-scale stability of more
complex discrete landscapes. Comparing linear (one dimen-
sion) and grid-like (two dimensions) landscapes to more
realistic networks (reflecting riverine and terrestrial systems),
they find that local shifts can induce a landscape-scale shift
through a domino effect across all landscapes structures.
However, the position of landscape-scale tipping points
and the extent of hysteresis (i.e. the distance between the
degradation and restoration tipping points) is very sensitive
to the landscape structure. The reduction of hysteresis docu-
mented by Keitt et al. [42] and Hilt et al. [43] is restricted
only to landscapes with very low connectivity such as
one-dimensional linear landscapes and dendritic (riverine)
networks. Landscapes with a higher connectivity (two-
dimensional grids and terrestrial systems) exhibit land-
scape-scale bistability with a pronounced hysteresis.
Moreover, the commonly used linear (one dimension) and
grid-like (two dimensions) systems do not necessarily reflect
the behaviour of more realistic landscape structures, as one-
dimensional linear systems consistently exhibit smaller hys-
teresis and two-dimensional grids consistently exhibit
larger hysteresis than more realistic networks. This result
may be explained by the fractal dimension of the network.
Since the position of landscape-scale tipping points dictates
how easy it is to induce a landscape degradation or restor-
ation, we should be wary of overly simplified spatial
structure and, when possible, should prefer realistic network
structures to study the stability of spatial systems. In the
future, one way to link more general theoretical results to
real biological systems could be to study explicitly the
impact of network properties (e.g. connectivity, modularity,
link distribution etc.) on landscape-scale stability.

In conclusion, ecological systems quasi universally show
spatial structure. Existing work has shown that alternative
stable states are possible in spatially structured systems.
Yet, because most models so far rely on simplified descrip-
tions of space (either implicit, one dimension or grid-like),
we do not know how the results may change in the case of
more realistic spatial structure. A more explicit inclusion of
spatial complexity, meaning the spatial network topology,
could help understand when and how this level of complex-
ity contributes to alternative stable states and possible shifts
at the meta-scale. It is important to note, however, that study-
ing systems at increasingly larger spatial scales raises the
question of whether the environmental conditions are still
relatively homogeneous at the scale considered. The existence
of alternative stable states, indeed, requires that such states
(e.g. species configurations) exist under the same set of
environmental conditions, an assumption that becomes less
and less likely to hold as scale increases.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

377:20210386

5
4. Opportunities to advance understanding
Both in the context of biotic interactions and spatial structure,
we have argued so far that the current ecological theory of
alternative stable states and catastrophic shifts lacks aspects
of complexity which are worth exploring. At the same time,
complex models become very quickly intractable as the
number of dimensions and parameters grow, making it diffi-
cult to adequately describe systems with more than three or
four interacting components. Yet, perhaps ironically, more
complex models can reveal emergent phenomena which con-
strain system behaviour and simplify predictions in ways that
are impossible to see with simpler models [52–54]. Therefore,
identifying key dimensions of ecological complexity that are
lacking in the current theory of tipping points may reveal
opportunities to more simply predict when and where they
are likely to occur in real-world ecosystems. We next identify
a few promising directions in which progress could be made
to help get a better understanding of the emergence of shifts
in complex ecological systems.

(a) Incorporating the diversity of interaction types
Ecological network studies have so far typically investigated
a single interaction at a time, e.g. food webs composed of
feeding interactions [21,22] or mutualistic networks com-
posed of plant–pollinator interactions [23], for example. Yet,
in natural communities, species depend on and influence
each other in multiple ways: they eat each other, compete
for nutrients, light and space, fight for refuges, habitats
or common prey, and provide habitat and protection
to others [30,55]. In the last few years, there has been
increasing recognition about the need to investigate the con-
sequences of the coexistence of multiple interaction types in
nature, i.e. describe ecological communities as ‘multi-layer’
ecological networks, in which each layer contains information
about one type of interaction that links the species of the
community [30,56,57].

Dynamical models have started investigating such
multi-interaction ecological networks [30,56,58,59], showing
that the presence, the relative abundance and the struc-
ture of the different interaction types can affect our
fundamental understanding of how ecological systems
work (e.g. [30,56,58]).

Altogether, these studies suggest that incorporating the
diversity of interactions in ecological theory is a worthwhile
effort [57]. There is, however, currently no work that we
know of about alternative stable states and their implica-
tions for the responses of multi-layer ecological systems to
environmental changes.

(b) Measuring the resilience of complex systems
The concepts of stability and resilience have received
considerable attention in the ecological literature for
decades. As originally defined by Holling in 1973, the term
resilience was introduced to specifically refer to ecological
systems that can exhibit alternative stable states [14]. The con-
cept, however, has faced difficulties in estimating it in real
systems [60].

In the same way as the stability of ecological communities
has been estimated in a variety of ways using many different
metrics [24,25,61], this is also true for resilience and more
generally for metrics related to catastrophic shifts [62]. This
multiplicity of metrics used to quantify the concepts of stab-
ility and resilience in ecological studies raises the question of
how the different metrics relate to each other [24]. A better
understanding of these relationships could help us identify
how many and which metrics need to be measured in natural
systems [24,25,63]. This is especially true for metrics related
to abrupt transitions for which we need to understand the
relations between each other but also with other stability
metrics [62].

As stressed in Carpenter et al. [60], when thinking about
the resilience of complex systems, it is not only a matter of
deciding on a metric to measure it but also of specifying
the ‘resilience of what to what’. It is indeed important to clar-
ify on what system state resilience is measured (resilience of
what) as well as the perturbations that are considered (resili-
ence to what). Furthermore, one needs to decide on a time
period and particular spatial scale since resilience can vary
depending on the spatial and temporal scale at which it
is measured.

Altogether, despite recent progress, there are still no
clear guidelines on how to measure (with which metrics,
at what scale and at what level of organization, e.g. species
or community) the overall stability and resilience of eco-
logical systems [24,25]. The concept of resilience has been
very useful so far in thinking about ecological systems and
their responses to changes, but a more measurable, oper-
ational definition of resilience could provide important
insights and practical applications in better understanding,
quantifying and eventually possibly mapping ecosystem
resilience [60].

(c) Predicting the resilience of complex systems: early-
warning signals

Important changes in stability, especially abrupt ones, are
notably difficult to predict. Generic indicators (so-called
‘early-warning signals’) have been proposed in the literature
[64]. They are based on a phenomenon referred to as critical
slowing down, which states that a disturbed system needs
more time to recover when it is closer to a shift, i.e. it becomes
slower and therefore less resilient [65]. Signatures of this
slowing down can be detected in the temporal or spatial
dynamics of ecosystems (increase in recovery time, temporal
variance, autocorrelation and skewness of a variable used to
quantify the ecosystem’s state, such as total biomass) [64].
Therefore, using temporal or spatial data of a given eco-
system, we should be able to detect whether the system is
losing resilience.

The phenomenon of critical slowing down seems to
be universal and occurs when any dynamical system
approaches a transition. In fact, mathematically, the early-
warning signals are expected to work when a dynamical
system approaches any kind of bifurcation, even when
there is a change in stability that is not technically a bifur-
cation [16]. These signals are therefore generic, as they
operate in principle independently of the specific mechanism
responsible for the change of resilience, making their poten-
tial scope of application very broad. While their generality
makes them very promising, it also means that they are not
specific to catastrophic shifts [16].

Early-warning signals have been shown to successfully
announce a loss of resilience in different models and in con-
trolled laboratory conditions (e.g. [6,7,66]). Although more
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limited in numbers, manipulative field experiments have also
demonstrated their ability to test model predictions, identify
thresholds and evaluate early-warning signals under real-
world conditions [8,67].

Success in real-world observational time series data has,
however, been more mitigated [68,69]. This highlights that
we need to better understand the conditions under which
early-warning signals work or fail. In particular, because
theoretical work on early-warning signals has mainly been
based on local models with one or a few species so far, it is
unclear how reliable these indicators are in systems with mul-
tiple species, locations in space and with multiple interaction
types. It is also necessary to understand at which organiz-
ational level these indicators should be measured (species
or community) and on which variable (e.g. biomass, species
number). Investigating this question formally in model eco-
logical communities, Patterson et al. [70] show that the
reliability of early-warning signals depends on the species
observed as well as on the type of ecological interaction con-
sidered. For example, the relevant species to monitor to
maximize early-warning signal detection is not the same in
a consumer-resource than in a mutualistic system. Another
important limitation of the current ecological theory of cata-
strophic shifts is that it describes ecosystems at equilibria, a
condition which is probably rarely verified in nature
[71,72]. Regime shifts can be caused by non-equilibrium
phenomena and early-warning signals are not expected to
apply in these cases [72,73].
(d) Simplifying complexity
Adding new aspects of complexity in current theory comes
with practical challenges but there are promising avenues to
overcome this challenge. Indeed, recent papers have tried to
overcome this issue by describing high-dimensional systems
using a few quantities only. For instance, Gao et al. [54]
suggested a method of using mean-field approximations to
reduce n-dimensional mutualistic networks to a single
dimension (the effective average density) and a single control
parameter describing structure of the network. This allows
getting analytical results on these systems, such as predicting
the equilibria from an aggregate of three network metrics
(link density, heterogeneity and symmetry). In particular
they show how to apply this framework to real ecological net-
works (plant–pollinator) and gene regulatory networks
(from E. coli and S. cerevisiae), and how to detect if network
modifications will trigger a shift.

More recent papers generalized this approach by using
spectral analysis of the interaction network to make it appli-
cable to non-random networks [74] and to heterogeneous
networks (i.e. where different nodes can have different
types of dynamics), providing us with very promising tools
for the study of mutualistic interaction networks.

Barbier et al. [53] proposed another reduction method
inspired from statistical physics to deal with mutualistic net-
works, but also with predation and competition networks. It
uses aggregate parameters of the interaction network (i.e. the
average and variance of the species growth rates, carrying
capacities and interaction strengths) to summarize an
n-dimensional system in a single stochastic dynamical
equation. This single equation predicts aggregate properties
of the system, such as the total biomass, the fraction of surviv-
ing species, the Simpson’s diversity or the temporal variability
of the system. While it is best suited for disordered networks
(e.g. networks where species associations are seemingly
random) with a single interaction type, the authors suggest
that extensions of the approach are possible to deal with
more structured networks and more than one interaction
type. They illustrate this by reducing a strongly compartmen-
talized bipartite networks (i.e. with competition interactions
within and mutualistic interactions between compartments)
to two stochastic equations, each corresponding to one com-
partment. While this method still requires further
investigations to determine its applicability, it is extremely
promising to simplify the study of complex systems, especially
if a more general framework emerges to deal with multi-inter-
action networks.

Another issue when studying ecological systems is that
they are often ‘networks of networks’: a community of
species (interaction network) lives in and connects through
space a set of inhabitable locations (spatial network). The
interactions between these two layers can give rise to com-
plex dynamics such as oscillations and pattern formation
[75,76] analogous to Turing-patterns in reaction–diffusion.
These dynamics are unexpected from the study of the inter-
action network alone and can lead to alternative stable
states with abrupt transitions between them when the spatial
network topology is altered [75]. Brechtel et al. [77] proposed
a method that uses the master stability function [78] of the
spatial network to study the stability of such systems. It
allows to determine whether a stable state determined from
the interaction network alone can form a homogeneous
stable state in a given spatial network or if complex pattern
formation will arise. It also allows to determine if a
modification of the spatial network can result in pattern
formation. This method could prove very useful in studying
the stability patterns arising of ‘networks of networks’, and
the authors suggest other types of systems where it could
be applied such as cell biology (where gene regulatory net-
works determining the state of each cell are nested in the
cell interaction network in a tissue).

Innovative methods are also available to reconstruct the
whole landscape of possible states of a complex system
[79,80]. Chemical organization theory relies on discretizing
the description of species interactions in a way that resembles
chemical reactions. Once this is done, the approach provides
a set of analytical tools which allows to reconstruct the whole
landscape of possible states of the system and transitions
among these states. Obtaining this landscape is very power-
ful because it provides an overview of all possible states
(and their species composition) but also of the possible
(and the probability of) transitions between the different
states. This shows how a given community is most likely to
change when subject to perturbations but also the paths it
will take to get there.
(e) Integrating different approaches: beyond modelling
We have so far focused this section on modelling, but progress
in understanding catastrophic shifts also requires a better inte-
gration of models with observational data and experiments.
Although pioneering studies have reported very promising
results (see previous section ‘Predicting the resilience of
complex systems: early-warning signals’; [6,7,66,68,69]),
experimental work and particularly manipulative field exper-
iments have been rare in the catastrophic shift literature. They,
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however, have a key role to play in testing predictions from the
theory, assessing early-warning signals in real-world con-
ditions and fostering our understanding of the mechanisms
behind the reinforcing feedbacks.

In conclusion, we have identified key points of improve-
ment of current catastrophic shift theory in ecology. These
are mainly due to the lack of biotic and spatial complexity
considered in classical models. We advocate for a multi-
layer-network perspective, taking into account networks of
networks ranging from species interactions to networks of
habitats in landscapes. This will allow us to take into account
network topology as an important modulator of catastrophic
shifts and to understand how disturbances may propagate in
realistically complex landscapes of realistically complex eco-
systems. While this step forward intrinsically embraces
complexity, this does not need to come at the cost of the tract-
ability of the underlying models. Indeed, highly promising
avenues of dimensionality reduction have the potential to
facilitate models and theory development. Of course, this
list of improvement points is not exhaustive. Taking the influ-
ence of multiple stressors and their interactions [81] as well as
the importance of stochasticity and transient dynamics [71]
into account are examples of further research avenues.
 386
5. Conclusion
Despite the urgency and magnitude of global change threats
to humanity’s life support system, there is no synthetic,
empirically grounded body of ecological theory to predict
which ecosystems and ecological communities are more
likely to abruptly shift in response to upcoming changes.
We need to fill that gap. Mathematical models can help us
identify and understand the conditions under which species
rich, interaction rich and spatially structured ecosystems
can exhibit alternative stable states possibly leading to
ecologically important catastrophic shifts between them.

Addressing that question is however not trivial. Indeed,
the current state of the literature only provides pieces of the
puzzle. On the one hand, alternative stable states seem to be
a robust phenomenon in large random ecological networks
[27]. On the other hand, studies have showed that the structure
of real ecological networks deviate from random ones in ways
that tend to make them more robust than expected by chance.
These studies have however rarely looked at the emergence of
alternative stable states. So far, it therefore remains unclear
how the structure of real ecological communities constrains
(or enables) the emergence of reinforcing feedback loops and
therefore possible alternative stable states and associated
shifts in species-rich communities.
In a spatial context, where different ecological systems are
connected to each other by movement of organisms or matter,
alternative stable states at the whole-system scale have been
shown to be theoretically possible. However, the degree to
which biotic complexity amplifies, or dampens, these tran-
sitions remains unknown. Moreover, space has usually been
described in a very simplified way ignoring important
aspects of topology. It is therefore unclear whether and
how the spatial coupling between ecological systems may
allow for (or prevent) abrupt transitions at the meta-scale.

Making progress along these lines is not only crucial for
our basic knowledge of natural systems, but also urgent for
the formulation of environmental policies and the prioritiza-
tion of management efforts on a landscape. We need to
understand which of these different aspects of complexity
matters for predicting the dynamics of which ecosystems.
Expanding the theory of alternative stable states and tipping
points towards more complex systems could provide useful
tools to map the fragility of ecosystems broadly and to moni-
tor changes in their resilience, which will help manage
ecosystems by better anticipating the effects of upcoming
perturbations.

This new understanding and indicators could also find
applications in a number of complex systems outside of ecol-
ogy (see table 1 of Brummitt et al. [34] for an overview).
Because of the current state of globalization, complex interde-
pendent networks, involving multiple interaction types
between their components as well as several subsystems,
are at the core of our modern society as can be seen in the
examples of power grids [82], financial systems [83,84], trans-
portation networks [85] or the internet [86,87]. A major
challenge is the prediction and control of sudden changes
(failures) propagating among coupled subsystems, as seen
in episodes of cascading electrical blackouts [33], systemic
financial crises [84], contagious currency crises [88] or politi-
cal uprising [89–91]. Understanding stability of ecological
systems is a first step in that direction and the knowledge
accumulated could prove to be valuable to numerous
multi-layer networks outside of ecology.
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